
Lab 3: Filter Banks, the STFT, and
the Phase Vocoder

Due Tuesday 04/08/19

Overview:

• This assignment should be completed with your chosen lab partner(s).

• Each group must turn in a report composed using a word processor (e.g., Word, Pages, LATEX,
etc...) including a cover page with full names of all group members. The remaining pages should
contain (in order) the answers and MATLAB scripts for the exercises. MATLAB figures can be
pasted into the document or saved as PDF files. When working on the project, please follow the
instructions and respond to each item listed. Your project grade is based on: (1) your MATLAB
scripts, (2) your report (plots, explanations, etc. as required), and (3) your final results. For all
labs, you must clearly write the problem number next to your solution and label the axes on all
plots to get full credit. Submission can be done electronically in PDF format or on paper.

• Plagiarism is a very serious offense in Academia. Any figures in the paper not generated by you
should labeled “Reproduced from [...]”. Any portions of any simulation code (e.g., MATLAB,
C, etc...) not written by you be clearly marked in your source files. The original source of any
mathematical derivation or proof should be explicitly cited.

1 Overview
In this lab, we will explore filter banks, the STFT, and the phase vocoder.

2 Exercises
2.1 Warm-Up
The goal of this warm-up is to recall the symmetry exhibited by Fourier transforms of real signals.

(a) For N = 256, let the signal x[n] be a standard Gaussian random variable for n = 0, 1, . . . , N − 1.
In Matlab, one can write x=randn(1,256). Consider the quantity X[−k]∗−X[k]? In Matlab, you
can compute X=fft(x) and conj(fliplr(X(2:end)))-X(2:end). What value does this quantity
have and why?

(b) Now, let the DFT Y [k] be a standard complex Gaussian random variable for n = 0, 1, . . . , N−1. In
Matlab, one can write Y=(randn(1,256)+1i*randn(1,256))/sqrt(2). Consider the quantity Z[k] =
Y [k] + Y [−k]∗ or Z=Y+conj([Y(1) fliplr(Y(2:end))]) . What can you say about its inverse
DFT z[n]?

2.2 Short-Time Fourier Analysis
The goal of this part of the lab to implement the short-time Fourier analysis algorithm using length-N
blocks overlapped by N −M samples. To simplify some expresions, we will assume that N is even and
that M divides N . Write and test Matlab code to implement each of steps listed below.

(a) For a length-L input signal, zero-pad its length so that L−(N−M) is a multiple ofM . Extract the
overlapped sections xm[n] = x[mM + n] from x[n] and stack them into the matrix X of dimension
N ×mmax, where mmax = d(L−N)/Me + 1 sections suffice for an input signal of length. Hint:
Use help to investigate built-in function buffer(x,N,N-M,’nodelay’).

(b) Window each section using the window defined by

w[n] =
√

2M
N

sin
(
π

N

(
n+ 1

2

))
.
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Let the resulting matrix be denoted by Xw. Hint: To apply the same window to every column of a
matrix, investigate the built-in function bsxfun(@times,X,w).

(c) Use the fft command to compute the column-wise DFT of the windowed matrix Xw to get
Xm[k] ∀ m, k. Since audio signals have real values, the resulting FFT has conjugate symme-
try and therefore is redundant. Define the matrix Xwf to contain the first N/2+1 rows of the FFT
of the windowed X, which are non-redundant. Note that, in the fft function, the second argument
specifies the dimension of the matrix along which the FFT should be computed.

(d) Then, from Xwf extract the energy and phase into distinct matrices E and P based on (for k ∈
{0, 1, . . . , N/2})

Em[k] = |Xm[k]|2

Pm[k] = ∠Xm[k].

Exercise 1. For the audio file “singing8.wav”, compute the STFT with N = 256 and M = 64. Use
the command image to plot the E matrix using a separable scaling (e.g., a log(x) + b) that exposes the
harmonic structure in the signal.

2.3 Short-Time Fourier Synthesis
The goal of this part of the lab to implement the short-time Fourier synthesis algorithm, which inverts
the previous STFT algorithm based on length-N blocks overlapped by N −M samples. Write and test
Matlab code for each step in the process outlined below.

(a) First, reconstruct an estimate
X̂m[k] =

√
Em[k]ejPm[k]

of Xm[k] for k ∈ {0, 1, . . . , N/2}. Then, let hXwf denote the matrix with N rows whose m-th row
is given by X̂m[k] for k ∈ {0, 1, . . . , N/2} and X̂∗m[N − k] for k ∈ {N/2 + 1, . . . , N − 1}. This
regenerates the conjugate symmetric portion of the signal.

(b) Next, we reconstruct the signal

x̂m[n] = 1
N

N−1∑
k=0

X̂m[k]e2πjkn/N

by letting hXwfi equal the column-wise ifft of the matrix hXwf. Due to numerical roundoff, one
may need to keep only the real part. Note: A good test here is to check if x̂m[n] is essentially real
(i.e., max absolute value of imaginary is less than 10−8).

