ECE 581: Convergence for Sequences of Random Variables

Henry D. Pfister
Duke University

November 16, 2025

Contents

[1 Review: Convergence of Sequences|

[1.2 Vectors in Normed Vector Spaces| . . . . . ... ...
[1.3 A Nod in the Direction of Measure Theory] . . . . .

2 Some Inequalities Useful for Limit Theorems|

2.1  Markov Inequality) . . ... ... ... .. ......
2.2 Chebyshev Inequality|] . . .. ... ... ... ....
2.3 Chernoft Boundl. . . . . ... ... ... ... ...

[3 Convergence of Random Variables|

3.1  Mean—Square Convergence|. . . . . . . . .. ... ..
3.2 Convergence in Probability] . . . ... ... ... ..
[3.3  Almost-Sure Convergence| . . . . . . ... ... ...
3.4 Convergence in Distribution| . . . . . . . . . ... ..
[3.5  Hierarchy of Convergences| . . . . . . .. ... . ...

4 Central Limit Theorem (CLT)|

5 Summary,

[A° Measuring the Distance Between Distributions|

A2 Convergence via Test Functions| . . . . . . . ... ..
[A.3 Distance via Coupling| . . . . . ... ... ... ...

1 Review: Convergence of Sequences

1.1 Real Numbers

A sequence of real numbers, a,, € R for n € N (or ay,a2,as,...

every real € > 0, there exists N € N such that

la, —a| <e foralln> N.

We write lim,,_sso @y, = @ OF a,, — a.

€ R), converges to a € R if, for



1.2 Vectors in Normed Vector Spaces

Let (V|| -||) be a normed vector space. Then, a sequence of vectors v, € V (for n € N) converges
to v € V if the real sequence ||v, — v|| — 0 or equivalently

lim |v, — o] = 0.
n—oo

Typical examples include:

e R with the Euclidean norm (e.g., think vector calculus),

e normed function spaces such as LP([a, b]) (e.g., think Fourier analysis) with norm

1= ( blf(t)!”dt) T e

e the space of real random variables with || X || = \/E[X?| induced by (X, Y) = E[XY].

The last two cases actually coincide in some cases. If we choose a =0, b =1, and p = 2, then
the set of integrable functions mapping [0, 1] to R can be seen as the set of random variables for
the probability space Q = [0, 1] with a uniform distribution on €. In that case, we have

/1 X (w)]? dw = E[X?].
0

Another similarity is that, for functions and random variables, how one measures the distance
can affect whether or not a sequence converges. Consider functions f,, f mapping a common
domain X to R. Then, we have

e Pointwise convergence: f,(z) — f(z) for all z € X.
e L? convergence: [ |f,(z) — f(z)Pdz — 0.
e Uniform convergence: sup,cp 1) |fn(z) — f(2)| = 0.

Ezample 1.1 (Pointwise but not L?). Let f(x) = z~/2 for (0,1] with f(0) = 0 and define

fn(l‘):{O’ 0<z<1/n,

z 12, 1/n<zx<1.

Then fy,(z) — f(x) for every z € [0, 1], but

1/n 1
=13 = [ 5 do =+

0+
so there is no convergence in the L? (or mean square) sense.
Ezample 1.2 (Fourier series). Let f(x) = 1jg.5/(z) be one period of a square wave and define

n
4 .
to be the first n non-trivial terms of its Fourier series expansion. While Fourier analysis shows
that f, converges to f in L?([0,1]). It does not converge uniformly In fact, the well-known Gibb’s
Phenomenon is that the overshoot satisfies

sup |fn(x) — f(x)] = ¢~ 0.0895.
z€(0,1]



Remark 1.3. One subtlety here is that we are ignoring exactly how these integrals are defined.
Rather than the basic calculus Riemann integral, these spaces use the more general Lebesgue
integral. Since the two integrals are equal whenever they both exist (e.g., for continuous functions),
this difference is really only important for proofs.

1.3 A Nod in the Direction of Measure Theory

For completeness, we recall the definition of a probability space and introduce the notion of a
measurable function.

Definition 1.4 (Probability space). A probability space is defined by a tuple (2, F,P) where €
is a sample space, a subset of £ C () is an event, F is a special collection of events known as a
o-algebra, and the probability function P : F — [0, 1] satisfies:

(A1) Nonnegativity: P(A) > 0.
(A2) Normalization: P(Q2) = 1.
(A3) Additivity: for disjoint A;, P(U;2; 4i) = D> oo P(A4)).

