
PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

Contents

1. Introduction 4
1.1. Mathematica as a calculator 4
1.2. Numbers 6
1.3. Algebraic computations 7
1.4. Variables 7
1.5. Equalities, =, :=, == 7
2. Defining functions 10
2.1. Formulas as functions 10
2.2. Anonymous functions 11
3. Lists 12
3.1. Functions producing lists 13
3.2. Listable functions 15
4. Changing heads! 22
5. A bit of Logic and Set Theory 25
5.1. Being logical 25
5.2. Handling sets 27
5.3. Decision making, If statement 29
6. Sums and products 30
7. Loops 34
7.1. Nested loops 40
7.2. Nest, NestList and more 42
7.3. Fold and FoldList 46
7.4. Inner and Outer 48
8. Substitution, Mathematica rules! 50
9. Pattern matching 51
10. Functions with multiple definitions 57
10.1. Functions with local variables 62
10.2. Functions with conditions 63
11. Recursive functions 64
12. Matrices; Multilinear algebra 66
References 69

Date: March 8, 2007.
1

2 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

Teaching the mechanical performance of routine mathematical op-
erations and nothing else is well under the level of the cookbook
because kitchen recipes do leave something to the imagination and
judgment of the cook but the mathematical recipes do not.

G. Pólya

This note grew out of a module I gave at Queen’s University Belfast in the Winter semester
2004, Spring semester 2005 and Winter semester 2006. Although there are many books already
written about how to use Mathematica, I noticed they fall into two categories: either they provide
an explanation about the commands, in the style of: enter the command, push the button and see
the result; or books which study some problems and write several-paragraph codes in Mathematica.
The books in the first category did not inspire me (nor my imagination) and the second category
were too difficult to understand and not suitable for learning (or teaching) Mathematica’s abilities
to do programming and solve problems.

I could not find a book that I could follow to teach this module. In class one cannot go on forever
showing students just how commands in Mathematica work; on the other hand it would be very
difficult to follow the codes if one writes a program having more than five lines in class (especially
as Mathematica’s style of programming provides a condensed code). Thus this note. This note
promotes Mathematica’s style of programming. I tried to show when we adopt this approach, how
naturally one can solve (nice) problems with (Mathematica) style.

Here is an example: Does the formula n2 + n + 41 produce a prime number for n = 1 to 39?
Solution.
(#^2 +#+ 1) & /@ Range[39] ∈ Primes

True

Or in another Problem we tried to show how one can effectively use pattern matching to check
that for two matrices A and B, (ABA−1)5 = AB5A−1. One only needs to introduce the fact that
AA−1 = 1 and then Mathematica will check the problem by cancelling the inverse elements instead
of direct calculation.

Although the above code might look like Dutch now, the reader will observe as we proceed how
the codes start making sense, as if this is the most natural way to approach the problems. (People
who approach the problems with a procedural style of programming will experience that this style
replace their way of thinking!) We have tried to let the reader learn from the codes and avoid long
and exhausting explanations, as the codes will speak for themselves. Also we have tried to show
that in Mathematica (like in the real world) there are many ways to approach a problem and solve
it. We have tried to inspire the imagination!

Someone once rightly said the Mathematica programming language is rather a “Swiss army
knife” containing a vast array of features. Mathematica provides us with a powerful mathematical
functions. Along with this, one can freely mix different styles of programming, functional, list-base
and procedural to achieve a lot. This mélange of programming styles is what we promote in this
note.

I mostly choose problems having something to do with numbers as they do not need any par-
ticular background.

Thus this note could be considered for a course in Mathematica, or for self study. It mostly
concentrates on programming and problem solving in Mathematica. There are excellent books

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 3

written about Mathematica for example Ilan Vardi [3], Stan Wagon [4] or Shaw-Tigg [2] to name
a few. The reader is encouraged to have a look at them as well.

Thanks: Ilan Vardi for his input, Brian McMaster for polishing my English

4 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

1. Introduction

In this section we give a quick introduction to the very basic things one can perform with
Mathematica.

1.1. Mathematica as a calculator. Mathematica can be used as a calculator with the basic arith-
metic operations +,−, ∗, / and ˆ for powers.

2682440^4 + 15365639^4 + 18796760^4

180630077292169281088848499041

20615673^4

180630077292169281088848499041

This shows that 26824404 + 153656394 + 187967604 = 206156734, disproving a conjecture by
Euler that three fourth powers can never sum to a fourth power. (This conjecture remained open
for almost 200 years, until Noam Elkies at Harvard came up with the above counterexample in
1988)

Mathematica can handle large calculations:

2^9941-1
346088282490851215242960395767413316722628668900238547790489283445006220809834
114464364375544153707533664486747635050186414707093323739706083766904042292657
896479937097603584695523190454849100503041498098185402835071596835622329419680
597622813345447397208492609048551927706260549117935903890607959811638387214329
942787636330953774381948448664711249676857988881722120330008214696844649561469

971941269212843362064633138595375772004624420290646813260875582574884704893842
439892702368849786430630930044229396033700105465953863020090730439444822025590

974067005973305707995078329631309387398850801984162586351945229130425629366798
595874957210311737477964188950607019417175060019371524300323636319342657985162
360474512090898647074307803622983070381934454864937566479918042587755749738339

033157350828910293923593527586171850199425548346718610745487724398807296062449
119400666801128238240958164582617618617466040348020564668231437182554927847793

809917495802552633233265364577438941508489539699028185300578708762293298033382
857354192282590221696026655322108347896020516865460114667379813060562474800550

717182503337375022673073441785129507385943306843408026982289639865627325971753

720872956490728302897497713583308679515087108592167432185229188116706374484964
985490944305412774440794079895398574694527721321665808857543604774088429133272

929486968974961416149197398454328358943244736013876096437505146992150326837445
270717186840918321709483693962800611845937461435890688111902531018735953191561

073191960711505984880700270887058427496052030631941911669221061761576093672419

481606259890321279847480810753243826320939137964446657006013912783603230022674

342951943256072806612601193787194051514975551875492521342643946459638539649133
096977765333294018221580031828892780723686021289827103066181151189641318936578

454002968600124203913769646701839835949541124845655973124607377987770920717067
108245037074572201550158995917662449577680068024829766739203929954101642247764

456712221498036579277084129255555428170455724308463899881299605192273139872912
009020608820607337620758922994736664058974270358117868798756943150786544200556

034696253093996539559323104664300391464658054529650140400194238975526755347682

486246319514314931881709059725887801118502811905590736777711874328140886786742

863021082751492584771012964518336519797173751709005056736459646963553313698192
960002673895832892991267383457269803259989559975011766642010428885460856994464

428341952329487874884105957501974387863531192042108558046924605825338329677719

469114599019213249849688100211899682849413315731640563047254808689218234425381

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 5

995903838524127868408334796114199701017929783556536507553291382986542462253468
272075036067407459569581273837487178259185274731649705820951813129055192427102

805730231455547936284990105092960558497123779789849218399970374158976741548307

086291454847245367245726224501314799926816843104644494390222505048592508347618

947888895525278984009881962000148685756402331365091456281271913548582750839078

91469979019426224883789463551

If a number of the form 2n − 1 happens to be prime, it is called a Mersenne prime. Recall that
a prime number is a number which is divisible only by 1 and itself. It is easy to see 22 − 1 and
23 − 1 and 25 − 1 are Mersenne primes. The list continues. In 1963, Gillies found that the above
number, 29941 − 1, is a Mersenne prime. With my laptop it takes 16 seconds for Mathematica to
check that this is a prime number.1

PrimeQ[2^9941-1]

True

Back to easier calculations:

24/17
24
17

Mathematica always tries to give a precise value, thus gives back 24
17

instead of attempting to
evaluate the fraction.

Sin[Pi/5]
1
2

√

1
2
(5 −

√
5)

In order to get the numerical value, one can use the function N[].

N[24/17]

1.41176

N[24/17, 20]

1.4117647058823529412

?N

N[expr] gives the numerical value of expr. N[expr, n] attempts to

give a result with n-digit precision.

All elementary mathematical functions are available here, �Log, Exp, Sqrt, Sin, Cos, Tan, ArcSin,
.... For a complete list have a look at Mathematical Functions:Elementary Functions in
the Mathematica’s help.

1The largest Mersenne prime found so far is 230402457 − 1 which is discovered in December 2005

6 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

1.2. Numbers. Recall that one can decompose any number n as a product of powers of primes and
this decomposition is unique, i.e, n = pk1

1 · · · pkt

t where pi’s are prime. Thus 37534 = 2 × 72 × 383.
Mathematica can do all these:

FactorInteger[37534]

{{2,1},{7,2},{383,1}}

FactorInteger[6473434456376432]

{{2,4},{3239053,1},{124909859,1}}

PrimeQ[124909859]

True

Prime[8]

19

Prime[n] produces the n-th prime number. PrimeQ[n] determines whether n is a prime number.
In 1640 Fermat conjectured that the formula 22n

+ 1 always produces a prime number. Almost
a hundred years later the first counterexample was found.

PrimeQ[2^(2^1)+1]

True

PrimeQ[2^(2^2)+1]

True

PrimeQ[2^(2^3)+1]

True

PrimeQ[2^(2^4)+1]

True

PrimeQ[2^(2^5)+1]

False

2^(2^5)+1

4294967297

FactorInteger[2^(2^5)+1]

{{641,1},{6700417,1}}

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 7

1.3. Algebraic computations. One of the abilities of Mathematica is to handle symbolic com-
putations. Consider the expression (x + 1)2. One can use Mathematica to expand this expression:

Expand[(x+1)^2]

1 + 2x + x2

Mathematica can also do the inverse of this task, namely to factorize an expression:

Factor[1 + 2x + x^2]

(1 + x)2

My favorite example is this one. Try to factorize the expression x10 + x5 + 1. Here is one way
to do that:

x10 + x5 + 1 =
x10 + x9 − x9 + x8 − x8 + · · · + x5 − x5 + x5 + x4 − x4 + · · · + x − x + 1 =
x10 +x9 +x8−x9−x8−x7 +x7 +x6 +x5−x6−x5−x4 +x5 +x4 +x3−x3−x2−x+x2 +x+1 =
x8(x2+x+1)−x7(x2+x+1)+x5(x2+x+1)−x4(x2+x+1)+x3(x2+x+1)−x(x2+x+1)+x2+x+1 =
(x2 + x + 1)(x8 − x7 + x5 − x4 + x3 − x + 1).

Mathematica can easily come up with the factorization:

Factor[x^10 + x^5 + 1]

(x2 + x + 1)(1 − x + x3 − x4 + x5 − x7 + x8).
It is a fact that the product of four consecutive numbers plus one is always a squared number:

Factor[n*(n+1)*(n+2)*(n+3)+1]

(1 + 3n + n2)2

1.4. Variables. In order to feed data to a computer program one needs to define variables to be
able to assign data to them. As long as you use common sense, any names you choose for variables
are valid in Mathematica. Names like x, y, x3, myfunc, xQuaternion, ... are all fine. Do
not use underscore to define a variable 2. The underscore is reserved and will be used in the
definition of functions in Section 2.

1.5. Equalities, =, :=, ==. Primarily there are three equalities in Mathematica. There is a
fundamental differences between = and :=. Study the following example:

x=5;y=x+2;

y

7

x=10

10

2This is quite common in Pascal or C, to define variables such as x printer, com graph, ...

8 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

y

7

x=15

15

y

7

Now compare it with the following one, when we replace = with :=

x=5;y:=x+2;

y

7

x=10

10

y

12

x=15

15

y

17

From the example it is clear that when we define y=x+2 then y takes the value of x+2 and
this will be assigned to y. No matter if x changes its value, the value of y remains the same. In
other words, y is independent of x. But in y:=x+2, y is dependent on x, and when x changes, the
value of y changes too. Namely using := then y is a function with variable x. The following is an
excellent example to show the difference between = and :=.

?Random

Random[] gives a uniformly distributed pseudorandom Real in the

range 0 to 1.

x=Random[]

0.246748

x

0.246748

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 9

x

0.246748

x:=Random[]

x

0.60373

x

0.289076

x

0.564378

We will examine this difference between = and := again in Example 3.1.
Finally the equality == is used to compare:

5==5

True

3==5

False

We will discuss more on this in Section 5.1.

10 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

2. Defining functions

2.1. Formulas as functions. Defining functions is one of the strong features of Mathematica.
One can define a function in several different ways in Mathematica as we will see in the course of
this lecture.