(c) Next, we combine the different observations of x[n] together to form the signal reconstruction

x̂[n] =
bn/Mc∑

m=bn/Mc−N/M+1

w[n−mM ]x̂m[n−mM ].

This can be computed by starting with a zero vector of length mmaxM + (N −M) and then using
a for-loop to window and accumulate each column of hXwfi into the appropriate place in that
vector. This corresponds to starting with x̂[n] = 0 and iterating, for m = 0 to m = mmax, the
update

x̂[n+mM ] = x̂[n+mM ] + w[n]x̂m[n].

Exercise 2. For the audio file “notawhisper.wav”, use your code from the previous section to compute
the STFT with N = 512 and M = 256. Then, use the command P=2*pi*rand(size(P)) to replace the
true phase by a uniform random phase over [−π, π] (note: rand generates uniform random variables).
Now, reconstruct the modified signal using the STFT synthesis algorithm. How does the synthetic
whisper signal sound in comparison to the natural “whisper.wav”? Use pwelch(x,ones(1,256)) to
compare the power spectral density of the two signals. What type of post-processing might make the
synthetic whisper sound more realistic.
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2.4 Phase Vocoder
The goal of this section is to build a phase vocoder using STFT analysis, resampling, and STFT synthesis.
The result will be a function MATLAB function phaseVocoder.m whose arguments are the input signal
x[n], the time-scaling factor α, the window length N , and the shift length M . The function will return
the time-scale modified signal x̂[n] whose length is roughly 1

α times the length of x[n]. The following is
the overall flow for one kind of implementation of the phase vocoder.

Note: Make sure that you have tested your STFT analysis and synthesis algorithms before attempting
this part. Also, it suggested to start by focusing on α = 1/2, N = 1024, and M = N/2. Once you have
successfully implemented this case, it will be easier to generalize your function to arbitrary (N,M,α).

(a) Use your STFT analysis function implement the filter bank and compute E and P.

(b) Now construct a new matrix E1 whose rows are the linearly interpolated energies for factor α.
In particular, the `-th column (for ` ∈ {1, . . . , b(mmax − 2)/αc −

⌈ 1
α

⌉
}) corresponds to time t =

1 + α(`− 1) (relative to blocks in the input signal) using the formula

Ẽt[k] = (dte − t)Ebtc[k] + (1− dte+ t)Edte[k].

Note that t ∈ [1,mmax− 2−α] implies btc ≥ 0 and dte ≤ mmax− 1. The built-in interp1 function
can also be useful for linear interpolation.

(c) Now, construct the m-th column of the delta-phase matrix D using

Dm[k] = (Pm[k]− Pm−1[k]− 2πkM/N) mod 2π

for m ∈ {1, . . . ,mmax − 1}, using z mod 2π =mod(z+pi)-pi. It can help to think of Dm[k] as an
estimate of the derivative of phase evaluated at time t = m− 1

2 (relative to the input signal). The
built-in function diff may also be useful here.

(d) Next, construct the `-th column of the interpolated delta-phase matrix D1 for ` ∈ {1, . . . , b(mmax − 2)/αc−⌈ 1
α

⌉
− 1} by linear interpolation of the delta-phase matrix to t` = 1 + α(`− 1

2 ) using the formula

D̃t[k] =
(⌈

t+ 1
2

⌉
− t− 1

2

)
Dbt+ 1

2c[k] +
(

1−
⌈
t+ 1

2

⌉
+ t+ 1

2

)
Ddt+ 1

2e[k].

Note that t` ∈ [1 + α
2 ,mmax − 2 − 3α

2 ] implies
⌊
t` + 1

2
⌋
≥ 0 and

⌈
t` + 1

2
⌉
≤ mmax − 1. Finally,

for ` ∈ {1, . . . , b(mmax − 2)/αc − 1}, the `-th column of the accumulated-phase matrix P1 is
constructed by accumulating the phase for each interpolated block. For ` = 1, we choose the first
column P̃1[k] = P1[k] and, for ` ≥ 2, we use

P̃`[k] = P̃`−1[k] + D̃t`−1 [k] + 2πkM/N.

(e) Use your STFT synthesis function to reconstruct the signal from E1 and P1 (i.e., Ẽ and P̃ ).

Exercise 3. Test your function on the file singing44.wav by setting α = 1/2, N = 1024, and M =
N/2. Once you have successfully implemented this case, try and generalize your function for arbitrary
(N,M,α). Include the resulting sound file (in wav format) with your submission.

Exercise 4. Repeat the previous exercise for the same sound file with α = 17/18, N = 1024, and M =
128. The result x̂[n] must is the sound slowed down to 18/17 times its length with the pitch unchanged.
Now, resample this signal by a suitable factor using band-limited interpolation so that the output signal
y[n] (almost) preserves the time-scale of the original sound file. Use the resample(P,Q,100) built-in
function to do this and briefly explain the steps that the function executes to achieve resampling. This
should increase the pitch of the original signal by a factor of 21/12 ≈ 18/17 while preserving the overall
time-scale. How does the resulting clip sound? Include the resulting sound (in wav format) file with
your submission.
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