

# ECE 581: Functions of Random Variables

Henry D. Pfister  
Duke University

November 15, 2025

## 1 Discrete Case: PMF and CDF of a Function

Let  $X$  be a discrete random variable with PMF  $p_X(\cdot)$  and let  $Y = g(X)$ .

- PMF of  $Y$ :

$$p_Y(y) = \sum_{x:g(x)=y} p_X(x).$$

- CDF of  $Y$ :

$$F_Y(y) = \Pr(g(X) \leq y) = \sum_{x:g(x) \leq y} p_X(x).$$

**Example 1** (Mapping with collapsing values). *Let  $X$  take values  $\{-2, -1, 0, 1, 2\}$  with probabilities  $p_X(-2) = 0.1$ ,  $p_X(-1) = 0.2$ ,  $p_X(0) = 0.4$ ,  $p_X(1) = 0.2$ ,  $p_X(2) = 0.1$  and  $g(x) = x^2$ . Then*

- $p_Y(0) = p_X(0) = 0.4$
- $p_Y(1) = p_X(-1) + p_X(1) = 0.2 + 0.2 = 0.4$
- $p_Y(4) = p_X(-2) + p_X(2) = 0.1 + 0.1 = 0.2$
- $p_Y(y) = 0$  otherwise.

Note how values  $\pm 1$  and  $\pm 2$  collapse to the same output values under  $g(x) = x^2$ .

## 2 Continuous Case: CDF and PDF of a Function

Let  $X$  be a continuous random variable with PDF  $f_X(\cdot)$ , CDF  $F_X(\cdot)$ , and  $Y = g(X)$ .

## 2.1 General CDF Formula for Transformations

For any real  $y$ ,

$$F_Y(y) = \Pr(g(X) \leq y) = \int_{\{u: g(u) \leq y\}} f_X(u) du = \int_{g^{-1}((-\infty, y])} f_X(u) du,$$

where  $g^{-1}((-\infty, y])$  denotes the inverse image of the real interval  $(-\infty, y]$  for the function  $g$ . Then, the PDF can be computed by taking the derivative.

**Example 2** (Continuous transformation giving point mass). *Let  $X \sim \text{Unif}[0, 1]$  and define*

$$g(x) = \begin{cases} 0 & \text{if } x \in [0, 1/2] \\ x - 1/2 & \text{if } x \in (1/2, 1] \end{cases}$$

For the CDF of  $Y = g(X)$ :

- For  $y < 0$ :  $F_Y(y) = 0$
- For  $y = 0$ :  $F_Y(0) = \Pr(X \in [0, 1/2]) = 1/2$  (jump discontinuity)
- For  $0 < y \leq 1/2$ :  $F_Y(y) = 1/2 + \Pr(X - 1/2 \leq y, X > 1/2) = 1/2 + y$
- For  $y > 1/2$ :  $F_Y(y) = 1$

To find the PDF, we differentiate the CDF. At a jump discontinuity, the generalized derivative is a shifted Dirac delta function scaled by value of the jump. Thus, the PDF is  $f_Y(y) = \frac{1}{2}\delta(y) + \mathbf{1}_{(0,1/2]}(y)$ , where  $\delta$  is the Dirac delta function representing the point mass at  $y = 0$ . Notice that a function of a random variable is defined by the inverse images of the intervals  $(-\infty, y]$  for  $y \in \mathbb{R}$ .

## 2.2 Strictly Monotone Differentiable Transformation

For strictly increasing  $g$ , we have

$$F_Y(y) = \Pr(g(X) \leq y) = \Pr(X \leq g^{-1}(y)) = F_X(g^{-1}(y)).$$

Differentiating with respect to  $y$  gives

$$f_Y(y) = f_X(g^{-1}(y)) \frac{d}{dy} g^{-1}(y).$$

For strictly decreasing  $g$ , we instead get  $F_Y(y) = \Pr(X \geq g^{-1}(y)) = 1 - F_X(g^{-1}(y))$ , so

$$f_Y(y) = f_X(g^{-1}(y)) \left( -\frac{d}{dy} g^{-1}(y) \right).$$

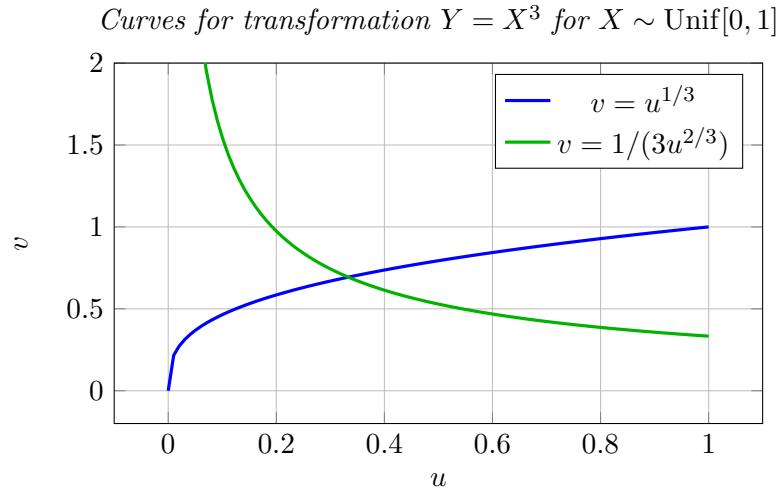
Combining both cases yields the following absolute-value form.