Let us start with a simple example of defining the formula f(n) = n2 + 4 as a function and
calculate f(−2):

f[n_]:= n^2 +4

First notice that in defining a function we use :=. The symbol n is a dummy variable and as
expected one plugs in the data in place of n.

f[-2]

8

In fact as we will see later, one can plug “anything” in place of n and that’s why functions in
Mathematica are far superior to those in Pascal or C.

One more note about the extra underscore in the definition of the function. The underscore
which will be called blank here determines the “pattern” of x. We shall talk about patterns and
pattern matching in Section 9 and leave it as it is for the moment.

We proceed by defining the function g(x) = x + sin(x).

g[x_]:= x+Sin[x]

g[Pi]

π
One can define functions of several variables. Here is a simple example defining f(x, y) =

√

x2 + y2

f[x_,y_]:=Sqrt[x^2+y^2]

f[3,4]

5

It is very easy to compose functions in Mathematica, i.e., applying functions one after the other
on data. Here is an example of this:

f[x_]:=x^2+1

g[x_]:=Sin[x]+Cos[x]

f[g[x]]

1+(Cos[x]+Sin[x])^2

g[f[x]]

Cos[1+x^2]+Sin[1+x^2]

And this is a little function to find out if the n − th Fibonacci number is divisible by 5.

remain[n_]:=Mod[Fibonacci[n],5]

remain[14]

2

remain[15]

0

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 11

Thus the 15th Fibonacci number is divisible by 5. Note that the function remain is itself a
composition of two functions, namely the functions Fibonacci and Mod.

Besides the traditional way of remain[x], there are two other ways to apply a function to an
argument as follows:

15//remain

0

remain@5

0

Later we will define functions with conditions, functions with several definitions and functions
containing several lines of code (a procedure).

2.2. Anonymous functions. Sometimes we need to “define a function as we go” and use it on
the spot. Mathematica enables us to define a function without giving it a name, use it, and then
move on! Obviously if we need to use a specific function frequently, then the best way is to give
it a name and define it as we did in Section 2.1. Here is an anonymous function equivalent to
f(x) = x2 + 4:

(#^2+4)&[5]

29

The expression (#^2+4)& defines a nameless function. As usual we can plug in data in place of
#. The symbol & determines where the definition of the function is completed. Using anonymous
functions, here is another way to find out if the 15th Fibonacci number is divisible by 5:

Fibonacci[15]//Mod[#,5]&

0

Here is an example of an anonymous function for f(x, y) =
√

x2 + y2

Sqrt[#1^2+#2^2]&[3,4]

5

As you might guess, #1 and #2 refer to the first and second variables in the functions.

12 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

3. Lists

One can think of a computer program as a function which accepts some (crude) data or infor-
mation and gives back the data we would like to obtain. Lists are the way Mathematica handles
information. Roughly speaking, a list is a collection of objects. The objects could be of any type
and pattern. Let us start with an example of a list:

{1,-4/7,stuff,1-2x+x^2}

This looks like a mathematical set. One difference is that lists respect order:

{1,2}=={2,1}
False

The other difference is that a list can contain a copy of the same object several times:

{1,2,1}=={1,2}
False

The natural thing here is to be able to access the elements of a list.

p={x,1,-8/3,a,b,{c,d,e},radio}
p[[1]]

x

p[[5]]

{c,d,e}
p[[-1]]

radio

p[[{2,4}]]
{1,a}
p[[{-2,5}]]
{{c,d,e},b}
p[[-2,{2,3}]]
{d,e}

Examining the above examples reveals that p[[i]] gives the i − th member of the list. There are
other commands to access the elements of a list as follows:

First[p]

x

Last[p]

radio

Rest[p]

{1,-8/3,a,b,{c,d,e},radio}
Rest[%]

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 13

{-8/3,a,b,{c,d,e},radio}
Drop[p,3]

{a,b,{c,d,e},radio}
Take[p,2]

{x,1}

Most of these commands are self-explanatory and a close look at the above examples shows what
each of them will do. All these commands and more are listed in the Mathematica Help under
Element Extraction.

One of the secret of writing codes comfortably is if one would be able to manipulate lists easily.
Often times in applications situations like the following arise:

• Given {x1, x2, x3, · · · , xn} and {y1, y2, y3, · · · , yn}, produce {x1, y1, x2, y2, x3, y3, · · · , xn, yn}.
• Given {x1, x2, · · · , xn} produce {x, x1 + x2, · · · , x1 + x2 + · · · + xn}

Mathematica provides us with commands to obtain the above arrangement easily. We will look
at these commands in Section 7.3 and Section 7.4.

3.1. Functions producing lists. Mathematica provides us with commands of which the output
is a list. These commands have a nature of repetition and replace loops in procedural program-
ming. Let us look at some of them here before starting to write more serious codes.

Range[10]

{1,2,3,4,5,6,7,8,9,10}
Range[2,17,4]

{2,6,10,14}
?Range

Range[imax] generates the list {1, 2,..., imax}. Range[imin, imax] generates the

list {imin,..., imax}. Range[imin, imax, di] uses step di

Another command is Table.

In[9]:= Table[n^2+1,{n,1,13}]

Out[9]= {2,5,10,17,26,37,50,65,82,101,122,145,170}

Table[x^i + y^i, {i, 2, 17, 4}]

{x^2 + y^2, x^6 + y^6, x^10 +y^10, x^14 + y^14}

In Table[n^2+1,{x,1,13}], n runs from 1 to 13 and each time the function n^2+1 is evaluated.
The second example shows how easily we can work symbolically in Mathematica. As in Range, in
the second Table, i starts from 2 with steps 4. Here one more example how beautifully Mathe-
matica can handle symbols

Table[xi,{i,1,10}]
{x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}

14 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

Here is a nice example showing the difference between two equality = and :=.

Example 3.1. This example uses BarChart which is available in the package Graphics. In order
to make this command available, one needs to use Needs["Graphics‘"]. This example is the
continuation of the discussion in Subsection 1.5.

Needs["Graphics‘"]

x=Random[Integer,{1,1000}];

BarChart[Table[x,{1000}]]

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100

50

100

150

200

250

300

x:=Random[Integer,{1,1000}]

BarChart[Table[x,{1000}]]

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100

200

400

600

800

1000

In order to understand this example better, get the list generated by Table[x,1000] for each
of the definitions of x individually and compare them.

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 15

3.2. Listable functions. There are times when we would like to apply a function to all the el-
ements of a list. Suppose f is a function and {a,b,c} a list. We want to be able to “push” the
function f inside the list and get {f[a],f[b],f[c]}. Many of Mathematica’s built-in functions
have this property that they simply “go inside” a list. This property of a function is called listable.
For example Sqrt is a listable function. We will use this function in the following, to show that
the product of four consecutive numbers plus one is always a squared number.

Table[n(n+1)(n+2)(n+3)+1,{n,1,10}]
{25, 121, 361, 841, 1681, 3025, 5041, 7921, 11881, 17161}
Sqrt[%]

{5, 11, 19, 29, 41, 55, 71, 89, 109, 131}

The equivalent shorthand to apply a function to a list is /@ as follows:

Sqrt /@ {a,b,c}
{√a,

√
c,
√

c}
Here is another example:

Table[(1+x)^i,{i,5}]
{1 + x, (1 + x)^2, (1 + x)^3, (1 + x)^4, (1 + x)^5}
Expand /@ %

{1 + x, 1 + 2 x + x^2, 1 + 3 x + 3 x^2 + x^3, 1 + 4 x + 6 x^2 + 4 x^3 + x^4, 1 +

5 x + 10 x^2 + 10 x^3 + 5 x^4 + x^5}

Problem 3.2. The formula n2 +n+41 has a very interesting property. Observe that this formula
produces prime numbers for n from 0 to 39.

Solution.
First we produce the numbers :

In[7]:= Table[n^2+n+41,{n,1,40}]

Out[7]=

{43,47,53,61,71,83,97,113,131,151,173,197,223,251,281,313,347,383,421,461,503,

547,593,641,691,743,797,853,911,971,1033,1097,1163,1231,1301,1373,1447,1523,

1601,1681}

Then we apply PrimeQ to this list. This function is listable.

In[8]:=

PrimeQ[%]

Out[8]=

{True,True,True,True,True,True,True,True,True,True,True,True,True,True,True,

True,True,True,True,True,True,True,True,True,True,True,True,True,True,True,

True,True,True,True,True,True,True,True,True,False}

16 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

One wonders if one changes 41 to another number in the formula n2 + n + 41 whether one gets
more consecutive prime numbers. We will examine this in Problem 7.2.

z

We are ready to write the first serious code. In this problem we use the function PrimeQ. This
is a listable function.

Problem 3.3. How many numbers of the form 3n5 +11, when n varies from 1 to 2000, are prime?

Solution. First, let us produce the first 20 numbers of this form.

plist=Table[3n ^5+11,{n,1,20}]
{14, 107, 740, 3083, 9386, 23339, 50432, 98315, 177158, 300011, 483164, 746507, 1113890,

1613483, 2278136, 3145739, 4259582, 5668715, 7428308, 9600011}

The next step would be to apply PrimeQ to all the numbers and find out which ones are prime.
Since this is a listable function this is enough:

PrimeQ[plist]

{False, True, False, True, False, True, False, False, False, False, False, True,

False, True, False, True, False, False, False, False}

Now we are left to count the number of True ones. This is do-able here, 6 of these numbers are
prime.

But Mathematica gives us the ability to select, from the elements of a list, the desired ones.
The command Select is the one which selects the elements which satisfy a desired property (or a
desired pattern, more about this later).

Select[plist,PrimeQ]

{107, 3083, 23339, 746507, 1613483, 3145739}

These are prime numbers in the list plist. The command Length gives the length of a list. If
we assemble all the steps in one line we have

Length[Select[Table[3n ^5+11,{n,1,20}],PrimeQ]]
6

Thus to find out how many numbers of the form 3n5 + 11 is prime when n runs from 1 to 2000,
all we have to do is to change 20 to 2000:

Length[Select[Table[3n ^5+11,{n,1,2000}],PrimeQ]]
97

z

Let us look at another example with the same nature. The following example shows that
anonymous functions fits very well with Select.

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 17

Problem 3.4. For which 1 ≤ n ≤ 1000 does the formula 2n + 1 produce a prime number?

Solution. Here is the solution:

Select[Range[1000],PrimeQ[2^(#)+1]&]

{1, 2, 4, 8, 16}

Let us take a deep breath and go through this one-liner code slowly. The function PrimeQ[2^(#)+1]&

is an anonymous function which gives True if the number 2n + 1 is prime and False otherwise.

PrimeQ[2^(#)+1]&[2]

True

Range[1000] creates a list containing the numbers from 1 to 1000. The command Select

applies the anonymous function above to each element of this list and in case the result is true,
the element will be selected. Thus {1, 2, 4, 8, 16} are the only numbers that make 2n + 1 a
prime number.

z

Problem 3.5. Notice that 122 = 144 and 212 = 441, namely the numbers and their squares are
reverses of each other. Find all the numbers up to 10, 000 with this property.

Solution. We need to introduce some new built-in functions. IntegerDigits[n] gives a list of
the decimal digits in the integer n. We also need Reverse and FromDigits:

IntegerDigits[80972]

{8,0,9,7,2}
Reverse[%]

{2,7,9,0,8}
FromDigits[%]

27908

Thus the above shows we can easily produce the reverse of a number:

re[n]:=FromDigits[Reverse[IntegereDigits[n]]]

re[634554]

455436

Having this function under our belt, the solution to the problem is just one line. Notice that
the problem is asking for the numbers n such that re[nˆ2]=re[n]ˆ2 .

Select[Range[10000],re[#^2]==re[#]^2&]

{1, 2, 3, 10, 11, 12, 13, 20, 21, 22, 30, 31, 100, 101, 102, 103, 110, 111, 112,

113, 120, 121, 122, 130, 200, 201, 202, 210, 211, 212, 220, 221, 300, 301, 310, 311,

1000, 1001, 1002, 1003, 1010, 1011, 1012, 1013, 1020, 1021, 1022, 1030, 1031, 1100,

1101, 1102, 1103, 1110, 1111, 1112, 1113, 1120, 1121, 1122, 1130, 1200, 1201, 1202,

1210, 1211, 1212, 1220, 1300, 1301, 2000, 2001, 2002, 2010, 2011, 2012, 2020, 2021,

18 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

2022, 2100, 2101, 2102, 2110, 2111, 2120, 2121, 2200, 2201, 2202, 2210, 2211, 3000,

3001, 3010, 3011, 3100, 3101, 3110, 3111, 10000}
z

Here is one more example using the command FromDigits. We know that 11 is a prime number.
One wonders what is the next prime number consisting only of ones. A wild guess, a number with
23 digits all one? All we have to do is to produce this number then, with PrimeQ, test whether
this is prime. Here is one way to generate this number.

