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1 Review: Convergence of Sequences

1.1 Real Numbers

A sequence of real numbers, an ∈ R for n ∈ N (or a1, a2, a3, . . . ∈ R), converges to a ∈ R if, for
every real ε > 0, there exists N ∈ N such that

|an − a| < ε for all n ≥ N.

We write limn→∞ an = a or an → a.

1



1.2 Vectors in Normed Vector Spaces

Let (V, ∥ · ∥) be a normed vector space. Then, a sequence of vectors vn ∈ V (for n ∈ N) converges
to v ∈ V if the real sequence ∥vn − v∥ → 0 or equivalently

lim
n→∞

∥vn − v∥ = 0.

Typical examples include:

• Rd with the Euclidean norm (e.g., think vector calculus),

• normed function spaces such as Lp([a, b]) (e.g., think Fourier analysis) with norm

∥f∥p =
(∫ b

a
|f(t)|pdt

)1/p

p ∈ [1,∞),

• the space of real random variables with ∥X∥ =
√
E[X2] induced by ⟨X, Y ⟩ = E[XY ].

The last two cases actually coincide in some cases. If we choose a = 0, b = 1, and p = 2, then
the set of integrable functions mapping [0, 1] to R can be seen as the set of random variables for
the probability space Ω = [0, 1] with a uniform distribution on Ω. In that case, we have∫ 1

0
|X(ω)|2 dω = E[X2].

Another similarity is that, for functions and random variables, how one measures the distance
can affect whether or not a sequence converges. Consider functions fn, f mapping a common
domain X to R. Then, we have

• Pointwise convergence: fn(x) → f(x) for all x ∈ X .

• Lp convergence:
∫
|fn(x)− f(x)|pdx → 0.

• Uniform convergence: supx∈[0,1] |fn(x)− f(x)| → 0.

Example 1.1 (Pointwise but not L2). Let f(x) = x−1/2 for (0, 1] with f(0) = 0 and define

fn(x) =

{
0, 0 ≤ x < 1/n,

x−1/2, 1/n ≤ x ≤ 1.

Then fn(x) → f(x) for every x ∈ [0, 1], but

∥fn − f∥22 =
∫ 1/n

0+

1

x
dx = +∞,

so there is no convergence in the L2 (or mean square) sense.

Example 1.2 (Fourier series). Let f(x) = 1[0,0.5](x) be one period of a square wave and define

fn(x) =
n∑

k=1

4

(2k − 1)π
sin
(
2π(2k − 1)x

)
to be the first n non-trivial terms of its Fourier series expansion. While Fourier analysis shows
that fn converges to f in L2([0, 1]). It does not converge uniformly In fact, the well-known Gibb’s
Phenomenon is that the overshoot satisfies

sup
x∈[0,1]

|fn(x)− f(x)| → c ≈ 0.0895.
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Remark 1.3. One subtlety here is that we are ignoring exactly how these integrals are defined.
Rather than the basic calculus Riemann integral, these spaces use the more general Lebesgue
integral. Since the two integrals are equal whenever they both exist (e.g., for continuous functions),
this difference is really only important for proofs.

1.3 A Nod in the Direction of Measure Theory

For completeness, we recall the definition of a probability space and introduce the notion of a
measurable function.

Definition 1.4 (Probability space). A probability space is defined by a tuple (Ω,F ,P) where Ω
is a sample space, a subset of E ⊆ Ω is an event, F is a special collection of events known as a
σ-algebra, and the probability function P : F → [0, 1] satisfies:

(A1) Nonnegativity: P(A) ≥ 0.

(A2) Normalization: P(Ω) = 1.

(A3) Additivity: for disjoint Ai, P(
⋃∞

i=1Ai) =
∑∞

i=1 P(Ai).

Definition 1.5 (Measurable). A function X : Ω → R (i.e., a real random variable) on a probability
space (Ω,F ,P) is called measurable1 if X−1

(
(a, b)

)
∈ F for all a, b ∈ R.

The set of measurable functions can be understood as the set of well-defined random variables.
The space of all real random variables (i.e., measurable functions) forms a vector space over R. The
subset with finite second moment also lives in the inner-product (or Hilbert) space of real random
variables. In this class, we focus mainly on the Hilbert space formalism and less on its relationship
to integration and measure.

2 Some Inequalities Useful for Limit Theorems

2.1 Markov Inequality

Lemma 2.1 (Markov’s inequality). For a nonnegative random variable Y and all ε > 0,

P(Y ≥ ε) ≤ E[Y ]

ε

Proof. Since Y (ω) ≥ ε1{Y≥ε}(ω) for all ε > 0 and ω ∈ Ω, taking expectations yields

E[Y ] ≥ ε P (Y ≥ ε),

which is equivalent to the claimed bound.