Definition 1.5 (Measurable). A function X : Q — R (i.e., a real random variable) on a probability
space (2, F,P) is called measumbleﬂ if X*I((a, b)) € Ffor all a,b e R.

The set of measurable functions can be understood as the set of well-defined random variables.
The space of all real random variables (i.e., measurable functions) forms a vector space over R. The
subset with finite second moment also lives in the inner-product (or Hilbert) space of real random
variables. In this class, we focus mainly on the Hilbert space formalism and less on its relationship
to integration and measure.

2 Some Inequalities Useful for Limit Theorems

2.1 Markov Inequality

Lemma 2.1 (Markov’s inequality). For a nonnegative random variable Y and all € > 0,

E[Y]

P(Y >¢) <
5

Proof. Since Y (w) > € 1fy>.)(w) for all € > 0 and w € €2, taking expectations yields
ElY]|>eP(Y >¢),

which is equivalent to the claimed bound. O

! Actually, the stanadard definition uses the term “for all Borel sets” (which we have not defined) but our condition
is equivalent for the real numbers.



2.2 Chebyshev Inequality

Lemma 2.2 (Chebyshev’s inequality). Let X have mean pu and variance o < oco. Then for all
e >0,

2

o
PIX —pl 2)< %
Proof. Apply Markov’s inequality to Y = (X — p)%:
E[Y 2
B(X —p > o) =B(y > %) < X _ o -

2.3 Chernoff Bound

Lemma 2.3 (Chernoff Bound). Let X have moment generating function Mx (s) = E[e*X]. Then,
for all s > 0, we have
P(X >t) < Mx(s)e .

A convenient parametrization of this bound is given by
P(X > t(s)) < Mx(s)e ),
where t(s) = M (s)/Mx(s).

Proof. For s > 0, the events {X >t} and {e*X > et} are equal because the exponential function
is strictly increasing. With this Markov’s inequality, we get

P(X > t) = P(e* > ) <

Since this holds for all ¢ and s > 0, we can minimize bound over s > 0. Taking the natural log and
minimizing over s > 0 results in the condition ¢(s) = M’ (s)/Mx(s). This optimality condition
associates a unique ¢ with each s and conveniently gives a closed form bound for P(X > t(s)). O

3 Convergence of Random Variables

Let (92, F, P) be a probability space, and let {X,} be a sequence of real random variables with
limit candidate X. Each convergence type below only makes sense when all random variables are
defined on the same probability space, unless stated otherwise.

3.1 Mean—Square Convergence
2
We say that X,, converges to X in mean square (or X, L X) if

lim E[(X, — X)? =0.

n—oo

Because E[XY] defines an inner product on the space of real random variables with finite variance,
mean-square convergence is simply convergence in the inner product space L%(Q, F, P).



Theorem 3.1 (Weak Law of Large Numbers (mean-square form)). Let X1, Xo,... be i.i.d. with
mean p and variance 0% < oo. Then the sample mean

1 n
1=

converges to [ in mean square.

Proof. This follow from

. 2 n o n 2
E[(S, — )% = E (:LZ(XZ_M)> :%ZZCOV(X@',X]')Z%—)O,

i=1 i=1 j=1
where Cov(X;, X;) = 024, j due to independence. O

Interpretation. The empirical average of i.i.d. samples approaches the true mean as sample
size grows. This convergence is the foundation of statistical estimation.

3.2 Convergence in Probability
We say X,, — X in probability (or X, RN X) if, for all ¢ > 0,

lim P(|X, — X| >¢) =0.

n—oo

Intuitively, the probability of any arbitrarily small deviation vanishes.
Lemma 3.2 (Mean-square implies in probability). If E[(X, — X)?] — 0, then X,, & X.
Proof. For all € > 0, Markov’s inequality implies

E[(Xn — X))

P(|X, — X|>¢) =P((X, — X)? > %) < S

— 0.
3

3.3 Almost-Sure Convergence

We say X, converges to X almost surely (or X, “3 X)if A = {w € Q| X,(w) = X (w)} satisfies

where “X,(w) = X(w)” means “the sequence of real numbers defined by X, (w) converges to the
real number X (w) for fixed w € €2”. The idea is that, for each outcome w € 2, either lim, o0 X, (w)
exists and equals X (w) or it does not. Almost sure convergence means that the set of outcomes
where the X, (w) — X (w) has probability 1. This is stronger than convergence in probability.