If  $g$  is differentiable and strictly monotone so that  $x = g^{-1}(y)$  is unique, then

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right| = \frac{f_X(x)}{|g'(x)|} \quad \text{with } x = g^{-1}(y).$$

**Example 3** (Cubic transformation with visualization). Let  $X \sim \text{Unif}[0, 1]$  and  $Y = X^3$ . Since  $g(x) = x^3$  is strictly increasing, we have  $g^{-1}(y) = y^{1/3}$  and  $\frac{d}{dy} g^{-1}(y) = \frac{1}{3}y^{-2/3}$ . Thus,

$$f_Y(y) = f_X(y^{1/3}) \cdot \frac{1}{3}y^{-2/3} = 1 \cdot \frac{1}{3}y^{-2/3} = \frac{1}{3y^{2/3}}, \quad y \in (0, 1].$$



**Proposition 1** (Derivative of inverse function). If  $g$  is differentiable and strictly monotone with  $g'(x) \neq 0$ , then

$$\frac{d}{dy} g^{-1}(y) = \frac{1}{g'(g^{-1}(y))} = \frac{1}{g'(x)} \quad \text{where } x = g^{-1}(y).$$

*Proof.* By the chain rule applied to  $g(g^{-1}(y)) = y$ :

$$g'(g^{-1}(y)) \cdot \frac{d}{dy} g^{-1}(y) = 1,$$

which gives the result.  $\square$

## 2.3 Monotone Transformations: CDF Simplifications

When  $g$  is monotone but may have flat regions or jump discontinuities, the preimage

$$A_y := \{u : g(u) \leq y\}$$

is an interval (possibly empty or unbounded). Using the right-continuity of  $F_X$ , we obtain the correct CDF by taking the boundary of this set: for non-decreasing  $g$ , the boundary is  $\sup A_y$ ; for non-increasing  $g$ , it is  $\inf A_y$ . These choices handle the possibilities that many  $x$  map to the same

$y$  (flat regions) or that  $g^{-1}(y)$  is empty at a discontinuity. If, in addition,  $g$  is Lipschitz (hence differentiable almost everywhere), then at points where derivatives exist we may differentiate these CDFs to obtain the density formulas; in the strictly monotone case this reduces to the change-of-variables rule above.

If  $g$  is non-decreasing,

$$F_Y(y) = F_X(\sup\{u : g(u) \leq y\}).$$

If  $g$  is non-increasing,

$$F_Y(y) = 1 - F_X(\inf\{u : g(u) \leq y\}).$$

For example, try applying the first definition to the function defined in Example 2.

## 2.4 Examples of Continuous Transformations

The following examples include brief derivations illustrating the CDF method, change of variables, and handling multiple preimages.

1. Uniform scaling: Let  $X \sim \text{Unif}[0, 1]$  and  $Y = 2X$ . Then for  $y \in [0, 2]$ ,

$$F_Y(y) = \Pr\left(X \leq \frac{y}{2}\right) = \frac{y}{2}, \quad f_Y(y) = \frac{1}{2}, \quad y \in [0, 2].$$

2. 2D Gaussian to Rayleigh: Let  $(X_1, X_2)$  be independent zero-mean Gaussian random variables with variance  $\sigma^2$ , so  $f_{X_i}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-x^2/(2\sigma^2)}$ . Let  $R = \sqrt{X_1^2 + X_2^2}$ .