1Actually, the stanadard definition uses the term “for all Borel sets” (which we have not defined) but our condition
is equivalent for the real numbers.
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2.2 Chebyshev Inequality

Lemma 2.2 (Chebyshev’s inequality). Let X have mean µ and variance σ2 < ∞. Then for all
ε > 0,

P(|X − µ| ≥ ε) ≤ σ2

ε2

Proof. Apply Markov’s inequality to Y = (X − µ)2:

P(|X − µ| ≥ ε) = P(Y ≥ ε2) ≤ E[Y ]

ε2
=

σ2

ε2
.

2.3 Chernoff Bound

Lemma 2.3 (Chernoff Bound). Let X have moment generating function MX(s) = E[esX ]. Then,
for all s ≥ 0, we have

P(X ≥ t) ≤ MX(s)e−st.

A convenient parametrization of this bound is given by

P(X ≥ t(s)) ≤ MX(s)e−st(s),

where t(s) = M ′
X(s)/MX(s).

Proof. For s ≥ 0, the events {X ≥ t} and {esX ≥ est} are equal because the exponential function
is strictly increasing. With this Markov’s inequality, we get

P(X ≥ t) = P(esX ≥ est)) ≤ E[esX ]

est
.

Since this holds for all t and s ≥ 0, we can minimize bound over s ≥ 0. Taking the natural log and
minimizing over s ≥ 0 results in the condition t(s) = M ′

X(s)/MX(s). This optimality condition
associates a unique t with each s and conveniently gives a closed form bound for P(X > t(s)).

3 Convergence of Random Variables

Let (Ω,F , P ) be a probability space, and let {Xn} be a sequence of real random variables with
limit candidate X. Each convergence type below only makes sense when all random variables are
defined on the same probability space, unless stated otherwise.

3.1 Mean–Square Convergence

We say that Xn converges to X in mean square (or Xn
L2

→ X) if

lim
n→∞

E[(Xn −X)2] = 0.

Because E[XY ] defines an inner product on the space of real random variables with finite variance,
mean–square convergence is simply convergence in the inner product space L2(Ω,F , P ).
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Theorem 3.1 (Weak Law of Large Numbers (mean–square form)). Let X1, X2, . . . be i.i.d. with
mean µ and variance σ2 < ∞. Then the sample mean

Sn =
1

n

n∑
i=1

Xi

converges to µ in mean square.

Proof. This follow from

E[(Sn − µ)2] = E

( 1

n

n∑
i=1

(Xi − µ)

)2
 =

1

n2

n∑
i=1

n∑
j=1

Cov(Xi, Xj) =
σ2

n
→ 0,

where Cov(Xi, Xj) = σ2δi,j due to independence.

Interpretation. The empirical average of i.i.d. samples approaches the true mean as sample
size grows. This convergence is the foundation of statistical estimation.

3.2 Convergence in Probability

We say Xn → X in probability (or Xn
p→ X) if, for all ε > 0,

lim
n→∞

P(|Xn −X| > ε) = 0.

Intuitively, the probability of any arbitrarily small deviation vanishes.

Lemma 3.2 (Mean–square implies in probability). If E[(Xn −X)2] → 0, then Xn
p→ X.

Proof. For all ε > 0, Markov’s inequality implies

P(|Xn −X| > ε) = P((Xn −X)2 > ε2) ≤ E[(Xn −X)2]

ε2
→ 0.

3.3 Almost-Sure Convergence

We say Xn converges to X almost surely (or Xn
a.s.→ X) if A = {ω ∈ Ω | Xn(ω) → X(ω)} satisfies

P(A) = 1,

where “Xn(ω) → X(ω)” means “the sequence of real numbers defined by Xn(ω) converges to the
real number X(ω) for fixed ω ∈ Ω”. The idea is that, for each outcome ω ∈ Ω, either limn→∞Xn(ω)
exists and equals X(ω) or it does not. Almost sure convergence means that the set of outcomes
where the Xn(ω) → X(ω) has probability 1. This is stronger than convergence in probability.

Lemma 3.3 (Almost sure implies in probability). If Xn → X almost surely, then Xn
p→ X.

Proof. By assumption Xn
a.s.→ X, so P(A) = 1 for A = {ω ∈ Ω | Xn(ω) → X(ω)}. Fix any ε > 0.

