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1 Discrete Case: PMF and CDF of a Function

Let X be a discrete random variable with PMF px(-) and let Y = g(X).
e PMF of YV:
py(y) = Z px ().
z:g(z)=y
e CDF of Y:
Fy(y) = Pr(g(X) <y) = px ().
:g()<y

Example 1 (Mapping with collapsing values). Let X take values {—2,—1,0, 1,2} with probabilities
px(=2) = 0.1, px(—1) = 0.2, px(0) = 0.4, px(1) = 0.2, px(2) = 0.1 and g(x) = 2%. Then

e py(0) =px(0) =04
o py(1) =px(—1)+px(1) =02+02=04
o py(4) =px(=2) +px(2) =0.1+0.1=0.2
e py(y) =0 otherwise.

Note how values +1 and £2 collapse to the same output values under g(x) = x>.

2 Continuous Case: CDF and PDF of a Function

Let X be a continuous random variable with PDF fx(-), CDF Fx(-), and Y = g(X).



2.1 General CDF Formula for Transformations

For any real y,

B)=ProX) <y = [ pewdu= [ e

{u: g(u)<y}

where g~ ((—o0,3]) denotes the inverse image of the real interval (—oo,y] for the function g. Then,

the PDF can be computed by taking the derivative.
Example 2 (Continuous transformation giving point mass). Let X ~ Unif[0, 1] and define

0 ifz€0,1/2]
g(x) =
x—1/2 ifze(1/2,1]
For the CDF of Y = g(X):

o fory<0: Fy(y)=0
o Fory=0: Fy(0) =Pr(X €[0,1/2]) = 1/2 (jump discontinuity)
o ForO0<y<1/2: Fy(y)=1/24+Pr(X -1/2<y, X >1/2)=1/2+y
o Fory>1/2: Fy(y)=1

To find the PDF, we differentiate the CDF. At a jump discontinuity, the generalized derivative is
a shifted Dirac delta function scaled by value of the jump. Thus, the PDF is fy(y) = %5(y) +
10,1/2] (y), where § is the Dirac delta function representing the point mass at y = 0. Notice that a

function of a random variable is defined by the inverse images of the intervals (—oo,y] for y € R.

2.2 Strictly Monotone Differentiable Transformation

For strictly increasing g, we have
Fy(y) = Pr(g(X) <y) =Pr (X < g7'(y)) = Fx(¢7"'))-

Differentiating with respect to y gives

) = fx(o~'W)) jyg—l(y).

For strictly decreasing g, we instead get Fy (y) = Pr (X > g_l(y)) =1- FX(g_l(y)), SO

) = Fxle™' W) (—;;g-%y)) |

Combining both cases yields the following absolute-value form.



If g is differentiable and strictly monotone so that x = g~!(y) is unique, then

d ‘: fx (@)

) = fx(g7 () @971(@/) @] with 2 = g7 (y).

Example 3 (Cubic transformation with visualization). Let X ~ Unif[0,1] and Y = X3. Since

g(x) = 23 is strictly increasing, we have g~ (y) = y*/3 and d%g*l(y) = %y”/?’. Thus,

1 1
frly)=rfx(y"") - gy 1-3y 325"

y € (0,1].

Curves for transformation Y = X3 for X ~ Unif|0, 1]
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Proposition 1 (Derivative of inverse function). If g is differentiable and strictly monotone with

g'(x) # 0, then
d

1
-1 —1
-—g9 y)= = where x = g~ (y).
¢ W g9 w) g') )
Proof. By the chain rule applied to g(g~*(y)) = ¥:
d
reo—1 ~1
g9 W) -9 y)=14
6 W) 4o W)
which gives the result. ]

2.3 Monotone Transformations: CDF Simplifications

When ¢ is monotone but may have flat regions or jump discontinuities, the preimage

Ay = {u: g(u) <y}

is an interval (possibly empty or unbounded). Using the right-continuity of Fx, we obtain the
correct CDF by taking the boundary of this set: for non-decreasing g, the boundary is sup A,; for

non-increasing g, it is inf A,. These choices handle the possibilities that many = map to the same



y (flat regions) or that ¢g~!(y) is empty at a discontinuity. If, in addition, g is Lipschitz (hence
differentiable almost everywhere), then at points where derivatives exist we may differentiate these
CDF's to obtain the density formulas; in the strictly monotone case this reduces to the change-of-
variables rule above.