Table[1, {23}]

{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1}

FromDigits[%]

11111111111111111111111

PrimeQ[%]

True

Here is the code to find out which numbers of this kind up to 500 digits are prime.

Select[Range[500], PrimeQ[FromDigits[Table[1, {#}]]] &]

{2, 19, 23, 317}

The idea of sending a function into a list, i.e., applying a function to each element of a list,
seems to be a good one. We already mentioned that the listable built-in functions are able to go
inside a list, like PrimeQ or Prime. Have a look at the Attributions of �Prime in the following:
??Prime

Prime[n] gives the nth prime number.

Attributes[Prime] = {Listable, Protected}

The command Map enables us to force any function, including user-defined functions, to go inside
a list.

Here is the first example. Without defining the symbol s, we will map it to a list:

Map[s,Range[10]]

{s[1], s[2], s[3], s[4], s[5], s[6], s[7], s[8], s[9], s[10]}

The equivalent (and shorthand) way to write the code above is:

s/@ Range[10]

{s[1], s[2], s[3], s[4], s[5], s[6], s[7], s[8], s[9], s[10]}

Map fits well with pure functions:

Map[1+#^2&,{x,y,x}]

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 19

{1 + x^2, 1 + y^2, 1 + z^2}

Problem 3.6. What digit does not appear as the last digit of the first 20 Fibonacci numbers?

Solution. This one-liner code collects all the digits which appears as the last digit:

Union[Last /@ (IntegerDigits /@ (Fibonacci /@ Range[20]))]

{0, 1, 2, 3, 4, 5, 7, 8, 9}

Thus 6 is the only digit which is not present. Let us understand this code. Recall that /@
applies a function to a list. Fibonacci /@ Range[20] produces the first 20 Fibonacci numbers.

Fibonacci /@ Range[20]

{1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181,

6765, 10946, 17711, 28657, 46368, 75025}

Then IntegerDigits would go inside this list and get the digits of each number and then the
function Last will get the last digits as required. Union will get rid of any repetition in the list.

Since Fibonacci and IntegerDigits are listable functions, one can also write the above code
as follows:

Union[Last /@ IntegerDigits[Fibonacci[Range[20]]]]

If one does not want to use IntegerDigits then one can use the Mod function to get access to
the last digit of a number.

?Mod

Mod[m, n] gives the remainder on division of m by n.

Mod[264,10]

4

?Quotient

Quotient[m, n] gives the integer quotient of m and n.

Quotient[264,10]

26

26*10+4

264

20 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

Thus another way to write the code is as follows. Note that Mod is also a listable function.

Union[Mod[Fibonacci[Range[20]],10]]

In Section 5.2 we will see how to use Mathematica to get the digit 6, namely to handle sets.

z

Recall that one can decompose any number n as a product of powers of primes and this decom-
position is unique, i.e., n = pk1

1 · · · pkt

t where pi’s are prime. Let us call a number a square free
number if, in its decomposition to primes, all the ki’s are 1. Namely, no power of primes can divide
this number. Thus 15 = 3 × 5 is a square free number but 16 = 24 is not.

Recall that Select[list,f], will apply the function f (which returns True or False) to all the
elements say x of the list and return those elements for which f[x] is true. There is an option
in Select which make it possible to get only the first n elements of Select that f returns True as
follows: Select[list,f,n]. This comes in very handy, as in many problems, we want to test the
elements until something goes wrong or some desirable element comes up. The following example
demonstrates this.

Problem 3.7. Write a function squareFreeQ[n] that returns True if the number n is a square
free number, and False otherwise.

Solution. Here is the code:

squareFreeQ[n]:=Select[Last/@FactorInteger[n],# 6=1 &,1]=={}

We need to introduce some new built-in functions. FactorInteger gives the decomposition of
a number into its prime factors, for example 12 = 22 × 31:

FactorInteger[12]

{{2, 2}, {3, 1}}

So it is clear that if n = pk1

1 · · · pkt

t , then

FactorInteger[n]

{{p1, k1}, {p2, k2}, · · · , {pt, kt}}

Now all we have to do is to go through this list and see if all ki’s are one. So the first step is to
apply Last to each list to discard pi’s and get ki’s.

Last /@ FactorInteger[n]

{k1, k2, · · · , kt}

Having this list, we shall go through the list one by one and examine if ki’s are one. The
anonymous function #6= 1& does exactly this. So Select[{k1, k2, · · · , kt},# 6= 1&] gives the list
of ki’s which are not one. But in our case, looking for square free primes, it is enough if only
one ki is not one. Then the number is not square free. Thus we use an option of Select which
goes through the list until it finds an element such that ki is not one. So we need to modify

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 21

the code as Select[{k1, k2, · · · , kt},# 6= 1&,1]. We are almost done. All we have to do is to see
if this list is empty or not (namely is there any ki not equal to one). And for this we compare
Select[{k1, k2, · · · , kt},# 6= 1&,1]=={}.

z

We can solve the above problem later with a slightly different method (See Problem 4.1).

Problem 3.8. Find out how many primes bigger than n and smaller than 2n exist, when n goes
from 1 to 30.

Solution. We define an anonymous function which finds all the primes bigger than n and smaller
than 2n and then gets the size of this list. Once we are done with this, we apply this function to
a list of numbers from 1 to 30. Our anonymous function looks like this: Length[Select[Range[#
+ 1, 2 # - 1], PrimeQ]] &.
Analyzing this, Range[# + 1, 2 # - 1] produces all the numbers between n and 2n. Then
Select finds out which of them are in fact prime. Then we use the command Length to get the
number of elements of this list. One can optimize this a bit, as we don’t need to look at the whole
range of n to 2n, as clearly even numbers are not prime so we can ignore them right from the
beginning. But we leave it to the reader to do this. All we have to do now is to apply this function
with Map or /@ to numbers from to 1 to 30.

Length[Select[Range[# + 1, 2 # - 1], PrimeQ]] & /@ Range[30]

{0, 1, 1, 2, 1, 2, 2, 2, 3, 4, 3, 4, 3, 3, 4, 5, 4, 4, 4, 4, 5, 6,

5, 6, 6, 6, 7, 7, 6, 7}

This seems not to be the most efficient way to write this problem as each time we test the same
numbers again and again whether they are primes. We solve this problem using another approach
in Problem 7.1 using a Do Loop. Also the reader is encouraged to look at the built-in function
PrimePi.

z

22 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

4. Changing heads!

Let us for the moment be a bit abstract. Mathematica has a very consistent way of dealing with
any expression. Any expression in Mathematica has the following presentation head[arg1,arg2,...,argn]

where head and arg could be expressions themselves. To make this point clear let us use the com-
mand FullForm which shows how Mathematica considers an expression.

FullForm[a + b + c]

Plus[a, b, c]

FullForm[a*b*c]

Times[a, b, c]

FullForm[{a, b, c}]

List[a, b, c]

Notice that the expressions a+b+c and {a,b,c} which present very different things have such
close presentations. Here Plus is a function and a,b,c are plugged into this function. Plus is the
head of the expression a+b+c. One can see from the FullForm that the only difference between
a+b+c and {a,b,c} is their heads! We can get the head of any expression:

Head[{a, b, c}]

List

Head[a + b + c]

Plus

{a, b, c}[[0]]

List

Mathematica gives us the ability to replace the head of an expression with another head. The
consequence of this is simply mind-blowing!

This can be done with the command Apply. Here is the traditional example:

Apply[Plus,{a,b,c}]

a+b+c

It is not difficult to explain this. The full form of {a,b,c} is List[a,b,c] with the head List.
All Mathematica does is to change the head List to Plus, thus we have Plus[a,b,c] which is
a+b+c.

The shorthand for Apply is @@, as the following example shows:

Plus @@ Fibonacci[Range[10]]/10.

14.3

This gives the average of the first 10 Fibonacci numbers.
Here are two more examples. The first one defines a function ep(n) = 1 + 1

1
+ 1

2!
+ · · · + 1

n!
and

the other p(n) = (1 + x)(1 + x2) · · · (1 + xn).

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 23

ep[n_]:=1.+Plus @@ (1/Range[n]!)

p[n_]:=Times @@ (1+x^Range[n])

Let us look at the first example closely. Range[n] produces a list {1, 2, 3, · · · , n}. Note that the
factorial function ! is listable, thus Range[n]! would produce {1!, 2!, 3!, · · · , n!}. We should also
note that all the arithmetic operations are listable, including / . Thus 1/Range[n]! produces
{ 1

1!
, 1

2!
, 1

3!
, · · · , 1

n!
}. We are almost there, all we have to do is to replace the head of { 1

1!
, 1

2!
, 1

3!
, · · · , 1

n!
}

which is a List with Plus and as a result get 1
1!

+ 1
2!

+ · · · + 1
n!

.
Both these are classical examples of using Sum and Product which are available in Mathematica.

We will see these commands later.

Let’s look at Problem 3.7 again.

Problem 4.1. Write a function squareFreeQ[n] that returns True if the number n is a square
free number, and False otherwise.

Solution.

squareFree1Q[n_] := Times @@ Last /@ FactorInteger[n] == 1

squareFree1Q /@ {12, 13, 14, 25, 26}

{False, True, True, False, True}

If n = pk1

1 · · · pkt

t , then FactorInteger[n] will produce {{p1, k1}, {p2, k2}, · · · , {pt, kt}}. We are
after numbers such that all the ki are 1 in the decomposition. Thus we can get all the ki, multiply
them and if we get anything other than 1, then this would be a non-square free number. Thus the
first step is to apply Last to the list Last /@ FactorInteger[n] to get {k1, k2, · · · , kr}. Then all
we have to do is to multiply them all together, and here comes the Times @@ to change the head
of {k1, k2, · · · , kr} from List to Times.

z

Problem 4.2. Find all the numbers up to one million which have the following property: if n =
d1d2 · · · dk then n = d1! + d2! + · · · + dk! (e.g. 145 = 1! + 4! + 5!).

Solution

Select[Range[1000000], Plus @@ Factorial /@ IntegerDigits[#] == #

&]

{1, 2, 145, 40585}

The code consists of an anonymous function which for any n checks whether it has the de-
sired property of the problem. Then by using Select, we check the list of all the numbers
from 1 to one million, Range[1000000]. Our anonymous function is Plus @@ Factorial /@

IntegerDigits[#] == # &. Let’s look at the left hand side of ==. The built-in function IntegerDigits[#]

applying to n = d1d2 · · · dk produces the list of digits of n, namely {d1, d2, · · · , dk}. Next applying
Factorial /@ to this list, we get {d1!, d2!, · · · , dk!}. Now all we need is to get the sum of elements
of this list, and this is possible by changing the head from List to Plus by Plus @@. Once this is
done, we compare the left hand side of == with the right hand side which is the original number #.

24 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

z

Problem 4.3. A number is perfect if it is equal to the sum of its proper divisors, e.g., 6 = 1+2+3
but 18 6= 1 + 2 + 3 + 6 + 9. Write a program to find all the perfect numbers up to 10000 (Hint,
have a look at the command Divisors).

Solution. Here is a step-by-step approach to the solution.

Divisors[6]

{1,2,3,6}

Most[Divisors[6]]

{1,2,3}

Apply[Plus,Most[Divisors[6]]]

6

Select[Range[10000], # == Apply[Plus, Most[Divisors[#]]] &]

{6, 28, 496, 8128}

The numbers 6, 28 and 496 were already known as perfect numbers 2000 years before Christ.
A glance at the list shows that all the perfect numbers we have found are even. It is still un-
known whether there is an odd perfect number. Probably this is the oldest unsolved question in
mathematics!

z

Problem 4.4. Among the first one million numbers, what is the largest number n which is divisible
by all positive integers ≤ √

n?

Solution

Select[Range[100000],(Mod[#,LCM @@ Range[Floor[Sqrt[#]]]]==0)&]

{1, 2, 3, 4, 6, 8, 12, 24}

z

Exercise 4.5. Decipher what the following codes do:

g[n_] := Times @@ Apply[Plus , Inner[List, x^Range[n],

1/x^Range[n], List], 1]

t[n_] := Times @@ Apply[Plus, Thread[List[x^Range[n],

1/x^Range[n]]], 1]

Exercise 4.6. Find all the numbers up to one million which have the following property: if n =
pk1

1 · · · pkt

t is the prime decomposition of n then n = k1 × p1 + k2 × p2 + · · · + kt × pt.