Then, for all ω ∈ A, there is an N(ω) ∈ N such that |Xn(ω)−X(ω)| ≤ ε for all n > N(ω). Let

Bn = {ω ∈ Ω | |Xn(ω)−X(ω)| > ε}.
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Then, for ω ∈ A and n > N(ω), we see that ω ∈ Bc
n. Since 0 ≤ 1Bc

n
(ω) ≤ 1 and limn→∞ 1Bc

n
(ω) =

1A(ω) pointwise, the dominated convergence theorem2 implies limn→∞ P(Bc
n) = limn→∞ E[1Bc

n
] =

E[limn→∞ 1Bc
n
] = P(A) . The argument is completed by noting that

lim
n→∞

P(Bn) = 1− lim
n→∞

P(Bc
n) = 1− P(A) = 0.

Lemma 3.4 (Summable tail rates imply almost sure convergence). Let Xn be a sequence of random
variables and let X be another random variable. Suppose that for every ε > 0,

∞∑
n=1

P(|Xn −X| > ε) < ∞.

Then Xn → X almost surely.

A proof at the right level for these notes can be found here:
https://www.math.ucdavis.edu/~tracy/courses/math135A/UsefullCourseMaterial/lawLargeNo.pdf

3.4 Convergence in Distribution

We say that Xn converges to X in distribution (or Xn
d→ X) if

lim
n→∞

FXn(x) = FX(x) for all x where FX is continuous

We note that convergence in distribution does not compare Xn and X as functions of Ω but instead
compares the probability of certain events defined by them. Therefore, Xn and X are not required
to be defined on the same probability space. It is one of many ways to compare the distributions
of two random variables. See Appendix A for a discussion of other methods.

Example 3.5. Let Xn ∼ Uniform[0, 1/n]. Then, FXn(x) = 0 if x < 0 and FXn(x) = 1 if x ≥ 1/n.
Hence FXn(x) → FX(x), where FX(x) = 0 for x < 0 and FX(x) = 1 for x ≥ 0. This implies that
Xn → X in distribution where X = 0 almost surely.

3.5 Hierarchy of Convergences

a.s. convergence and uniformly bounded ⇒ mean–square convergence ⇒ in probability ⇒ in distribution,

Example 3.6 (Convergence modes). Here are a few sequences of random variables and convergence.

• Mean–square to a constant: Let Z ∼ N (c, 1) and Xn = Z/n. Then E[X2
n] = (1+ c2)/n2 → 0.

• In probability but not mean–square: Let Xn = n with probability 1/n and 0 otherwise. Then

Xn
p→ 0 but E[X2

n] = n ̸→ 0.

• Almost surely but not mean–square: Let U ∼ Uniform(0, 1) and Xn =
√
n1{U≤1/n}. Then

Xn → 0 a.s., but E[X2
n] = 1 for all n.

• In distribution but not in probability: Let Xn be i.i.d. Uniform(0, 1), and let X be an inde-

pendent copy. Then, Xn
d→ X but Xn does not converge to X in probability.

2The Dominated Convergence Theorem allows one to interchange the limit and expectation when the expected
absolute value of all elements in the sequence is upper bounded by a constant.
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4 Central Limit Theorem (CLT)

Theorem 4.1 (Central Limit Theorem). Let X1, X2, . . . be i.i.d. random variables with mean µ
and variance σ2 < ∞. Then, we have

Zn =
1√
n

n∑
i=1

Xi − µ

σ

d→ N (0, 1)

and this implies that

lim
n→∞

P(Zn ≤ z) = Φ(z) =

∫ z

−∞

1√
2π

e−t2/2dt.

Outline of Proof. Due to normalization, we assume without loss of generality that E[X] = 0 and
Var(X) = 1. While the stated result holds in general, we limit our proof to the case where
MX(s) = E

[
esX
]
is finite for all s ∈ [−δ, δ] for some δ > 0.

Since esx equals its power series expansion for s, x ∈ R, we see that |x|k ≤ k!
sk
(esx + e−sx) and

E
[
|X|k

]
≤ k!

δk
(MX(δ) +MX(−δ)) < ∞.

Thus, all moments exist. Using the fact that esx =
∑m

k=0
(sx)k

k! is increasing in m, the monotone
convergence theorem allows one to interchange integration and the infinite sum to see that

E
[
esX
]
=

∞∑
k=0

sk

k!
E
[
Xk
]
.

Since this sum converges for s = δ, a standard result for power series expansions implies that it
converges for all |s| < δ. Thus, MX(s) has a continuous 3rd derivative for |s| < δ and we can apply
Taylor’s theorem with Lagrange remainder to g(s) = logMX(s) about s = 0. It follows that there
exist constants C > 0 and δ > 0 such that for |s| ≤ δ,

logMX(s) =
s2

2
+R3(s), |R3(s)| ≤ C|s|3.

