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1 Discrete Case: PMF and CDF of a Function

Let X be a discrete random variable with PMF pX(·) and let Y = g(X).

• PMF of Y :

pY (y) =
∑

x:g(x)=y

pX(x).

• CDF of Y :

FY (y) = Pr(g(X) ≤ y) =
∑

x:g(x)≤y

pX(x).

Example 1 (Mapping with collapsing values). Let X take values {−2,−1, 0, 1, 2} with probabilities

pX(−2) = 0.1, pX(−1) = 0.2, pX(0) = 0.4, pX(1) = 0.2, pX(2) = 0.1 and g(x) = x2. Then

• pY (0) = pX(0) = 0.4

• pY (1) = pX(−1) + pX(1) = 0.2 + 0.2 = 0.4

• pY (4) = pX(−2) + pX(2) = 0.1 + 0.1 = 0.2

• pY (y) = 0 otherwise.

Note how values ±1 and ±2 collapse to the same output values under g(x) = x2.

2 Continuous Case: CDF and PDF of a Function

Let X be a continuous random variable with PDF fX(·), CDF FX(·), and Y = g(X).
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2.1 General CDF Formula for Transformations

For any real y,

FY (y) = Pr(g(X) ≤ y) =

∫
{u: g(u)≤y}

fX(u) du =

∫
g−1((−∞,y])

fX(u) du,

where g−1((−∞, y]) denotes the inverse image of the real interval (−∞, y] for the function g. Then,

the PDF can be computed by taking the derivative.

Example 2 (Continuous transformation giving point mass). Let X ∼ Unif[0, 1] and define

g(x) =

0 if x ∈ [0, 1/2]

x− 1/2 if x ∈ (1/2, 1]

For the CDF of Y = g(X):

• For y < 0: FY (y) = 0

• For y = 0: FY (0) = Pr(X ∈ [0, 1/2]) = 1/2 (jump discontinuity)

• For 0 < y ≤ 1/2: FY (y) = 1/2 + Pr(X − 1/2 ≤ y,X > 1/2) = 1/2 + y

• For y > 1/2: FY (y) = 1

To find the PDF, we differentiate the CDF. At a jump discontinuity, the generalized derivative is

a shifted Dirac delta function scaled by value of the jump. Thus, the PDF is fY (y) = 1
2δ(y) +

1(0,1/2](y), where δ is the Dirac delta function representing the point mass at y = 0. Notice that a

function of a random variable is defined by the inverse images of the intervals (−∞, y] for y ∈ R.

2.2 Strictly Monotone Differentiable Transformation

For strictly increasing g, we have

FY (y) = Pr(g(X) ≤ y) = Pr
(
X ≤ g−1(y)

)
= FX

(
g−1(y)

)
.

Differentiating with respect to y gives

fY (y) = fX
(
g−1(y)

) d

dy
g−1(y).

For strictly decreasing g, we instead get FY (y) = Pr
(
X ≥ g−1(y)

)
= 1− FX

(
g−1(y)

)
, so

fY (y) = fX
(
g−1(y)

)(
− d

dy
g−1(y)

)
.

Combining both cases yields the following absolute-value form.
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If g is differentiable and strictly monotone so that x = g−1(y) is unique, then

fY (y) = fX
(
g−1(y)

) ∣∣∣∣ ddyg−1(y)

∣∣∣∣ = fX(x)

|g′(x)|
with x = g−1(y).

Example 3 (Cubic transformation with visualization). Let X ∼ Unif[0, 1] and Y = X3. Since

g(x) = x3 is strictly increasing, we have g−1(y) = y1/3 and d
dyg

−1(y) = 1
3y

−2/3. Thus,

fY (y) = fX(y1/3) · 1
3
y−2/3 = 1 · 1

3
y−2/3 =

1

3y2/3
, y ∈ (0, 1].
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Curves for transformation Y = X3 for X ∼ Unif[0, 1]

v = u1/3

v = 1/(3u2/3)

Proposition 1 (Derivative of inverse function). If g is differentiable and strictly monotone with

g′(x) ̸= 0, then
d

dy
g−1(y) =

1

g′(g−1(y))
=

1

g′(x)
where x = g−1(y).

Proof. By the chain rule applied to g(g−1(y)) = y:

g′(g−1(y)) · d

dy
g−1(y) = 1,

which gives the result.