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 25

5. A bit of Logic and Set Theory

5.1. Being logical. In mathematical logic statements can have a value of True, False or unde-
fined. (We don’t want to go into detail here mainly because I don’t know the detail!) This helps us
to “make a decision” and write programs based on the value of a statement (I am thinking of the
classical If-Then statement). We have seen == which compares the left hand side and the right
hand side. Studying the following examples carefully will tell us how Mathematica approaches
logical statements:

3^2+4^2==5^2

True

3^2+4^2>5^2

False

9Sqrt[10!] < 10Sqrt[9!]

False

(x-1)(x+1)==x^2-1

(x-1)(x+1)==x^2-1

Simplify[%]

True

x==5

x==5

{1,2}=={2,1}

False

{a,b}=={b,a}

{a,b}=={b,a}

As one notices, Mathematica echoes back the expressions that it can’t evaluate (e.g., x==5).
Among them {a,b}=={b,a}, although one expect to get False as lists respect order. This is
because Mathematica does not know about the values of a and b, and in case a and b are the same
then {a,b}=={b,a} is True, and False otherwise.

One can combine logical statements with usual operations And, Or, Not,... or the equivalent
&&, ||, ! as the following examples show:

2 > 3 && 3 > 2

False

And[2 > 3, 3 > 2]

False

26 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

1 < 2 < 3

True

2 > 3 || 3 < 2

True

Or[2 > 3, 3 > 2]

True

3^2+4^2>= 5^2

True

In general A&&B is false if one of A or B is false and A||B is true if one of them is true. In
order to produce all possible combinations of true and false we use the command Outer as the
following example shows

Outer[f, {a, b}, {x, y}]

{{f[a, x], f[a, y]}, {f[b, x], f[b, y]}}

Thus if in the above we replace f with And or Or we will get all the possible combinations of
true and false.

Outer[And, {True, False}, {True, False}]

{{True, False},

{False,False}}

Outer[Or, {True, False}, {True, False}]

{{True, True}, {True,

False}}

One can specify the domains Algebraics, Booleans, Complexes, Integers, Primes, Rationals

and Reals, for a variable. Look at the following examples:

Pi ∈ Rationals

False

Plus @@ Sqrt[Range[1, 7, 2]] ∈ Algebraics

True

The last example shows that 1 +
√

3 +
√

5 +
√

7 is an algebraic number (i.e. is a solution of a
polynomial equation with integer coefficients).

One can use membership (∈) to approach some problems.

Problem 5.1. Is the formula (n!)2 + 1 a prime number for n = 1 to 6?

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 27

Solution.
(#!^2 + 1) & /@ Range[6] ∈ Primes

False

Here we first apply the anonymous function (#!^2 + 1) which is the formula (n!)2 + 1 to the
list containing 1 to 6. Then we ask Mathematica if the elements of this list belong to the domain
Primes. The answer is False. The following code shows that the above formula does not produce
a prime number for n = 6:

PrimeQ /@ ((#!^2 + 1) & /@ Range[1, 6])

{True, True, True, True, True, False}
z

One should be careful that Mathematica cannot (yet) perform miracles. For example, one can

prove that
3
√

2 +
√

5 +
3
√

2 −
√

5 is an integer, but

(2 + 5^(1/2))^(1/3) + (2 - 5^(1/2))^(1/3) ∈ Integers

False

Mathematica provides the logical quantifiers ∀, ∃ and ⇒ with ForAll, Exits and Implies com-
mands. But these seem to be not that powerful. For example one cannot prove Fermat’s little
theorem which says 2p−1 ≡ 1(mod p) where p > 2 is a prime number with them!.

ForAll[p, p ∈ Primes, Mod[2^(p - 1), p] == 1]

Or even an easy fact that the product of four consecutive numbers plus one is a squared number.

Implies[n ∈ Integers && n > 0, Sqrt[n(n + 1)(n + 2)(n + 3) + 1] ∈ Integers]

In both cases Mathematica gives back the same expression, indicating she cannot decide on
them.

5.2. Handling sets. Now it has been agreed that any mathematics starts by considering a set,
i.e., a collection of objects. As we mentioned, the difference between mathematical sets and lists in
Mathematica is the fact that lists respect order and repetition, which is to say one can have several
copies of one object in a list. Sets are not sensitive about repeated objects, e.g., the set {a, b} is
the same as the set {a, b, b, a}. There is no concept of sets in Mathematica and if necessary one
considers a list as a set.

If one wants to get rid of duplications in a list, one can use

Union[{a,b,b,a}]

{a,b}

Considering two sets, the natural operations between them are union and intersection. Math-
ematica provides Union to collects all elements from different lists in one list (after removing all
the duplications) and Intersection for collecting common elements (again discarding repeated
elements) . The following examples show how these commands work.

u= {1, 2, 3, 4, 5, 2, 4, 7, 4}; a = {1, 4, 7, 3}; b = {5, 4, 3, 2};

28 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

Union[u]

{1, 2, 3, 4, 5, 7}

Complement[u, a]

{2, 5}

?Complement

Complement[eall, e1, e2, ...] gives the elements in eall which are not in any

of the ei.

Complement[u, a ∩ b] == Complement[u, a] ∪ Complement[u, b]

True

The first example shows Union[list] will get rid of repetition in a list. The command Complement[u,a]

will give the elements of u which are not in a. From the example one can see that a ∩ b is accept-
able in Mathematica and is a shorthand for Intersection[a,b]. In the last example we checked
a theorem of set theory namely (A ∩ B)c = Ac ∪ Bc where c stands for complement.

Example 5.2. The following trick will be used later (inside a loop) to collect data.
A={}
A=A

⋃ {x}
{x}
A=A

⋃

{y}
{x,y}
A=A

⋃ {z}
{x,y,z}
This is the same traditional trick as sum=sum+i. Each time sum=sum+i is performed, i will be

added to sum and this result will be the value of sum.

There are other ways to add an element to a list.

Append[{a,b,c},d]

{a,b,c,d}

A={};A=Append[A,x]

{x}

A=Append[A,y]

{x,y}

A=Append[A,z]

{x,y,z}

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 29

AppendTo[s, elem] is equivalent to s = Append[s, elem]

5.3. Decision making, If statement.

30 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

6. Sums and products

In the previous section we could write a code to calculate the series ep(n) = 1+ 1
1
+ 1

2!
+ · · ·+ 1

n!
.

Mathematica offers us two commands, namely Sum and Product to easily handle these problems
as the following examples show:

Sum[s[i], {i, 1, 7}]
s[1] + s[2] + s[3] + s[4] + s[5] + s[6] + s[7]

Sum[s[i], {i, 1, k}]
∑k

i=1 s[i]
The second example shows again that Mathematica can handle things symbolically.

Problem 6.1. Write a function ep(n) = 1 + 1
1

+ 1
2!

+ · · · + 1
n!

Solution Here is the code:

ep[n_] := 1 + Sum[1/k!, {k, 1, n}]

N[ep[100]]

2.71828

N[E]

2.71828

Sometimes Mathematica can do great things!

ep[Infinity]

E

This shows that the above sequence converges to exp number.

z

Problem 6.2. Prove that

(1 + 2 + 3 + · · · + n)2 = (13 + 23 + 33 + · · · + n3).

Solution. Writing the above equality symbolically, we want to show
∑n

i=1 i3 = (
∑n

i=1 i)2. This
example shows that Mathematica is aware of formulas for some certain sums, including the ones
above:

p[n_] := Sum[i, {i, 1, n}]

p[n]

(1/2) n (1 + n)

p3[n_] := Sum[i^3, {i, 1, n}]

p3[n]

(1/4) n^2 (1+n)^2

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 31

p[n]^2==p3[n]

True

The above example shows Mathematica knows that 1+2+· · ·+n = n(n+1)
2

and 13+23+· · ·+n3 =

(n(n+1)
2

)2. The first formula was known to Gauss at the age of seven. In fact he proved the formula
as follows:

1 2 · · · n +
n n − 1 · · · 1

n + 1 n + 1 · · · n + 1

Thus twice the sum of the series is n(n + 1) and thus the formula. The second formula follows
by an easy induction.

z

Problem 6.3. Write a function to calculate the following sequence

p(n) =
1

1
+

1

1 + 2
+ ... +

1

1 + 2 + ... + n

Solution. A glance at the sequence shows that there are in fact two sequences involved. Thus
one needs two Sum, one to take care of 1 + 2 + · · · + i and the other the sum of these expressions.

s[n_] := Sum[1/Sum[j, {j, 1, i}], {i, 1, n}]

One of the advantages of the front-end in Mathematica is to provide the ability of writing
mathematics. Writing the above sequence using mathematical symbols, one has

∑n

i=1(
∑i

j=1 j).
Using the palette provided by Mathematica, one can enter exactly the same expression in the

front-end and define the function s this way.

s[n] =
∑n

i=1(
∑i

j=1 j)

z

Mathematica can easily handle complicated symbolic calculations as the following example
demonstrates. Recall that the binomial coefficient

(

n

k

)

stands for n!
k!(n−k)!

. The command Binomial[n, k]

is available.

Problem 6.4. Define

p(n) =
n

∑

k=0

(

n

k

)2

(1 + x)2n−2k(1 − x)2k

and show that, for any chosen n, the coefficients of x are positive.

Solution. We shall first translate the above formula into Mathematica.

p[n_] := Sum[Binomial[n, k]^2(1 + x)^(2n - 2k)(1 - x)^(2k), {k, 0,

n}]

p[3] (1 - x)^6 + 9(1 - x)^4(1 + x)^2 + 9(1 - x)^2(1 + x)^4 + (1

+x)^6

32 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

Expand[p[3]]

70 + 40x^2 + 36x^4 + 40x^6 + 70x^8

As one sees, all the coefficients are positive. One can gather these coefficients in a list

CoefficientList[Expand[p[7]], x]

{3432, 0, 1848, 0, 1512, 0, 1400, 0, 1400, 0, 1512, 0, 1848, 0,

3432}

z

This is one of my favourite examples of using Sum.

Problem 6.5. Define S(k, n) =
∑n

i=1 ik. Prove that
n

∑

a=0

S(2, 3a + 1)

S(1, 3a + 1)

is always a square number.

Solution.

s[k_, n_] := Sum[i^k, {i, 1, n}]

Sum[s[2, 3a + 1]/s[1, 3a +1],{a,0, n}]

1 + n + n (1 + n)

Factor[%]

(1 + n)^2

z

The command Product performs in the same way.

Product[s[i], {i, 1, 7}]
s[1]s[2]s[3]s[4]s[5]s[6]s[7]

Product[s[i], {i, 1, k}]
∏k

i=1 s[i]

Here is a code to produce (x + 1/x)(x2 + 1/x2) · · · (xn + 1/xn).

p[n] := Product[(x^k + 1/x^k), {k, 1, n}]
Problem 6.6. Define a function t(n), which is the sum of all the remainders of division by n into
the numbers 1 to n.

Solution. Here are two ways to write this function, one using Sum and the other using the
list-based programming of the previous section.

t[n_] := Sum[Mod[n, k], {k, 1, n}]

tt[n_] := Plus @@ (Mod[n, #] &/@ Range[n])

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 33

z

34 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

7. Loops

If we agree that the primary ability that a computer language provides is the ability to repeat
a certain code “fast” then Mathematica provides three loops that enable us to repeat part of our
codes. These are quite similar to the loops that exist in any procedural language like Pascal or C.
The first and the simplest one is the Do loop. Here is the traditional example. The structure of
the Do loop reminds one of the commands like Sum or Table.

Do[Print[i],{i,1,7}]

1

2

3

4

5

6

7

The code:

Do[f[i],

{i,1,1000000}]

repeats the expression f[i] one million times where i runs from 1 to 1000000. In fact this is
equivalent to

f/@ Range[10000000]

Here is a little comparison.

Timing[Do[

f[i],

{i,1,10000000}]]

{6.93 Second,Null}

Timing[f/@ Range[10000000];]

{5.008 Second,Null}

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 35

Apart from writing a code which is faster, one needs to try to write codes in a way in which
they are also readable.

We will write Problem 3.8 using a Do Loop.

Problem 7.1. Find out how many primes bigger than n and smaller than 2n exist, when n goes
from 1 to 30.