Since the moment generating function (mgf) is multiplicative for the sum of independent random
variables, we have

MZn(s) = E
[
e
s 1√

n

∑
i Xi
]
=

(
MX

(
s√
n

))n

.

Therefore,

logMZn(s) = n logMX

(
s√
n

)
=

s2

2
+ nR3

(
s√
n

)
,

and the bound gives ∣∣∣nR3

(
s√
n

)∣∣∣ ≤ C|s|3√
n

−−−→
n→∞

0.

Hence logMZn(s) → s2/2 and MZn(s) → es
2/2 for all s in a neighborhood of 0.

The final step uses Lévy’s Continuity Theorem, a key result from probability theory which
states that, if MXn(s) converges pointwise to MX(s) for all s in a open interval containing 0, then

Xn
d→ X. Since MZn(s) → es

2/2 for |s| < δ, Zn converges in distribution to a standard normal

(i.e., Zn
d→ N (0, 1)).
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Discussion

The CLT reveals that properly normalized sums of independent variables tend toward Gaussian be-
havior—regardless of the original distribution (subject to finite variance). This underlies statistical
inference, confidence intervals, and error analysis in engineering.

5 Summary

• Deterministic convergence in normed spaces extends to random variables via Lp; for p = 2,
random variables with finite variance form a Hilbert space with inner product ⟨X,Y ⟩ =
E[XY ].

• Tail bounds: Markov’s and Chebyshev’s inequalities control probabilities of large deviations
and are key tools for proving convergence in probability from L2 convergence.

• Modes of convergence defined and contrasted: mean–square (L2), in probability, almost surely,
and in distribution, with examples separating these modes.

• Implications: L2 ⇒ in probability; almost surely ⇒ in probability; in probability ⇒ in
distribution.

• Weak Law of Large Numbers (mean–square form): for i.i.d. Xi with variance σ2, the sample
mean Sn satisfies E[(Sn − µ)2] = σ2/n → 0.

• Central Limit Theorem: the normalized sum Zn converges in distribution to N (0, 1); proof
outline via mgf, Taylor expansion of logMX(s), and the continuity theorem.

• Interpretation: empirical averages concentrate around the mean (LLN), and fluctuations
about the mean are approximately Gaussian at scale 1/

√
n (CLT).

A Measuring the Distance Between Distributions

A.1 Total Variation Distance

Total variation (TV) distance quantifies how distinguishable two distributions are using the single
best yes/no question. For probability distributions P and Q on the same measurable space (Ω,F),
define

∥P −Q∥TV = sup
A∈F

|P (A)−Q(A)| =
1

2
sup

∥f∥∞≤1

∣∣EP [f ]− EQ[f ]
∣∣.

The first equality shows TV is the largest difference in answers to any indicator question A 7→ 1A;
the second shows it is the largest gap in expectations over all bounded measurable tests f with
range in [−1, 1].

If P and Q both have well-defined PDFs (i.e., they admit densities p and q with respect to
Lebesgue measure), then

∥P −Q∥TV =
1

2

∫
X
|p(x)− q(x)| dx = 1−

∫
X
min{p(x), q(x)} dx.

Thus, the TV distance is exactly half the L1 distance between densities.
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Optimal binary testing interpretation (Neyman–Pearson/Bayes with equal priors). Consider
testing hypotheses H0 : P versus H1 : Q with equal priors and 0–1 loss. The minimum achievable
error probability satisfies

P ⋆
e =

1− ∥P −Q∥TV

2
,

and the optimal test is the likelihood-ratio test. Equivalently, the maximum correct decision prob-
ability is (1 + ∥P −Q∥TV)/2. More generally, for a fixed random variable X defined by a bounded
measurable f with ∥f∥∞ ≤ 1,∣∣EP [X]− EQ[X]

∣∣ = ∣∣EP [f ]− EQ[f ]
∣∣ ≤ 2∥P −Q∥TV,

with equality in the supremum. Thus, TV distance is the true operational measure of distinguisha-
bility.

A.2 Convergence via Test Functions

A powerful way to express convergence in distribution uses expectations of test functions. By

well-known results from probability, convergence in distribution Xn
d→ X occurs if and only if

lim
n→∞

E
[
f(Xn)

]
= E

[
f(X)

]
for all bounded, continuous f : R → R.

This “weak” notion depends only on the distribution of the random variables and not on their joint
construction.