2.3 Monotone Transformations: CDF Simplifications

When g is monotone but may have flat regions or jump discontinuities, the preimage

Ay := {u : g(u) ≤ y}

is an interval (possibly empty or unbounded). Using the right-continuity of FX , we obtain the

correct CDF by taking the boundary of this set: for non-decreasing g, the boundary is supAy; for

non-increasing g, it is inf Ay. These choices handle the possibilities that many x map to the same
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y (flat regions) or that g−1(y) is empty at a discontinuity. If, in addition, g is Lipschitz (hence

differentiable almost everywhere), then at points where derivatives exist we may differentiate these

CDFs to obtain the density formulas; in the strictly monotone case this reduces to the change-of-

variables rule above.

If g is non-decreasing,

FY (y) = FX(sup{u : g(u) ≤ y}) .

If g is non-increasing,

FY (y) = 1− FX(inf{u : g(u) ≤ y}) .

For example, try applying the first definition to the function defined in Example 2.

2.4 Examples of Continuous Transformations

The following examples include brief derivations illustrating the CDF method, change of variables,

and handling multiple preimages.

1. Uniform scaling: Let X ∼ Unif[0, 1] and Y = 2X. Then for y ∈ [0, 2],

FY (y) = Pr
(
X ≤ y

2

)
=

y

2
, fY (y) =

1

2
, y ∈ [0, 2].

2. 2D Gaussian to Rayleigh: Let (X1, X2) be independent zero-mean Gaussian random variables

with variance σ2, so fXi(x) =
1

σ
√
2π
e−x2/(2σ2). Let R =

√
X2

1 +X2
2 .

To find the CDF of R, we compute:

FR(r) = Pr(R ≤ r) = Pr(X2
1 +X2

2 ≤ r2) (1)

=

∫
x2
1+x2

2≤r2
fX1(x1)fX2(x2) dx1dx2 (2)

=

∫
x2
1+x2

2≤r2

1

2πσ2
e−(x2

1+x2
2)/(2σ

2) dx1dx2 (3)

Converting to polar coordinates with x1 = ρ cos θ, x2 = ρ sin θ, and dx1dx2 = ρ dρdθ:

FR(r) =

∫ 2π

0

∫ r

0

1

2πσ2
e−ρ2/(2σ2)ρ dρdθ (4)

=
1

σ2

∫ r

0
ρe−ρ2/(2σ2) dρ (5)

Using substitution u = ρ2/(2σ2), so du = ρdρ/σ2:

FR(r) =

∫ r2/(2σ2)

0
e−u du = 1− e−r2/(2σ2), r > 0.

Differentiating gives fR(r) =
r
σ2 e

−r2/(2σ2) for r > 0, which is the Rayleigh distribution with

scale parameter σ.
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3. Rayleigh to exponential: Let X be Rayleigh with scale parameter σ = 1, i.e., fX(x) = xe−x2/2

for x ≥ 0, and let Y = X2. Here g(x) = x2, g′(x) = 2x, and for y ≥ 0, x =
√
y. Then

fY (y) =
fX(

√
y)

|g′(√y)|
=

√
y e−y/2

2
√
y

=
1

2
e−y/2, y ≥ 0,

i.e., Y is exponential with mean 2.

4. Affine transform of Gaussian: If X ∼ N (0, 1) and Y = aX + b with a ̸= 0, then

fY (y) =
1

|a|
√
2π

exp

(
−(y − b)2

2a2

)
,

so Y is Gaussian with mean b and variance a2.

5. Cosine of a uniform phase (arcsine law): Let X ∼ Unif[0, 2π) and Y = cosX.

For y ∈ (−1, 1), we need to find all x ∈ [0, 2π) such that cosx = y. These are:

• x1 = arccos y ∈ [0, π]

• x2 = 2π − arccos y ∈ [π, 2π)

First, let’s find the CDF using the direct method. For y ∈ (−1, 1), we need:

FY (y) = Pr(cosX ≤ y) = Pr(X ∈ {x ∈ [0, 2π) : cosx ≤ y})

The set {x ∈ [0, 2π) : cosx ≤ y} consists of the interval [arccos y, 2π − arccos y]. Since

X ∼ Unif[0, 2π), we have:

FY (y) =
(2π − arccos y)− arccos y

2π
=

2π − 2 arccos y

2π
= 1− arccos y

π

Differentiating with respect to y:

fY (y) =
d

dy
FY (y) = − 1

π
· d

dy
arccos y = − 1

π
· −1√

1− y2
=

1

π
√
1− y2

, −1 < y < 1.
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For y = 0.5: x1 ≈ 1.05, x2 ≈ 5.23
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Y = cosX for X ∼ Unif[0, 2π)
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3 Generating Random Variables via Inverse Transform

3.1 Continuous Case: Inverse CDF Method

Let X be a continuous random variable where FX is continuous and strictly increasing. Then, we

can define U = FX(X) and observe that, for u ∈ [0, 1], we have

Pr(U ≤ u) = Pr
(
FX(X) ≤ u

)
= Pr

(
X ≤ F−1

X (u)
)
= FX

(
F−1
X (u)

)
= u.