Solution. First we find all prime numbers up to 60.

prime60=Select[Range[60],PrimeQ]

{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59}

Now for any n we check how many prime numbers lie between n and 2n. To do this, as in Problem
3.8, we create a list of numbers between n and 2n, Range[n+1,2n-1] then using Intersection

we find out how many prime numbers are in this interval Range[i+1,2i-1]
⋂

prime60. Using
Length we can find the number of the primes that lie in this interval. Once we have this, then
using a Do Loop we run this code for n from 1 to 30.
p={}; Do[

AppendTo[p,Length[Range[i+1,2i-1]
⋂

prime60]], {i,1,30}
];p

z

For our next application of a Do loop, recall Problem 3.2. The formula n2 + n + 41 produces
prime numbers when n runs from 0 to 39. This was noticed by Euler some 300 years ago. One
wonders whether one gets more consecutive prime numbers for a different constant in the above
formula. The next Problem examines this:

Problem 7.2. Consider the formula n2+n+i. Find out the number of consecutive primes (starting
from n = 0) that one gets when i runs from 1 to 10,000.

Solution.
One way to approach the problem is to write a code to find out how many consecutive primes

one gets (starting from n = 0) for a fixed i in the formula x2 + x + i. Once this is done, then
one can use a Do loop to change the value of i from 1 up to 10000. The code which finds out the
number of consecutive primes is the same in nature to Problem 3.7.

The code

Select[Range[100], (PrimeQ[#^2 + # + 41] == False &), 1]

{40}

returns the first number in the range of {0, · · · , 100} such that the formula n2 +n+41 does not
return a prime number. All we have to do now is to assemble this code in a loop as follows:

A={}

Do[

A=Union[A,Select[Range[100],(PrimeQ[#^2+#+i]==False&),1]],

{i,1,10000}];A

{1,2,3,4,5,6,7,10,12,16,40}

36 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

A line such as

A=Union[A,Select[Range[100],(PrimeQ[#^2+#+i]==False&),1]]

which is equivalent to
A= A

⋃

Select[Range[100],(PrimeQ[#^2+#+i]==False&),1]

collects all new results in the list A. We have seen this trick in Example 5.2.
A glance at the result shows that n2 + n + 41 produces the maximum number of consecutive

primes as was noticed by Euler. As a matter of fact, the formula which produces 16 consecutive
prime numbers is n2 + n + 17 which was also found by Euler.

z

We shall see more examples of the Do loop later. The next loop is the While loop. This one
operates on a boolean (True or False) statement and gives you the ability to repeat a block until
the boolean statement becomes False.

Problem 7.3. Find the first prime number consisting only of ones and bigger than 11.

Solution. Here is the mystery code:

n=111;

While[!PrimeQ[n],

n=10n+1];

Print[n]

1111111111111111111

Here !PrimeQ[n] is our boolean statement and n=10n+1 is the code we want to repeat. The
code n=10n+1 simply gets the number n and places 1 at the far right of the number (right?). So
the aim is to put as many 1s in front of the original n which is 111 here to get a prime number.
The While loop does exactly this. It is going to repeat the above code until !PrimeQ[n] becomes
False. That is until PrimeQ[n] becomes True, that is until n becomes prime. And that’s what
we are looking for.

z

As you can see the While loop has the form While[condition,body]. The body of the loop
can consist of several lines separated by ;.

Here is a little test to see that the result of the above code is consistent with the code we wrote
on Page 18.

IntegerDigits[n]

{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}

Length[%]

19

Problem 7.4. Find the closest prime number below a given number n.

Solution. Here we still have an example which can be “naturally” written by While. Notice that
the body of the loop contains one line.

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 37

n = Input["enter a number"]

While[! PrimeQ[n],

n--];

Print[n]

Input opens a box and asks for a value. This is a good way if one wants to ask a user for data.
Again !PrimeQ[n] returns True and keeps the loop repeating until n is prime. That’s what the
question asks.

z

Problem 7.5. Find all prime numbers less than a given n.

Solution. We will use the loop While to find one by one all the prime numbers smaller than
n starting from the smallest prime number 2. Notice that here the body of While has two sentences.

i = 1; n = Input["enter a number?"]; pset = {};
While[Prime[i] ≤ n,

pset = pset ∪ {Prime[i]};
i++];

pset

Ok, for n = 321 we get all the prime numbers up to 321.

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,

61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131,

137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197,

199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271,

277, 281, 283, 293, 307, 311, 313, 317}

Here until Prime[i] is smaller than n the loop keeps collecting Prime[i] in a list pset which at
the beginning we define empty (see Example 5.2). After each step we go a bit forward by adding
one to i, that is i++, and repeat the same procedure again until Prime[i] is bigger than n.

z

The last loop in Mathematica is the For loop. Here is the easiest example:

For[i=5,i<10,i++,Print[i]]

5

6

7

8

9

The loop For consists of different parts as follows For[init,condition,steps,body]. The
init part is where we initialize the variables we need to use in the body of the loop. in the above
example this was i=5. The second part is where the loop checks whether a boolean expression

38 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

appears and is where we decide when to terminate the loop. Each of these parts can have several
sentences which should be separated by ;. Let us look at another example.

Problem 7.6. Find the sum of the sequence

1

1 + 2
+

2

2 + 3
+ · · · + 10

10 + 11
.

Solution.

For[i = 1; sum = 0, i < 11, i++, sum += i/(i + i + 1)];

sum

64157087/14549535

Notice that the init part of the loop consist of two lines. Also notice that sum+=i/(i + i +

1) is a shorthand for sum=sum+i/(i + i + 1) as i++ is a shorthand for i=i+1. In the same way
i*=n is a shorthand for i=i*n.

To refresh the memory, here are the other approaches to get the sum of the above sequence

Sum[i/(2i + 1), {i, 1, 10}]

64157087/14549535

Plus @@ (#/(2# + 1) & /@ Range[10])

64157087/14549535

z

One can leave out any part of a For loop. For example

For[,False , , Print["Never see the light of day"]

produces nothing. One can also see that While[test,body] is the same as For[,test, , body]

and Do[body,x,xmin,xmas,xinc] is the same as For[x=xmin,x≤xmax,x+=inc,body]. But again,
there are times when While makes the code more readable and there are times when For is a better
choice.

Let us do some experiments:

Timing[Do[,{10^6}]]

{0.02 Second,Null}

Timing[Do[,{1000000}]]

{0.1 Second,Null}

Timing[i=1;While[i<10^6,i++]]

{2.614 Second,Null}

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 39

Timing[i=1;While[i<1000000,i++]]

{1.932 Second,Null}

Timing[For[i=1,i<10^6,i++]]

{2.654 Second,Null}

Timing[For[i=1,i<1000000,i++]]

{1.973 Second,Null}

Here is one more example.

Problem 7.7. An integer dndn−1dn−2 . . . d1 is palindromic if dndn−1dn−2 . . . d1 = d1d2 . . . dn−1dn

(for example 15651). Write a code to ask for a number dndn−1dn−2 . . . d1 and find out if it is
palindromic. Enhance the code further such that if the number is not palindromic then the code
tests whether dndn−1dn−2 . . . d1+d1d2 . . . dn−1dn is (for example, 108+801=909). Furthermore write
a code to give the number of times it is needed to repeat this procedure till one gets a palindromic
number starting with dndn−1dn−2 . . . d1 (if it takes more than 150 times, let the function return
infinity).

Solution We start with an example. Let n = 98. We need to systematically check whether n is
palindromic. If not, then produce 89, add this to n = 98 and check whether this is palindromic. We
have seen how to produce the reverse of a number using IntegerDigits, Reverse and FromDigits

(see Problem 3.5). Here is the first step

n=98;nlist=IntegerDigits[n]

{9,8}

If[nlist != Reverse[nlist],n=n+FromDigits[Reverse[nlist]]]

187

If the result is not palindromic, one has to do the same procedure again. Thus we use a While

loop to do this for us.

n = 98; nlist = IntegerDigits[n];

While[nlist != Reverse[nlist],

n = n + FromDigits[Reverse[nlist]];

nlist = IntegerDigits[n]

]; n

8813200023188

40 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

One can enhance the code:

n = Input["Enter a number"]; i = 1; nlist = IntegerDigits[n];

safetyNet = True;

While[nlist != Reverse[nlist] && safetyNet,

Print[i, " ", n]; n = n + FromDigits[Reverse[nlist]]; i++;

nlist = IntegerDigits[n];

If[i > 150, safetyNet = False]

]

If[i > 150, Print[".........Aborted"], Print[i, " ", n]

]

7.1. Nested loops. In many applications there are several factors (variables) which change simul-
taneously, and this calls for what we call a nested loop. Instead of trying to describe the situation,
let us see some examples.

Do[

Do[

Print[i, " ", j],

{j, 1, 2}

],

{i, 1, 3}

]

1 1

1 2

2 1

2 2

3 1

3 2

The code contains two Do loops. In the inner one, the counter j runs from 1 to 2 and once this
is done, the outer loop performs and the counter i goes one further and again the inner loop starts
to run.

Problem 7.8. Find all the pairs (n,m) such that n2 + m2 is a square number (e.g. 32 + 42 = 52).

Solution.
Do[

Do[

If[Sqrt[i^2 + j^2] ∈ Integers, Print[i, " ", j]],

{j, i, 10}
],

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 41

{i, 1, 10}
]

Here is the result

3 4

6 8

Here the outer loop starts with the counter i getting the value 1. Then it is the turn of the
block inside this loop, which is again another loop run. In the inner loop {j, i, 10} makes the
counter j run from i to 10. This done, in the outer loop i takes 2 and then j runs from 2 to 10
and so on. The reader should see that this is enough to find all the pairs up to 10 with the desired
property. Can you say how many times the If line is going to be performed?

z

We have already seen the command Table which provides a sort of loop. In fact Table can
provide us with a nested loop.

Table[{i, j}, {i, 1, 3}, {j, 1, 2}]

{{{1, 1}, {1, 2}}, {{2, 1}, {2, 2}}, {{3, 1}, {3, 2}}}

One should compare this with the example of the nested Do loop. As the result shows, here j is
the counter for the inner loop.

One of the issues that might arise here is that the output is a nested list (i.e. too many {).
Sometimes we really do not need the nested list answer to our question. For example we want to
come up with a code to solve Problem 7.8 by using Table. In order to get rid of extra “{”, one
can use the command Flatten.

Flatten[Table[{i, j}, {i, 1, 3}, {j, 1, 4}]]

{1, 1, 1, 2, 1, 3, 1, 4, 2, 1, 2, 2, 2, 3, 2, 4, 3, 1, 3, 2, 3, 3,

3, 4}

Flatten gets rid of all the lists inside a list, i.e., removes all the “{”. In our problem we want a
list of pairs. In this case we need

Flatten[Table[{i, j}, {i, 1, 3}, {j, 1, 4}],1]

{{1, 1}, {1, 2}, {1, 3}, {1, 4}, {2, 1}, {2, 2}, {2, 3}, {2, 4},

{3, 1}, {3, 2}, {3, 3}, {3, 4}}

Now we have all the pairs. But some of them are repeated. For us {1,3} is the same as {3,1}.
So as in Problem 7.8, we need the inner counter to depend on the outer one as follows:

Flatten[Table[{i, j}, {i, 1, 3}, {j, i, 4}], 1]

42 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

{{1, 1}, {1, 2}, {1, 3}, {1, 4}, {2, 2}, {2, 3}, {2, 4}, {3, 3},

{3, 4}}

All we have to do now is to select the pairs (m,n) such that
√

m2 + n2 ∈ N.

Select[Flatten[Table[{i, j}, {i, 1, 10}, {j, i, 10}], 1],

(Sqrt[#[[1]]^2 + #[[2]]^2] ∈ Integers) &]

{{3, 4}, {6, 8} }

7.2. Nest, NestList and more. Let f(x) be a function defined on a variable x. There are
times when one needs to apply the function f on itself several times, i.e., f(· · · f(f(x)) · · ·) (recall
composition of functions). Mathematica provides a command to do exactly this:

Nest[f, x, 4]

f[f[f[f[x]]]]

If one wants to keep track of each step, the command NestList is available

NestList[f, x, 4]

{x, f[x], f[f[x]], f[f[f[x]]], f[f[f[f[x]]]]}

Here are some examples:

f[x]:=1/(1+x)

Nest[f,x,4]

1
1+ 1

1+ 1

1+ 1
1+x

NestList[f,x,4]

{ 1
1+x

, 1
1+ 1

1+x

, 1
1+ 1

1+ 1
1+x

, 1
1+ 1

1+ 1

1+ 1
1+x

}

NestList[Sqrt[#+6]&,Sqrt[6],4]

{
√

6,
√

6 +
√

6,

√

6 +
√

6 +
√

6,

√

6 +

√

6 +
√

6 +
√

6,

√

6 +

√

6 +

√

6 +
√

6 +
√

6}
There are two more commands of this type, NestWhile and NestWhileList.