Lemma 3.3 (Almost sure implies in probability). If X,, — X almost surely, then X, 5x.

Proof. By assumption X, 3 X, so P(A) =1 for A = {w € Q| X,,(w) = X(w)}. Fix any ¢ > 0.
Then, for all w € A, there is an N(w) € N such that | X,,(w) — X(w)| < ¢ for all n > N(w). Let

B,={weQ]|X,(w) — X(w)| >e}.



Then, for w € A and n > N(w), we see that w € By;. Since 0 < 1g¢(w) <1 and lim, o0 1pe (W) =
14(w) pointwise, the dominated convergence theoremEI implies lim, ;00 P(By;) = limy, 00 E[1p¢] =
E[lim, 0 15:] = P(A) . The argument is completed by noting that

lim P(B,) =1— lim P(BS)=1—P(A) =0. 0

n—o0 n—oo

Lemma 3.4 (Summable tail rates imply almost sure convergence). Let X,, be a sequence of random
variables and let X be another random variable. Suppose that for every e > 0,

D P(IX, — X[ > ¢) < 0.

n=1
Then X,, — X almost surely.

A proof at the right level for these notes can be found here:
https://www.math.ucdavis.edu/~tracy/courses/math135A/UsefullCourseMaterial/lawLargeNo.pdf

3.4 Convergence in Distribution

We say that X,, converges to X in distribution (or X, A X) if

li_}m Fx, (x) = Fx(x) for all x where Fx is continuous
n—oo

We note that convergence in distribution does not compare X, and X as functions of {2 but instead
compares the probability of certain events defined by them. Therefore, X,, and X are not required
to be defined on the same probability space. It is one of many ways to compare the distributions
of two random variables. See Appendix [A] for a discussion of other methods.

Ezample 3.5. Let X,, ~ Uniform|0,1/n]. Then, Fx, () =0if x < 0 and Fx, (z) =1if x > 1/n.

Hence Fx, (z) — Fx(z), where Fx(x) = 0 for z < 0 and Fx(z) = 1 for z > 0. This implies that

X, — X in distribution where X = 0 almost surely.

3.5 Hierarchy of Convergences

a.s. convergence and uniformly bounded = mean—square convergence = in probability = in distribution,
Ezample 3.6 (Convergence modes). Here are a few sequences of random variables and convergence.

e Mean-—square to a constant: Let Z ~ N(c,1) and X,, = Z/n. Then E[X2] = (1+¢?)/n? — 0.

e In probability but not mean—square: Let X,, = n with probability 1/n and 0 otherwise. Then
X, 5 0 but E[X2] =n 4 0.

e Almost surely but not mean-square: Let U ~ Uniform(0,1) and X,, = /n1{y<i/n}- Then
X, — 0 as., but E[X2] =1 for all n.

e In distribution but not in probability: Let X, be i.i.d. Uniform(0,1), and let X be an inde-
pendent copy. Then, X, % X but X,, does not converge to X in probability.

2The Dominated Convergence Theorem allows one to interchange the limit and expectation when the expected
absolute value of all elements in the sequence is upper bounded by a constant.


https://www.math.ucdavis.edu/~tracy/courses/math135A/UsefullCourseMaterial/lawLargeNo.pdf

4 Central Limit Theorem (CLT)

Theorem 4.1 (Central Limit Theorem). Let Xi, Xo,... be i.i.d. random variables with mean
and variance 0 < co. Then, we have

and this implies that
z
1 2
1 < = = —_— —t /2 .
nhmoo P(Z, < z) = ®(z) / me dt

Outline of Proof. Due to normalization, we assume without loss of generality that E[X] = 0 and
Var(X) = 1. While the stated result holds in general, we limit our proof to the case where
Mx(s) = E[e*X] is finite for all s € [, 6] for some § > 0.

. . . . | _
Since e** equals its power series expansion for s,z € R, we see that \x!k < f—,;(esx + e %) and

E[IX1] < 5 (Mx(3) + Mx(-9)) < oo

k
Thus, all moments exist. Using the fact that e® = >"" (s,f!) is increasing in m, the monotone

convergence theorem allows one to interchange integration and the infinite sum to see that

Lk
X s k
E[e**] :ZHE[X ].
k=0
Since this sum converges for s = 4§, a standard result for power series expansions implies that it
converges for all |s| < d. Thus, Mx(s) has a continuous 3rd derivative for |s| < § and we can apply
Taylor’s theorem with Lagrange remainder to g(s) = log Mx(s) about s = 0. It follows that there

exist constants C' > 0 and 0 > 0 such that for |s| <,
32 3
log Mx(s) = 5 + Rs(s),  |Ra(s)] < Clsl”.