If g is non-decreasing,
Fy(y) = Fx(sup{u: g(u) < y}).
If ¢ is non-increasing,

Fy(y) =1 — Fx(inf{u: g(u) <y}).

For example, try applying the first definition to the function defined in Example

2.4 Examples of Continuous Transformations

The following examples include brief derivations illustrating the CDF method, change of variables,

and handling multiple preimages.

1. Uniform scaling: Let X ~ Unif[0,1] and Y = 2X. Then for y € [0, 2],

Fr)=pPr(X<8) =2  ply=

0,2].
X y €1[0,2]

5)
2. 2D Gaussian to Rayleigh: Let (X1, X3) be independent zero-mean Gaussian random variables
. . —22/(202
with variance o2, so fx,(x) = ﬁe @297 Let R = /X7 + X3.
To find the CDF of R, we compute:

Fr(r) = Pr(R <r) = Pr(X{ + X3 <1?) (1)
= /2+ o Ix:(w1) fx, (22) doydas @
IEl 1'2_7‘
1
- / e I iy (3)
x1+x2§7‘

Converting to polar coordinates with 1 = pcosf, xo = psinf, and dx1dxs = pdpdb:

2 r 1 5 2
Fr(r) = =72/ b dpdh 4
R(T) /0 /0 L pdp (4)
1 r 2 20.2

Using substitution u = p?/(20?), so du = pdp/a?:
r2/(20%) o )1 o
FR<7’)=/ e Mdu=1—eT"/C7) r>0.
0

Differentiating gives fr(r) = %e*TQ/ (20®) for r > 0, which is the Rayleigh distribution with

scale parameter o.



3. Rayleigh to exponential: Let X be Rayleigh with scale parameter o = 1, i.e., fx(z) = ze— /2

for z > 0, and let Y = X2, Here g(z) = 22, ¢/(z) = 2z, and for y > 0, z = \/y. Then
-y/2 1
fy(y) = f)/{(\/@) = \/ge = 7671’/2’ Y > 0’
19'(v/9)] 2\/y 2

i.e., Y is exponential with mean 2.

4. Affine transform of Gaussian: If X ~ N (0,1) and Y = aX + b with a # 0, then
1 (y — b)2>
= ex — y
fr(y) alvan P( 5,2

so Y is Gaussian with mean b and variance a2.

5. Cosine of a uniform phase (arcsine law): Let X ~ Unif[0,27) and Y = cos X.

For y € (—1,1), we need to find all x € [0,27) such that cosx = y. These are:
e 11 = arccosy € [0, 7]
e 19 =271 — arccosy € [m, 2m)
First, let’s find the CDF using the direct method. For y € (—1,1), we need:
Fy(y) =Pr(cos X <y)=Pr(X € {z €10,27) : cosz < y})

The set {x € [0,27) : cosx < y} consists of the interval [arccosy,2m — arccosy]. Since
X ~ Unif]0, 27), we have:

(2m — arccosy) — arccosy 2w — 2arccosy 1 arccos y

F =
v () 2 2T T

Differentiating with respect to y:
1 d 1 -1 1
= -l<y<l.

d
= — F; = —— . —arccosy = —— - = )
fy(v) a v (y) * dy (0 N Eerv Ry py

Y = cos X for X ~ Unif|0, 2)

Y = COS T

For y =0.5: 21 = 1.05, 9 = 5.23
| | |

0 /2 Q 3/2 27
x




3 Generating Random Variables via Inverse Transform

3.1 Continuous Case: Inverse CDF Method

Let X be a continuous random variable where F'x is continuous and strictly increasing. Then, we
can define U = Fx(X) and observe that, for u € [0, 1], we have

Pr(U <u) = Pr (Fx(X) <u) =Pr (X < Fy'(v) = Fx(Fx'(u) = u.
This implies that U ~ Unif(0,1). Conversely, if U ~ Unif(0,1) and V = Fy' (U), then for any =,
Pr(V <z)=Pr(Fy'(U) <) =Pr (U < Fx(z)) = Fx(=),

so V has CDF Fx (and PDF fx when it exists).