?NestWhile

NestWhile[f, expr, test] starts with expr, then repeatedly applies f until applying

test to the result no longer yields True.

The following problem uses NestWhile.

Problem 7.9. A Happy number is a number such that if one squares its digits and adds them
together, and then takes the result and squares its digits and add them together again and keep
doing this process, one comes down to the number 1. Find all the Happy ages, i.e., happy numbers
up to 100.

Solution.

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 43

Select[Range[100],

NestWhile[

Plus @@ (IntegerDigits[#]^2)&,#,(!#==4) & (!#==1)&]==1&]

{1,7,10,13,19,23,28,31,32,44,49,68,70,79,82,86,91,94,97,100}

There is a more elegant approach to this problem using recursive functions in Problem 11.1. In
any case one can observe that happy ages are mostly before one gets a job or after the retirement!

z

Ok, we are going to make up a problem and use NestList to get some answers.

Problem 7.10. A number a1a2 · · · an is called pure prime if a1a2 · · · an, a1a2 · · · an−1, · · · , a1a2 and
a1 are all prime. Prove that pure prime numbers are finite in number and find all of them.

Solution. First we have to find a way to drop the last digit of a number. The function Quotient

might help

?Quotient

Quotient[m, n] gives the integer quotient of m and n.

Quotient[5937, 10]

593

Quotient[593, 10]

59

Quotient[59 , 10]

5

The above example shows that applying Quotient to a number repeatedly drops the last digit
of the number one by one. Thus

NestList[Quotient[#, 10] &, 5937, 3]

{5937,593,59,5}

Now we have all the numbers. We only need to test whether all of them are prime.

PrimeQ /@ NestList[Quotient[#,10]&,5937,3]

{False, True, True, True}

Thus 5937 just misses being a pure prime. If we want to define this as a function, a little problem
might arise. In the case of 5937 we have to apply Quotient three times to this number. But for a
number n with arbitrary digits, we need to use FixedPointList.

?FixedPointList

FixedPointList[f, expr] generates a list giving the results of

44 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

applying f repeatedly, starting with expr, until the results no

longer change.

FixedPointList[Quotient[#,10]&,5937]

{5937, 593, 59, 5, 0, 0}

FixedPointList[Quotient[#,10]&,7647653]

{7647653, 764765, 76476, 7647, 764, 76, 7, 0, 0}

It is clear that we have to drop the last two elements from the list.

Drop[FixedPointList[Quotient[#,10]&,5937],-2]

{5937, 593, 59, 5}

Now it is the time to apply PrimeQ to the list to check whether all these numbers are prime.

PrimeQ[Drop[FixedPointList[Quotient[#,10]&,5937],-2]]

{False,True,True,True}

What we need is a list containing of only True’s. Thus if only one of the numbers happens to
be not prime, the whole number is not pure prime as is the case with 5937. We can combine all
the boolean in the list with And and the result would make it clear whether the number is pure
prime. Here is the code

Apply[And,{False,True,True,True}]

False

Thus putting all these together we have

purePrime[n_]:=Apply[And,PrimeQ[Drop[FixedPointList[Quotient[#,10]&,n],-2]]]

Select[Range[10, 99], purePrime]

{23,29,31,37,53,59,71,73,79}

Select[Range[100,999],purePrime]

{233, 239, 293, 311, 313, 317, 373, 379, 593, 599, 719, 733, 739,

797}

Select[Range[1000, 9999], purePrime]

{2333,2339,2393,2399,2939,3119,3137,3733,3739,3793,3797,5939,7193,7331,7333,

7393}

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 45

This seems not to be a good algorithm to find all pure prime numbers as it already takes some
time to find all the 6-digit pure primes. In fact the problem here is that in order to find, say, all
the 4-digit pure primes, the above algorithm has to check all the numbers from 1000 to 9999. But
this is not necessary. The following example demonstrates this. If we know that 719 is pure prime
then all we have to check to find the pure primes which have four digits and whose last three digits
are 719, are the numbers {7190, 7191, ..., 7199}.

Range[719*10, 719*10 + 9]

{7190,7191,7192,7193,7194,7195,7196,7197,7198,7199}

We do not need to consider even numbers.

Range[719*10+1, 719*10 + 9,2]

{7191,7193,7195,7197,7199}

Now we need to find out which of these numbers are prime.

Select[%, PrimeQ]

{7193}

This shows that 7193 is a pure prime. Thus we start up with all one-digit primes and find all
the two-digit primes as above.

purelist={2,3,5,7}

{2, 3, 5, 7}

Range[10#+1,10#+9,2]&[purelist]

{{21, 23, 25, 27, 29}, {31, 33, 35, 37, 39}, {51, 53, 55, 57, 59},

{71, 73, 75, 77, 79}}

Flatten[Range[10#+1,10#+9,2]&[purelist]]

{21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 51, 53, 55, 57, 59, 71,

73, 75, 77, 79}

purelist=Select[Flatten[Range[10#+1,10#+9,2]&[purelist]],PrimeQ]

{23, 29, 31, 37, 53, 59, 71, 73, 79}

Thus these are all two-digit pure primes. Having them, we can immediately find all three-digit
primes.

purelist=Select[Flatten[Range[10#+1,10#+9,2]&[purelist]],PrimeQ]

46 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

{233,239,293,311,313,317,373,379,593,599,719,733,739,797}

Thus our clever code to find all the pure primes is as follows:

purelist={2,3,5,7};

While[purelist != {},

purelist=Select[Flatten[Range[10#+1,10#+9,2]&[purelist]],PrimeQ];

Print[purelist]

]

{23,29,31,37,53,59,71,73,79}

{233,239,293,311,313,317,373,379,593,599,719,733,739,797}

{2333,2339,2393,2399,2939,3119,3137,3733,3739,3793,3797,5939,7193,7331,7333,

7393}

{23333,23339,23399,23993,29399,31193,31379,37337,37339,37397,59393,59399,

71933,73331,73939}

{233993,239933,293999,373379,373393,593933,593993,719333,739391,739393,739397,

739399}

{2339933,2399333,2939999,3733799,5939333,7393913,7393931,7393933}

{23399339,29399999,37337999,59393339,73939133}

{}

z

7.3. Fold and FoldList. Recall one of the questions we asked in Section 3, namely: Given
{x1, x2, · · · , xn} how one can produce {x, x1 + x2, · · · , x1 + x2 + · · · + xn}?

Let us look at the commands Fold and FoldList.

Fold[f,x,{a,b,c}]

f[f[f[x,a],b],c]

FoldList[f,x,{a,b,c}]

{x,f[x,a],f[f[x,a],b],f[f[f[x,a],b],c]}

Replace the function f with Plus and x with 0 and observe what happens (see the following
Problem for the answer).

Here is a use of FoldList to write another code for Problem 6.3.

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 47

Problem 7.11. Write a function to calculate the sum of the following sequence?

p(n) =
1

1
+

1

1 + 2
+ ... +

1

1 + 2 + ... + n

Solution. Here is the code:

p[n_]:= Plus @@ (1/Rest[FoldList[Plus, 0, Range[n]]])

In order to decipher this code, let us look at the standard example of FoldList.

FoldList[Plus,0,{a,b,c}]

{0,a,a+b,a+b+c}

Thus dropping the annoying 0 from the list:

Rest[FoldList[Plus,0,{a,b,c}]]

{a,a+b,a+b+c}

and

1/Rest[FoldList[Plus,0,{a,b,c}]]

{ 1
a
, 1

a+b
, 1

a+b+c
}

makes the orignal code clear.

z

Problem 7.12. For which natural numbers n is it possible to choose signs + and − in the expres-
sion

12 ± 22 ± 32 ± · · · ± n2

so that the result is 0?

Solution.
One can find the following code in Vardi [3].

Fold[(#1/.x→x+#2)(#1/.x→x-#2)&,x,{a,b,c}]/.x→1

(1-a-b-c) (1+a-b-c) (1-a+b-c) (1+a+b-c) (1-a-b+c) (1+a-b+c) (1-a+b+c) (1+a+b+c)

Motivating with this, one can approach the problem.

Do[If[(Fold[(#1/.x→x+#2)(#1/.x→x-#2)&,x, Range[n]^2]/.x→0) = 0,Print[n]],

{n,1,40}]
7

8

11

12

15

16

19

20

23

$ Aborted

48 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

However, this seems to take time and there might be a better way to approach this problem.
Another approach:

t[n_]:=Flatten[Outer[List,Sequence @@Table[{I

k,k}^2,{k,2,n}]],n-2]

Do[

If[Select[t[n],Plus @@ #=-1&,1]\[!={},Print[n]],

{n,3,40}]

7

8

11

12

15

16

19

20

Hold[Abort[],Abort[]]

z

7.4. Inner and Outer. Recall the follow question from Section 3: Given {x1, x2, x3, · · · , xn} and
{y1, y2, y3, · · · , yn}, how can one produce {x1, y1, x2, y2, x3, y3, · · · , xn, yn}?

Let us look at two more commands Inner and Outer:

Inner[f,{a,b},{x,y},g]

g[f[a,x],f[b,y]]

If we replace the functions f and g with List we get:

Inner[List,{a,b},{x,y},List]

{{a,x},{b,y}}

Flatten[%]

{a,x,b,y}

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 49

Or this one to get rid of Flatten:

Inner[Sequence,{a,b},{x,y},List]

{a,x,b,y}

50 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

8. Substitution, Mathematica rules!

In Mathematica one can substitute an expression with another using rules. In particular one can
substitute a variable with a value without assigning the value to the variable. Here is how it goes:
x+y/.x→2

2+y

If we ask for the value of x, we see
x

x

FullForm[x + y /. x →2]

Plus[2, y]

The following examples show the variety of things one can do with rules.
x+y/.{x → a, y → b}
a+b

x2 + y/.x → y/.y → x
x + x2

Solve[x3 − 4x2 + 4x2 + 1== 0]

{{x→ −1},{x→ (−1)
1

3)} {x→ −(−1)
2

3}}

x/.%

{−1, (−1)
1

3 ,−(−1)
2

3}

x + 2y/.{x → y, y → a}
2a + y
The last example reveals that Mathematica goes through the expression only once and replaces

the rules. If we need Mathematica to go through the expression again and replace any expression
which is possible until no substitution is possible, one uses //. as follows:

x + 2y//.{x → y, y → a}
3a
In fact /. and //. are shorthand for Replace and ReplaceRepeated respectively.

ReplaceRepeated[x+2y, { x → y, y → x }]
ReplaceRepeated::rrlim: Exiting after x + 2y scanned 65536 times.

x+2y

ReplaceRepeated[1/(1+x), x→ 1/(1+x), MaxIterations− >4]
1

1+ 1

1+ 1

1+ 1
1+x

In Section 9 we will use the rules effectively with the pattern matching facility of Mathemat-
ica (see, for example, Problem 9.2).

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 51

9. Pattern matching

Mathematica provides us with the ability to decide whether an expression matches a specific
pattern. Following R. Gaylord’s exposition [1], consider the expression x2. This expression is
precisely of the following form or pattern, “x raised to the power of two”:

MatchQ[x^2, x^2]

True

But x2 will be matched by the following loosely description, “something” or “an expression”

MatchQ[x^2, _]

True

Here stands (or rather sits) for an expression (is called a blank here). x2 will also match “x
to the power of something”

MatchQ[x^2, x^_]

True

Before we go further, we need to mention that one can give a name to a blank expression as
follows n . Here the expression is labelled n. (We have already seen n in defining a function. In
fact when defining a function, we label an expression that we plug into the function). Also one can
restrict the expression by limiting its head! Namely, head matches an expression with the head
head. Look:

FullForm[x^2]

Power[x, 2]

Head[x^2]

Power

MatchQ[x^2, _Power]

True

Head[4]

Integer

MatchQ[4,_Integer]

True

Head[4/3]

52 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

Rational

MatchQ[4/3,_Integer]

False

Putting these together n Plus means an expression which is labelled n and has the head Plus.
Continuing with our example, x2 matches “x to the power of an integer number”

MatchQ[x^2, x^_Integer]

True

MatchQ[x^2, x^_Real]

False

The same way x2 matches “something or an expression to the power of 2”

MatchQ[x^2, _^2]

True

MatchQ[x^2, _^5]

False

Finally, x2 matches “something to the power of something”

MatchQ[x^2,_^_]

True

One can define a condition on a pattern, namely to test whether an expression satisfies a certain
condition. Here is an example:

MatchQ[5, _Integer?(# > 3 &)]

True

MatchQ[2, _Integer?(# > 3 &)]

False

The pattern Integer?(# > 3 &) stands for an expression which has Integer as its head, that
is an integer number, which is bigger than three.