Since the moment generating function (mgf) is multiplicative for the sum of independent random

variables, we have
5= 3. X; s "
J— \/ﬁ 3 J—
MZn(s)—E[e } —<Mx<\/ﬁ>> .

S 82 S
lOgMZn(S) = nlogMX (ﬁ) = 5 +7/LR3<\/H> s

Therefore,

and the bound gives

s Cls|?
— | < — .
‘nRg’(\/ﬁ)’ = Jn 5 !
Hence log My, (s) — s2/2 and My, (s) — e**/2 for all s in a neighborhood of 0.

The final step uses Lévy’s Continuity Theorem, a key result from probability theory which
states that, if Mx, (s) converges pointwise to Mx(s) for all s in a open interval containing 0, then

X, % X. Since Mz, (s) — e**/2 for |s| < &, Z, converges in distribution to a standard normal
(ie., Zn 5 N(0,1)). O



Discussion

The CLT reveals that properly normalized sums of independent variables tend toward Gaussian be-
havior—regardless of the original distribution (subject to finite variance). This underlies statistical
inference, confidence intervals, and error analysis in engineering.

5 Summary

e Deterministic convergence in normed spaces extends to random variables via LP; for p = 2,
random variables with finite variance form a Hilbert space with inner product (X,Y) =
E[XY].

e Tail bounds: Markov’s and Chebyshev’s inequalities control probabilities of large deviations
and are key tools for proving convergence in probability from L? convergence.

e Modes of convergence defined and contrasted: mean-square (L?), in probability, almost surely,
and in distribution, with examples separating these modes.

e Implications: L? = in probability; almost surely = in probability; in probability = in
distribution.

e Weak Law of Large Numbers (mean-square form): for i.i.d. X; with variance o2, the sample
mean S, satisfies E[(S,, — u)?] = 0?/n — 0.

e Central Limit Theorem: the normalized sum Z,, converges in distribution to N (0,1); proof
outline via mgf, Taylor expansion of log Mx (s), and the continuity theorem.

e Interpretation: empirical averages concentrate around the mean (LLN), and fluctuations
about the mean are approximately Gaussian at scale 1/y/n (CLT).

A Measuring the Distance Between Distributions

A.1 Total Variation Distance

Total variation (TV) distance quantifies how distinguishable two distributions are using the single
best yes/no question. For probability distributions P and @ on the same measurable space (2, F),

define
1

IP=@Qllrv = sup [P(4) = Q(A)] = 5 sup [Ep[f] —Eqlf]|-
AeF [Ifllo<1
The first equality shows TV is the largest difference in answers to any indicator question A +— 1 4;
the second shows it is the largest gap in expectations over all bounded measurable tests f with
range in [—1,1].
If P and @ both have well-defined PDFs (i.e., they admit densities p and ¢ with respect to
Lebesgue measure), then

|IP— Qv = ;/X]p(m)—q(x)\da: = 1—/Xmin{p(a;),q(x)}da:.

Thus, the TV distance is exactly half the L' distance between densities.



Optimal binary testing interpretation (Neyman—Pearson/Bayes with equal priors). Consider
testing hypotheses Hg : P versus Hi : @ with equal priors and 0-1 loss. The minimum achievable
error probability satisfies

pr_ L=IP=Qlv
2
and the optimal test is the likelihood-ratio test. Equivalently, the maximum correct decision prob-
ability is (1 + ||P — Q||Tv)/2. More generally, for a fixed random variable X defined by a bounded
measurable f with || f]le < 1,

[Ep[X] — Eq[X]| = [Ep[f] - Eqlf]] < 2|IP - Qllrv,

with equality in the supremum. Thus, TV distance is the true operational measure of distinguisha-
bility.

A.2 Convergence via Test Functions

A powerful way to express convergence in distribution uses expectations of test functions. By

well-known results from probability, convergence in distribution X, 4 X occurs if and only if

lim E[f(X,)] = E[f(X)] for all bounded, continuous f: R — R.

n—oo

This “weak” notion depends only on the distribution of the random variables and not on their joint
construction.
If one drops the continuity requirement and allows all bounded measurable tests with || f||ec < 1,

then one finds that X,, ¥ X if and only if

li_>m E[f(Xn)] = E[f(X)] for all bounded, measurable f: R — R.