In summary, if Fy is a continuous, strictly increasing CDF, then:
o If U = Fx(X), with X having CDF Fy, then U ~ Unif(0, 1).

e Conversely, if U ~ Unif(0,1) and V = Fy'(U), then V has PDF fy.

Example 4 (Exponential with mean A\ > 0). Fx(z) = 1 — e ** for x > 0. Then Fy'(u) =
—+log(1 — u). Thus, if U ~ Unif(0, 1),

1
X = —Xlog(l —U) ~ Exp(]).

Example 5 (Standard Gaussian via Box-Muller). For a standard Gaussian X, Fx(x) does not
have closed-form inverse CDF. Thus, to generate a 2D standard Gaussian (X1, X2), a key insight
is to use polar coordinates (R,0). As noted in Section the radius R = \/X? + X3 is Rayleigh
and the angle 6 is uniform on [0,27). Moreover, the variables ar independent because their joint
density, in polar coordinates, separates into a product form since 0 is uniform.

If the Rayleigh variable is generated from a uniform, then this method of generating two standard
Gaussians is known as the Box-Muller transform.

Formally, if (X1, X2) are independent standard normals, then, in polar coordinates:
e R= \/m follows a Rayleigh distribution with fr(r) = re=r/2 forr >0

e O = arctan(Xo/X1) is uniform on [0,27) and independent of R

From the inverse transform method:

e For the Rayleigh: Fr(r) =1— 6*7"2/2, so R=+/—2log(l —U;y) = +/—2logU; (since 1 — U

has the same distribution as Uy)

e For the uniform angle: © = 2nUy



Converting back to Cartesian coordinates:

X1 = Rcos© = +/—2log U cos(2mU3) (6)
X9 = Rsin©® = /—2log U; sin(27U>) (7)

If Uy, Uy ~ Unif(0, 1) are independent, then (X1, X2) are independent standard normal random
variables.
3.2 Not Strictly Increasing

When Fl is not strictly increasing, the generalized (maximal and right-continuous) inverse can be

defined in two equivalent ways,
F~Y(u) .= inf{z: F(z) > u} =sup{z: F(z) <u}, wue(0,1). (8)

The first form using the infimum is the most common because defines the quantile function of the

distribution. For generating random variables, the same arguments hold with these definitions.

Proposition 2 (Generalized inverse). For any CDF F, the generalized (right-continuous) inverse

defined by satisfies:
o FY(F(x)) <z for allx
o F(F~Y(u)) >u for all u € (0,1)
e If F is continuous and strictly increasing, then F~1(F(z)) = 2 and F(F~1(u)) = u

Proof. The key property is that F~!(u) < x if and only if u < F(z), which follows directly from
the definition and the monotonicity of F. The two definitions are equivalent because CDFs are

non-decreasing and right-continuous. O

3.3 Discrete Case: Inverse Transform Sampling

Let X take ordered values z; < 3 < --- with probabilities px(z;), and define the cumulative
Fx(z;) = 32;<;px(x;), with Fx(z0) = 0. Given U ~ Unif(0,1), set

X=ux if Fx(.flii_l) <U< Fx(xz)

Then Pr(X = ;) = Fx(z;) — Fx(zi—1) = px(z;).
The algorithm works because the intervals (Fx (x;—1), Fx(z;)] partition (0, 1] and have lengths
equal to px(x;). Since U is uniform, it falls in each interval with probability equal to the interval’s

length.

Example 6 (Discrete inverse transform). Let X take values {1, 3,5} with probabilities {0.2,0.5,0.3}.

The cumulative probabilities are:



o ['x(1)=0.2
o ['x(3)=0.7
e I['x(5)=1.0

Given U ~ Unif(0,1):
e I[fO<U<0.2, then X =1
e [f0.2<U<0.7, then X =3
e [f0.7<U<1.0, then X =5

In practice, precompute cumulative probabilities and use a binary search to locate 1.
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