Here are more examples:

MatchQ[x^2, _^_?OddQ]

False

MatchQ[x^2, _^_?EvenQ]

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 53

True

Here is how all these concepts help. One can single out an expression of specific pattern and
once this is done then change the expression. It is all about accessing and then manipulating!

Here are some examples:

MatchQ[{a,b},{_,_}]

True

MatchQ[{a,b},{x_,y_}]

True

Study the following examples carefully!
{{a,b},{c,d}}/.{x ,y }→ x y

{a c,b d}

{{a,b},{c,d}}/.{x ,y }→ xy

{ac, bd}
{{a,b},{c,d}}/.{x ,y }→ y

{c , d}

Here is the third approach to Problem 3.7 and 4.1.

Problem 9.1. Write a function squareFreeQ[n] that returns True if the number n is a square
free number, and False otherwise.

Solution.

t=FactorInteger[234090]

{{2,1},{3,4},{5,1},{17,2}}

We are after those numbers that when decomposed into powers of prime, say, {{p1, k1}, {p2, k2}, · · · , {pt, kt}},
then all ki are 1.

The pattern { ,y ?(#>1&)} describes those lists with the second element (a number) bigger
than 1.

MatchQ[{3,4},{_,y_?(#>1&)}]

True

Here is the time to introduce Cases.

? Cases

54 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

Cases[{e1, e2, ... }, pattern] gives a list of the ei that match

the pattern.

Cases[{6,test,20,5.3,35,5/3},_Integer]

{6,20,35}

We use Cases to get all the pairs with ki’s bigger than 1. If this list is not empty then the
number is not square free.

Cases[{{2,1},{3,4},{5,1},{17,2}},{_,y_?(#>1&)}]

{{3,4},{17,2}}

Cases[{{2,1},{3,4},{5,1},{17,2}},{_,y_?(#>1&)}] != {}

False

We are ready to put all these together and write a function for finding square free numbers.

squareFree3[n_]:=Cases[FactorInteger[n],{_,y_?(#>1&)}] != {}

squareFree3[234090]

False

squareFree3[3 * 5*13*17]

True

z

So far we have been dealing with one expression. What if instead of one expression we would
be dealing with a bunch of them?

MatchQ[{x^2},{_}]

True

MatchQ[{x^2, x^3, x^5}, {_}]

False

MatchQ[{x^2, x^3, x^5}, {__}]

True

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 55

As one can see from the above example, stands for a sequence of data as is for just one
expression. In fact is for a sequence of nonempty expressions, and is for a sequence of
empty or more data. The following examples show this clearly.

MatchQ[{},{_}]

False

MatchQ[{},{__}]

False

MatchQ[{},{___}]

True

Here is one more example to show the difference between and :

MatchQ[{3,5,2,2,stuff,7},{__,3,___}]

False

MatchQ[{3,5,2,2,stuff,7},{___,3,___}]

True

MatchQ[{3,5,2,2,7,us},{___,2,2,___}]

True

We are ready to write a little game.

Problem 9.2. Write a game as follows. A player gets randomly 7 cards between 1 and 10. He
would be able to drop any two cards between 4 and 10 that are similar. Then the sum of the cards
that remain in the hand is what a player scores. A player with minimum score wins.

Solution. First, we generate a list containing 7 random numbers between 1 and 10.

s=Table[Random[Integer,{1,9}],{7}]

{2,5,2,3,4,7,4}

Now we shall write a code to discard any two numbers which are the same. The trick we use
here is, we look inside the list and recognise the same numbers (which have the same pattern),
mark them and with a rule send the list to a new list containing all the elements except the similar
ones. Here is the code:

s/.{m ,x ,y ,x ,n }->{m,y,n}
{5,3,4,7,4}

56 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

Here Mathematica looks for similar expressions x and x . To the left of x is m which means
any sequence of empty or more expressions. Similarly in between x’s we place y . That is, in
between similar numbers could be empty (i.e., the similar numbers are next to each other) or a
bunch of other expressions. Finally to the right hand side of the second x is n . In the example,
our original list is {2,5,2,3,4,7,4}. Mathematica recognises that there are two 2 in the list, so
will assign them to x . To the left hand side of the first 2 there is no data, thus m would get an
empty value, y would be 5 and n would be the whole sequence of 3, 4, 7, 4 in the right hand
side of the second 2. Thus the rule{m ,x ,y ,x ,n }->{m,y,n} will discard the x’s and give
us {5,3,4,7,4} .

Still there are two 4’s in the list but as we have seen in Section 8, /.-> would go through the
list only once. Thus if we run the same code again, this time with our new list, we shall get rid of
double 4’s.

{5,3,4,7,4}/.{m ,x ,y ,x ,n }->{m,y,n}
{5,3,7}

Remember that //.-> was designed exactly for this job.

s//.{m ,x ,y ,x ,n }->{m,y,n}
{5,3,7}

But in the game we are allowed to drop the cards between 4 and 10. Thus we shall put in a
little test to find similar numbers bigger than 3. Here is the enhanced code:

s//.{m ,x ?(3<#<10&),y ,x ,n }->{m,y,n}
{2,5,2,3,7}

Notice that it is enough to put a test for one of the x ’s.
Just to make sure we understood this, let’s try the code for

s={7, 6, 2, 7, 1, 2, 1, 6, 7}
s//.{m ,x ?(3<#<10&),y ,x ,n }->{m,y,n}
{2, 1, 2, 1, 7}

The rest is to sum the numbers in the list. For example
Plus @@ %

13

z

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 57

10. Functions with multiple definitions

In this section we will talk about the ability of Mathematica to handle a function with multiple
definitions. Plus we will see how a function can contain more than one line, namely contain a
block of codes (a sort of mini program or a procedure).

Recall the very first function that we defined in Section 2.1.
f[n]:= n^3 +11

f[-2]

3

In the light of the previous section, one can see what this code exactly means. One can send
any expression with any pattern into f[n]. The expression is labelled n. Now we can easily
restrict the sort of data we want to send into a function, by simply describing the sort of pattern
we desire. For example if in the above function, we would like the function only to perform on
positive integers, then

f[n_Integer?Positive] := n^3 + 11

f[4]

75

f[-2]

f[-2]

Here are some more examples:

g[n Integer?(0 < # < 5 &)] := Sqrt[5 - n]

g[2]√
3

g[6]

g[6]

e[p ?(PolynomialQ[#, x] &)] := Expand[p,x]

e /@ {4, (1 + x)^2, Sin[x] + Cos[x]}
{4, 1 + 2 x + x^2, e[Cos[x] + Sin[x]]})

One can even be carried away with this ability. Here is a function that gives the prime factors
of a number which consist of only odd digits (e.g. 3715).

myfunc[n_Integer?(Select[IntegerDigits[#], EvenQ, 1] == {}&)]:=

Map[First, FactorInteger[n]]

myfunc[3715]

{5, 743}

58 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

myfunc[593183]

myfunc[593183]

One of the great features of Mathematica is that one can define a function with multiple defini-
tions. Here is a harmless example

oddeven[(n_?EvenQ)?Positive] := Print[n, " even and positive"]

oddeven[(n_?EvenQ)?Negative] := Print[n, " even and negative"]

oddeven[(n_?OddQ)?Positive] := Print[n, " odd and positive"]

oddeven[(n_?OddQ)?Negative] := Print[n, " odd and negative"]

Map[oddeven, {-2, 5, -3, -4}];

-2 even and negative

5 odd and positive

-3 odd and negative

4 even and positive

Here we have the function oddeven with four definitions. An integer falls into one of the cases
above, and Mathematica has no problem going through all the definitions of the function and
applying the appropriate one to the given number. If one asks for the definition of oddeven, one
can see Mathematica has all four definitions in memory, in the same order that one has defined the
function.

?oddeven

Global‘oddeven

oddeven[(n_?EvenQ)?Positive] := Print[n, even and positive]

oddeven[(n_?EvenQ)?Negative] := Print[n, even and negative]

oddeven[(n_?OddQ)?Positive] := Print[n, odd and positive]

oddeven[(n_?OddQ)?Negative] := Print[n, odd and negative]

Problem 10.1. Define the Collatz function as follows:

f(x) =

{

x/2 if x is even
3x + 1 if x is odd.

It is a conjecture that if one applies f repeatedly to any number, one arrives at 1. Find out how
many times one needs to apply f to numbers 1 to 200 to get 1.

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 59

Solution.
Here is the Collatz function:

f[x_Integer?EvenQ] := x/2

f[x_Integer] := 3x + 1

One can write the following one-liner for the rest of the code.

Length /@ (NestWhileList[f, #, ! # == 1 &] & /@ Range[200])

{1, 2, 8, 3, 6, 9, 17, 4, 20, 7, 15, 10, 10, 18, 18, 5, 13, 21,

21, 8, 8, 16, 16, 11, 24, 11, 112, 19, 19, 19, 107, 6, 27, 14,

14, 22, 22, 22, 35, 9, 110, 9, 30, 17, 17, 17, 105, 12, 25, 25,

25, 12, 12, 113, 113, 20, 33, 20, 33, 20, 20, 108, 108, 7, 28,

28, 28, 15, 15, 15, 103, 23, 116, 23, 15, 23, 23, 36, 36, 10, 23,

111, 111, 10, 10, 31, 31, 18, 31, 18, 93, 18, 18, 106, 106, 13,

119, 26, 26, 26, 26, 26, 88, 13, 39, 13, 101, 114, 114, 114, 70,

21, 13, 34, 34, 21, 21, 34, 34, 21, 96, 21, 47, 109, 109, 109,

47, 8, 122, 29, 29, 29, 29, 29, 42, 16, 91, 16, 42, 16, 16, 104,

104, 24, 117, 117, 117, 24, 24, 16, 16, 24, 37, 24, 86, 37, 37,

37, 55, 11, 99, 24, 24, 112, 112, 112, 68, 11, 50, 11, 125, 32,

32, 32, 81, 19, 32, 32, 32, 19, 19, 94, 94, 19, 45, 19, 45, 107,

107, 107, 45, 14, 120, 120, 120, 27, 27, 27, 120, 27}

Max[%]

125

z

Problem 10.2. Define the function

f(x) =

{ √
x if x ≥ 0√
−x if x < 0

and plot the graph of the function for −1 ≤ x ≤ 1.

Solution. One can define f(x) in Mathematicaas a function with two definitions as follows:

f[x_?Positive] := Sqrt[x]

f[x_?Negative] := Sqrt[-x]

Plot[f[x],{x,-1,1}]

As you might have noticed, so far, there has been no confusion regarding the multiple definitions
of a function. Namely, the data that is sent to the function satisfied only one of the patterns in the
definition of the function. In oddeven, a number could be only one of the cases of positive/negative
and odd/even and in the previous example a number is either positive or negative. But imagine
we define a function as follows:

60 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

Figure 1. A function with multiple definitions

f[x_] := x

f[x_Integer] := x!

Now one might ask what would be f[4]. There are two definitions for f and 4 can match both
patterns, namely x or x Integer.

f[4]

24

f[5]

120

f[2.3]

2.3

f[test]

test

Thus for any integer the definition which is the factorial of a number is performed and for other
data the other definition (obviously). If we find out in what order Mathematica saves the definitions
of functions, we can justify this action.

?f

Global‘f

f[x_Integer] := x

f[x_] := x

Thus in principle, Mathematica stores the definitions from the one with more precise pattern
matching (here the one with x Integer). If she cannot define which definition has the more precise

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 61

pattern matching, then she stores the definition in the order in which it has been entered in the
system. Here is an example of this type:

cic[n_?(# > 1 &)] :=

Show[Graphics[{{RGBColor[1, 0, 0], Disk[{0, 0}, 1]}, {RGBColor[0, 0, 0],

Disk[{1, 0}, 1]}}], AspectRatio -> Automatic]

cic[n_?(# > 0 &)] :=

Show[Graphics[{{RGBColor[0, 0, 0], Disk[{0, 0}, 1]}, {RGBColor[1, 0, 0],

Disk[{1, 0}, 1]}}], AspectRatio -> Automatic]

cic[5]

Figure 2. cic[5]

cic[1]

Figure 3. cic[1]

In this example, Mathematica stores the definition of the functions in the same order that we
entered it, as there is no preference in the patterns that have been defined.