Thus, convergence in total variation implies convergence in distribution but this cannot be reversed.

A.3 Distance via Coupling

A coupling of distributions P and ) on a space X is any joint distribution 7 on X x X whose
marginals are P and Q. If (X,Y) ~ 7, we also say (X,Y’) is a coupling of P and Q.
The total variation distance has the following coupling characterization

P— — inf P{IX #4Y
|P - Qv ()lgy){ #Y},

where the infimum is over all couplings (X,Y) of P and ). There exists a maximal (optimal)
coupling achieving this infimum, which directly realizes the operational meaning of TV as the
minimum mismatch probability when drawing one sample from each distribution.

To describe the optimal coupling for total variation, we assume that P and @ have well-
defined PDFs p and ¢ (i.e., they admit densities with respect to Lebesgue measure). Let r(z) £
min{p(x),q(x)} and define the overlap mass

m = /r(az)dx =1—||P-Q|1v-
Decompose the residuals pyes(z) = p(z) — r(2) and ges(z) = g(x) — r(), which are nonnegative

and integrate to [|[P — Q||tyv. A maximal coupling (X,Y’) with marginals P and @ is constructed
as follows:



e With probability m, draw Z with density r/m and set X =Y = Z.

e With probability ||P — Q|Tv, draw X with density prs/||P — Q||Tv and Y with density
Gres/ ||P — Q||Tv independently.

Then, we have P{X # Y} = |P — Q|lrv. This is optimal because any coupling satisfies P{X #
Yi>|[|P=Qlrv.
Ezample A.1 (Bernoulli). Let P = Bern(p) and @ = Bern(gq) on {0,1}. Here ||P — Qv = [p — ¢|
and m = min{p, ¢} + min{l — p,1 — ¢}. A maximal coupling is: with probability min{p, ¢}, set
(X,Y) = (1,1); with probability min{1—p, 1—q}, set (X,Y) = (0,0); with the remaining probability
|p — ¢q|, put the mass on the unique mismatch: if p > ¢, set (X,Y) = (1,0) with probability p — ¢; if
q > p,set (X,Y) = (0,1) with probability ¢ — p. This achieves P{X #Y} =|p—q| = ||P — Q|lv-
Wasserstein distances measure discrepancy with respect to a metric topology on X'. For a metric
don X and p € [1,00), the p-Wasserstein distance is

wyrQ) = ot ([ XXd(x,mpdw(x,y))l/p,

Tel(P,Q)

where I'(P, Q) is the set of couplings of P and Q. For p = 1, the Kantorovich—-Rubinstein duality
yields

Wi(P,Q) = sup |Ep[f] —Eglf]]-
Lipy(f)<1

Here, Lipy(f) = sup,, % is the Lipschitz constant of f relative to the metric d.
Relationships to convergence:

o If Wi(P,,P) — 0, then P, 4 p (convergence in distribution), and first moments converge:
Jllzll dPo(z) = [ [l dP(z).

e Conversely, if [ |z|/dP(z) < co and P, 4 P with [ z||dPy(z) — [ ||z]|dP(z) < oo, then
Wi(Py, P) — 0.

Thus W7 gives a distance based interpretation of convergence in distribution that holds first mo-
ments are finite. Here are some examples and counterexamples.

e Simple example where W; — 0: on {0,1} with d(z,y) = |z — y|, let P, = Bern(p,) and
P = Bern(p). Then Wy(P,, P) = |p, —p| — 0, so P, 4 p.

e Convergence in distribution but not in Wi: let X,, = n with probability 1/n and 0 otherwise,

and let X = 0. Then X,, 5 X, but W1(L(X,),50) > |[E[X,] — E[X]| = 1, so W} - 0 (first
moments do not converge).

e Weak convergence plus first-moment convergence implies W; — 0: if X, 4 X and Eld(Xp, x0)] —

E[d(X,x0)] < oo for some xg, then W1 (L(X,,), L(X)) — 0. For instance, on R with d(x,y) =
|z —yl|, Xn ~N(0,1+1/n) converge in distribution to N (0, 1), their first absolute moments
converge, and hence W; — 0.
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