This implies that U ∼ Unif(0, 1). Conversely, if U ∼ Unif(0, 1) and V = F−1
X (U), then for any x,

Pr(V ≤ x) = Pr(F−1
X (U) ≤ x) = Pr

(
U ≤ FX(x)

)
= FX(x),

so V has CDF FX (and PDF fX when it exists).

In summary, if FX is a continuous, strictly increasing CDF, then:

• If U = FX(X), with X having CDF FX , then U ∼ Unif(0, 1).

• Conversely, if U ∼ Unif(0, 1) and V = F−1
X (U), then V has PDF fX .

Example 4 (Exponential with mean λ > 0). FX(x) = 1 − e−λx for x ≥ 0. Then F−1
X (u) =

− 1
λ log(1− u). Thus, if U ∼ Unif(0, 1),

X = − 1

λ
log(1− U) ∼ Exp(λ).

Example 5 (Standard Gaussian via Box-Muller). For a standard Gaussian X, FX(x) does not

have closed-form inverse CDF. Thus, to generate a 2D standard Gaussian (X1, X2), a key insight

is to use polar coordinates (R, θ). As noted in Section 2.4, the radius R =
√
X2

1 +X2
2 is Rayleigh

and the angle θ is uniform on [0, 2π). Moreover, the variables ar independent because their joint

density, in polar coordinates, separates into a product form since θ is uniform.

If the Rayleigh variable is generated from a uniform, then this method of generating two standard

Gaussians is known as the Box-Muller transform.

Formally, if (X1, X2) are independent standard normals, then, in polar coordinates:

• R =
√
X2

1 +X2
2 follows a Rayleigh distribution with fR(r) = re−r2/2 for r > 0

• Θ = arctan(X2/X1) is uniform on [0, 2π) and independent of R

From the inverse transform method:

• For the Rayleigh: FR(r) = 1 − e−r2/2, so R =
√

−2 log(1− U1) =
√
−2 logU1 (since 1 − U1

has the same distribution as U1)

• For the uniform angle: Θ = 2πU2

6



Converting back to Cartesian coordinates:

X1 = R cosΘ =
√

−2 logU1 cos(2πU2) (6)

X2 = R sinΘ =
√
−2 logU1 sin(2πU2) (7)

If U1, U2 ∼ Unif(0, 1) are independent, then (X1, X2) are independent standard normal random

variables.

3.2 Not Strictly Increasing

When FX is not strictly increasing, the generalized (maximal and right-continuous) inverse can be

defined in two equivalent ways,

F−1(u) := inf{x : F (x) ≥ u} = sup{x : F (x) < u}, u ∈ (0, 1). (8)

The first form using the infimum is the most common because defines the quantile function of the

distribution. For generating random variables, the same arguments hold with these definitions.

Proposition 2 (Generalized inverse). For any CDF F , the generalized (right-continuous) inverse

defined by (8) satisfies:

• F−1(F (x)) ≤ x for all x

• F (F−1(u)) ≥ u for all u ∈ (0, 1)

• If F is continuous and strictly increasing, then F−1(F (x)) = x and F (F−1(u)) = u

Proof. The key property is that F−1(u) ≤ x if and only if u ≤ F (x), which follows directly from

the definition and the monotonicity of F . The two definitions are equivalent because CDFs are

non-decreasing and right-continuous.

3.3 Discrete Case: Inverse Transform Sampling

Let X take ordered values x1 < x2 < · · · with probabilities pX(xi), and define the cumulative

FX(xi) =
∑

j≤i pX(xj), with FX(x0) ≡ 0. Given U ∼ Unif(0, 1), set

X = xi if FX(xi−1) < U ≤ FX(xi).

Then Pr(X = xi) = FX(xi)− FX(xi−1) = pX(xi).

The algorithm works because the intervals (FX(xi−1), FX(xi)] partition (0, 1] and have lengths

equal to pX(xi). Since U is uniform, it falls in each interval with probability equal to the interval’s

length.

Example 6 (Discrete inverse transform). Let X take values {1, 3, 5} with probabilities {0.2, 0.5, 0.3}.
The cumulative probabilities are:
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• FX(1) = 0.2

• FX(3) = 0.7

• FX(5) = 1.0

Given U ∼ Unif(0, 1):

• If 0 < U ≤ 0.2, then X = 1

• If 0.2 < U ≤ 0.7, then X = 3

• If 0.7 < U ≤ 1.0, then X = 5

In practice, precompute cumulative probabilities and use a binary search to locate i.
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