If one drops the continuity requirement and allows all bounded measurable tests with ∥f∥∞ ≤ 1,

then one finds that Xn
TV→ X if and only if

lim
n→∞

E
[
f(Xn)

]
= E

[
f(X)

]
for all bounded, measurable f : R → R.

Thus, convergence in total variation implies convergence in distribution but this cannot be reversed.

A.3 Distance via Coupling

A coupling of distributions P and Q on a space X is any joint distribution π on X × X whose
marginals are P and Q. If (X,Y ) ∼ π, we also say (X,Y ) is a coupling of P and Q.

The total variation distance has the following coupling characterization

∥P −Q∥TV = inf
(X,Y )

P{X ̸= Y },

where the infimum is over all couplings (X,Y ) of P and Q. There exists a maximal (optimal)
coupling achieving this infimum, which directly realizes the operational meaning of TV as the
minimum mismatch probability when drawing one sample from each distribution.

To describe the optimal coupling for total variation, we assume that P and Q have well-
defined PDFs p and q (i.e., they admit densities with respect to Lebesgue measure). Let r(x) ≜
min{p(x), q(x)} and define the overlap mass

m =

∫
r(x) dx = 1− ∥P −Q∥TV.

Decompose the residuals pres(x) ≜ p(x) − r(x) and qres(x) ≜ q(x) − r(x), which are nonnegative
and integrate to ∥P −Q∥TV. A maximal coupling (X,Y ) with marginals P and Q is constructed
as follows:
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• With probability m, draw Z with density r/m and set X = Y = Z.

• With probability ∥P − Q∥TV, draw X with density pres/∥P − Q∥TV and Y with density
qres/∥P −Q∥TV independently.

Then, we have P{X ̸= Y } = ∥P − Q∥TV. This is optimal because any coupling satisfies P{X ̸=
Y } ≥ ∥P −Q∥TV.

Example A.1 (Bernoulli). Let P = Bern(p) and Q = Bern(q) on {0, 1}. Here ∥P −Q∥TV = |p− q|
and m = min{p, q} + min{1 − p, 1 − q}. A maximal coupling is: with probability min{p, q}, set
(X,Y ) = (1, 1); with probability min{1−p, 1−q}, set (X,Y ) = (0, 0); with the remaining probability
|p− q|, put the mass on the unique mismatch: if p > q, set (X,Y ) = (1, 0) with probability p− q; if
q > p, set (X,Y ) = (0, 1) with probability q− p. This achieves P{X ̸= Y } = |p− q| = ∥P −Q∥TV.

Wasserstein distances measure discrepancy with respect to a metric topology on X . For a metric
d on X and p ∈ [1,∞), the p-Wasserstein distance is

Wp(P,Q) = inf
π∈Γ(P,Q)

(∫
X×X

d(x, y)p dπ(x, y)

)1/p

,

where Γ(P,Q) is the set of couplings of P and Q. For p = 1, the Kantorovich–Rubinstein duality
yields

W1(P,Q) = sup
Lipd(f)≤1

∣∣EP [f ]− EQ[f ]
∣∣.

Here, Lipd(f) = supx ̸=y
|f(x)−f(y)|

d(x,y) is the Lipschitz constant of f relative to the metric d.
Relationships to convergence:

• If W1(Pn, P ) → 0, then Pn
d→ P (convergence in distribution), and first moments converge:∫

∥x∥ dPn(x) →
∫
∥x∥ dP (x).

• Conversely, if
∫
∥x∥ dP (x) < ∞ and Pn

d→ P with
∫
∥x∥ dPn(x) →

∫
∥x∥ dP (x) < ∞, then

W1(Pn, P ) → 0.

Thus W1 gives a distance based interpretation of convergence in distribution that holds first mo-
ments are finite. Here are some examples and counterexamples.

• Simple example where W1 → 0: on {0, 1} with d(x, y) = |x − y|, let Pn = Bern(pn) and

P = Bern(p). Then W1(Pn, P ) = |pn − p| → 0, so Pn
d→ P .

• Convergence in distribution but not in W1: let Xn = n with probability 1/n and 0 otherwise,

and let X ≡ 0. Then Xn
d→ X, but W1(L(Xn), δ0) ≥ |E[Xn] − E[X]| = 1, so W1 ↛ 0 (first

moments do not converge).

• Weak convergence plus first-moment convergence impliesW1 → 0: ifXn
d→ X and E[d(Xn, x0)] →

E[d(X,x0)] < ∞ for some x0, then W1(L(Xn),L(X)) → 0. For instance, on R with d(x, y) =
|x− y|, Xn ∼ N (0, 1 + 1/n) converge in distribution to N (0, 1), their first absolute moments
converge, and hence W1 → 0.
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