62 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

Problem 10.3. Define a function f(x) in Mathematica which satisfies

f(xy) = f(x) + f(y)
f(xn) = nf(x)
f(n) = 0

where n is an integer and show that

f(
20
∏

i=1

i(xi)
i) =

20
∑

i=1

if(xi)

f[x y] := f[x] + f[y]

f[x ^n Integer] := n f[x]

f[n Integer] = 0

f[Product[i!(x i)^i, {i, 1, 20}]]
f[x 1] + 2 f[x 2] + 3 f[x 3] + 4 f[x 4] + 5 f[x 5] + 6 f[x 6] + 7 f[x 7] + 8 f[x 8]

+ 9 f[x 9] + 10 f[x 10] + 11 f[x 11] + 12 f[x 12] + 13 f[x 13] + 14 f[x 14] + 15 f[x 15]

+ 16 f[x 16] + 17 f[x 17] + 18 f[x 18] + 19 f[x 19] + 20 f[x 20]

∑20
i i f[x i]== f[Product[i!(x i)^i, {i, 1, 20}]]

True

z

10.1. Functions with local variables. One of the approaches of procedural languages to pro-
gramming is to break the program into “mini-programs” or procedures and then put them together
to get the code we need. These procedures have their own variables called local variables, that is,
variables which have been defined only inside the procedure. So far all the functions that we have
defined consist of only one line. Mathematica’s functions can be also used as procedures, namely
can contain several lines of code and their own local variables. Let us look at a simple example.
Recall Problem 7.5, which finds all the prime numbers less than n. Let us write this as a function
lPrimes[n] to produce a list of all such primes.

lPrimes[n] := Module[{pset = {}, i = 1},
While[Prime[i] <= n,

pset = pset ∪ {Prime[i]};
i++];

pset]

lPrimes[8]

{2, 3, 5, 7}

A function with several lines of codes in Mathematica are wrapped by Module. The structure
looks like Module[{local variables},body]. In the above example the variables pset and i are
variables defined only inside the function lPrimes. Here to check that these are undefined outside
the function:

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 63

pset

pset

i

i

10.2. Functions with conditions. Consider the following code

f[n_] := Sqrt[n] /; n > 0

f[4]

2

f[-4]

f[-4]

Here /; is a shorthand for an If. We have seen we can restrict the pattern of the data we pass
into a function. The equivalent ways to define the above function are

f1[n_?Positive]:=Sqrt[n]

f2[n_]:=If[n>0,Sqrt[n]]

Sometimes using /; helps to make the code much more readable than using other ways to put
conditions.

Here is another version of the Game 9.2.

Problem 10.4. Write a game as follows. A player gets randomly 7 cards between 1 and 10. He
would be able to drop any two cards with the sum 5. Then the sum of the cards that remain in the
hand is what a player scores. A player with minimum score wins.

Solution. Let us first design a function that accepts a sequence of numbers and deletes any two
numbers of which the sum is 5. Having an eye on the code of Problem 9.2:

aHandD[n___, y_, t___, z_, m___] :=

aHandD[n, t, m] /; y + z == 5

aHandD[2,3,5,4,1,3,7]

aHandD[5,3,7]

Then, we can simply change the head of this expression to Plus to get the sum of the cards.

Apply[Plus,%]

15

Now we produce a list of 7 random numbers and write a little function, call it aHand, to put all
these lines together:

Table[Random[Integer,{1,9}],{7}]

64 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

{5,2,7,3,1,6,3}

Apply[Sequence,%]

Sequence[5,2,7,3,1,6,3]

aHandD[%]

aHandD[5,7,1,6,3]

aHand=Module[{},

aHandD[Apply[Sequence, Table[Random[Integer, {1,

9}], {7}]]];

Print[Apply[Plus, %]]

]

z

We shall see a similar approach to a problem involving matrices in Problem 12.4.

11. Recursive functions

Imagine two mirrors setting parallel to each other with an apple sitting in between. Then one
can see infinite number of apples in the mirrors. This might give an impression of what a recursive
function is. The classic example is Fibonacci numbers. Consider the sequence of numbers starting
with 1 and 1 and continue with sum of the two previous numbers as the next number in the
sequence. Following this rule, one obtains the sequence 1, 1, 2, 3, 5, 8, 13, 21, · · · . To define this
sequence mathematically, one writes F1 = F2 = 1 and Fn = Fn−1 + Fn2

.
One can use Mathematica to define Fibonacci numbers in the exact same way recursively:

f[1] = 1; f[2] = 1;

f[n_] := f[n-1] + f[n-2]

f /@ Range[10]

{1, 1, 2, 3, 5, 8, 13, 21, 34, 55}

Now try to compute the 50th Fibonacci number. This will take ridiculously a long time. What is
the problem? The problem will show itself if you try to calculate, say, f [5] by hand. By definition,
f [5] = f [4] + f [3] thus one needs to calculate f [4] and f [3]. Again by definition f [4] = f [3] + f [2]
and f [3] = f [2]+f [1]. Thus in order to find the value if f [4] one needs to find out f [3] and f [2] and
for f [3] one needs to calculate f [2] and f [1]. Thus Mathematica is trying to calculate f [3] twice
unnecessarily. This shows that in order to save time, one needs to save the values of the functions
in the memory. This has been done in the following codes. Compare this with the above.

Clear[f]

f[1] = 1; f[2] = 1;

f[n_] := f[n] = f[n - 1] + f[n - 2]

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 65

f[50]

12586269025

Here we use recursive programming to solve Problem 7.9.

Problem 11.1. A Happy number is a number that if one squares its digits and add them together,
and then take the result and square its digits and add them together again and keep doing this
process, one comes down to the number 1. Find all the Happy ages, i.e., happy numbers up to 100.

Solution.

f[1] = 1

f[4] = 4

f[n_] := f[Plus @@ (IntegerDigits[n]^2)]

Select[Range[100], f[#] == 1 &]

{1, 7, 10, 13, 19, 23, 28, 31, 32, 44, 49, 68, 70, 79, 82, 86, 91, 94, 97, 100}

z

One can re-write many codes which have a repetition nature in the form of recursive. Recall
Collatz function from Problem 10.1. One can write the function as follows

f[1]=1

f[n_Integer?EvenQ] := f[n/2]

f[n_Integer] := f[3n + 1]

Then if one applies f to any number one should get 1 (If not, then one has solved the Collatz
conjecture in negative!).

66 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

12. Matrices; Multilinear algebra

It is known that matrix calculation is a tedious job. It will take well over 10 minutes to multiply

2 −3 13 −4 8 −10
12 1 −18 −4 2 5
18 21 10 0 9 7
8 −12 −4 0 −3 −11
15 −7 2 4 2 12
−2 −5 12 3 −9 −4

×

11 34 −21 0 −43 12
12 −33 9 −12 7 2
16 −7 −43 84 3 −6
4 9 12 −1 −54 −2
7 22 −5 23 0 10
−2 −10 33 2 11 12

only to obtain a wrong answer!.
One can easily enter a matrix into Mathematica by using Input:Create Table/Matrix. If we

assign A to the first matrix and B to the second then

A.B //MatrixForm

254 316 −1046 1296 38 −92
−156 459 638 −1464 −292 342
659 −23 −433 809 −520 372
277 −349 −155 −679 −330 0
119 687 −30 318 −772 310
67 −118 −570 850 −119 −250

Det[A]

12327530

One uses the function MatrixForm to obtain the result in matrix form!. Otherwise one gets a
list of vectors.

Even more impressive is how easily Mathematica computes the inverse of this matrix. Try

Inverse[A]//MatrixForm

One can generate a matrix by using Array.

Problem 12.1. Write a function to check that for any n, the following identity hold.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 · · · 1 1
b1 a1 a1 · · · a1 a1

b1 b2 a2 · · · a2 a2
...

...
...

...
...

b1 b2 b3 · · · bn an

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (a1 − b1)(a2 − b2) · · · (an − bn)

Solution. Here the defintion of the matrix using Array.
m[n]:=Array[

Which[#1==1,1,

#1 ≤ #2,a#1−1,

True,b#2]&,

{n+1,n+1}]
Check that this in fact produces matrices of the above form.
m2[n] := Product[a i - b i, {i, 1, n}]

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 67

Simplify[Det[m[7]] == m2[7]]

True

z

Problem 12.2. Write a function to check that for any n, the following identity hold.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x a1 a2 · · · an

a1 x a2 · · · an

a1 a2 x · · · an

...
...

...
...

a1 a2 a3 · · · x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (x + a1 + a2 + · · · + an)(x − a1)(x − a2) · · · (x − an)

Solution. The solution is left to the reader this time!

Problem 12.3. Write a function to accept a matrix Ann and produce

Bn2n2 =

a11 0 0

0
. . . 0

0 0 a11

a12 0 0

0
. . . 0

0 0 a12

 · · ·

a1n 0 0

0
. . . 0

0 0 a1n

· · · · · · · · · · · ·
...

...
...

...

an1 0 0

0
. . . 0

0 0 an1

 · · · · · ·

ann 0 0

0
. . . 0

0 0 ann

.

Then show that det(A)n = det(B).

The following is a nice problem demonstrating the use of pattern matching in Mathematica for
solving problems.

Problem 12.4. Let A and B be 3 × 3 matrices. Show that (ABA−1)5 = AB5A−1.

Solution. Let us first take the naive approach. We define two arbitrary matrices and, using
Mathematica, we will multiply them and check whether both sides give the same result.

(A=Array[x#1,#2&, {3, 3}])//MatrixForm
IA=Inverse[A];

x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3

(B=Array[y#1,#2&, {3, 3}])//MatrixForm
IB=Inverse[B];

68 PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH

y1,1 y1,2 y1,3

y2,1 y2,2 y2,3

y3,1 y3,2 y3,3

Now we check the equality for n=3 and take the time:

Timing[d=A.B.IA.A.B.IA.A.B.IA;

d1=A.B.B.B.IA;

Simplify[d==d1]]

{70.963 Second, True}

This already takes long. One can easily prove by induction that (ABA−1)n = ABnA−1 for any
positive integer n. For example for n = 2 we have (ABA−1)2 = ABA−1ABA−1 = ABBA−1 =
AB2A−1. This shows a pattern here. Namely we can easily cancel A with A−1 if they are adjacent
to each other. We introduce this to Mathematica and try to check the equality this way. This is
very similar to Problem 10.4 in nature.

matmul[x___,y_,z_,t___]:=

matmal[x,t]/;Simplify[y.z==IdentityMatrix[3]]

matmal[r___]:=Apply[Dot,{r}]

matmal[]=1;

Timing[Simplify[

matmul[A,B,IA,A,B,IA,A,B,IA,A,B,IA,A,B,IA]==A.B.B.B.B.B.IA]]

{0.01 Second, True]

z

Assorted Exercises

Write the following functions:

2

π
=

√
2

2

√

2 +
√

2

2

√

2 +
√

2 +
√

2

2
· · ·

2

π
=

1 × 3

2 × 2

3 × 5

4 × 4

5 × 7

6 × 6
· · · (2n − 1)(2n + 1)

2n × 2n

exp

2
=

(2

1

) 1

2
(2

3

4

3

) 1

4
(4

5

6

5

6

7

8

7

) 1

8
(8

9

10

9

10

11

12

11

12

13

14

13

14

15

16

15

) 1

16 · · ·

PROGRAMMING IN MATHEMATICA, A PROBLEM-CENTRED APPROACH 69

References

[1] R. Gaylord, Mathematica Programming Fundamentals, Lecture Notes, Available in MathSource
[2] W. Shaw, J. Tigg, Applied Mathematica, Addison-Wesley Publishing, 1994
[3] I. Vardi, Computational Recreations in Mathematica, Addison-Wesley Publishing, 1991
[4] S. Wagon, Mathematica in Action, Springer-Verlag, 1999

R. Hazrat, Department of Pure Mathematics, Queen’s University, Belfast BT7 1NN, U.K.

E-mail address: r.hazrat@qub.ac.uk