To find the CDF of  $R$ , we compute:

$$F_R(r) = \Pr(R \leq r) = \Pr(X_1^2 + X_2^2 \leq r^2) \quad (1)$$

$$= \int_{x_1^2 + x_2^2 \leq r^2} f_{X_1}(x_1) f_{X_2}(x_2) dx_1 dx_2 \quad (2)$$

$$= \int_{x_1^2 + x_2^2 \leq r^2} \frac{1}{2\pi\sigma^2} e^{-(x_1^2 + x_2^2)/(2\sigma^2)} dx_1 dx_2 \quad (3)$$

Converting to polar coordinates with  $x_1 = \rho \cos \theta$ ,  $x_2 = \rho \sin \theta$ , and  $dx_1 dx_2 = \rho d\rho d\theta$ :

$$F_R(r) = \int_0^{2\pi} \int_0^r \frac{1}{2\pi\sigma^2} e^{-\rho^2/(2\sigma^2)} \rho d\rho d\theta \quad (4)$$

$$= \frac{1}{\sigma^2} \int_0^r \rho e^{-\rho^2/(2\sigma^2)} d\rho \quad (5)$$

Using substitution  $u = \rho^2/(2\sigma^2)$ , so  $du = \rho d\rho/\sigma^2$ :

$$F_R(r) = \int_0^{r^2/(2\sigma^2)} e^{-u} du = 1 - e^{-r^2/(2\sigma^2)}, \quad r > 0.$$

Differentiating gives  $f_R(r) = \frac{r}{\sigma^2} e^{-r^2/(2\sigma^2)}$  for  $r > 0$ , which is the Rayleigh distribution with scale parameter  $\sigma$ .

3. Rayleigh to exponential: Let  $X$  be Rayleigh with scale parameter  $\sigma = 1$ , i.e.,  $f_X(x) = xe^{-x^2/2}$  for  $x \geq 0$ , and let  $Y = X^2$ . Here  $g(x) = x^2$ ,  $g'(x) = 2x$ , and for  $y \geq 0$ ,  $x = \sqrt{y}$ . Then

$$f_Y(y) = \frac{f_X(\sqrt{y})}{|g'(\sqrt{y})|} = \frac{\sqrt{y} e^{-y/2}}{2\sqrt{y}} = \frac{1}{2} e^{-y/2}, \quad y \geq 0,$$

i.e.,  $Y$  is exponential with mean 2.

4. Affine transform of Gaussian: If  $X \sim \mathcal{N}(0, 1)$  and  $Y = aX + b$  with  $a \neq 0$ , then

$$f_Y(y) = \frac{1}{|a|\sqrt{2\pi}} \exp\left(-\frac{(y-b)^2}{2a^2}\right),$$

so  $Y$  is Gaussian with mean  $b$  and variance  $a^2$ .

5. Cosine of a uniform phase (arcsine law): Let  $X \sim \text{Unif}[0, 2\pi]$  and  $Y = \cos X$ .

For  $y \in (-1, 1)$ , we need to find all  $x \in [0, 2\pi]$  such that  $\cos x = y$ . These are:

- $x_1 = \arccos y \in [0, \pi]$
- $x_2 = 2\pi - \arccos y \in [\pi, 2\pi)$

First, let's find the CDF using the direct method. For  $y \in (-1, 1)$ , we need:

$$F_Y(y) = \Pr(\cos X \leq y) = \Pr(X \in \{x \in [0, 2\pi) : \cos x \leq y\})$$

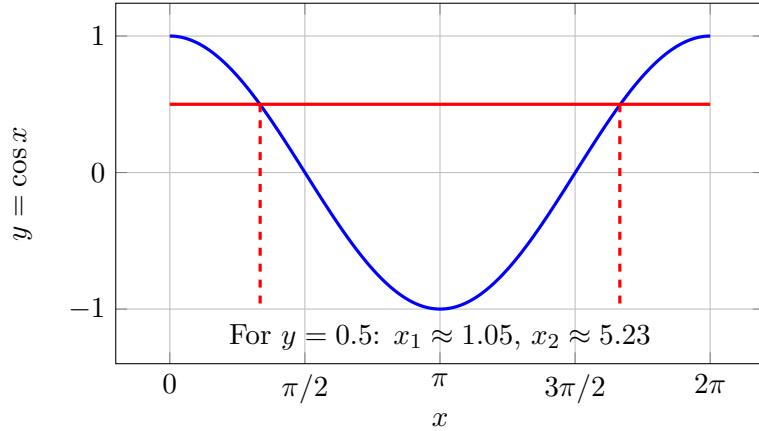
The set  $\{x \in [0, 2\pi) : \cos x \leq y\}$  consists of the interval  $[\arccos y, 2\pi - \arccos y]$ . Since  $X \sim \text{Unif}[0, 2\pi]$ , we have:

$$F_Y(y) = \frac{(2\pi - \arccos y) - \arccos y}{2\pi} = \frac{2\pi - 2\arccos y}{2\pi} = 1 - \frac{\arccos y}{\pi}$$

Differentiating with respect to  $y$ :

$$f_Y(y) = \frac{d}{dy} F_Y(y) = -\frac{1}{\pi} \cdot \frac{d}{dy} \arccos y = -\frac{1}{\pi} \cdot \frac{-1}{\sqrt{1-y^2}} = \frac{1}{\pi\sqrt{1-y^2}}, \quad -1 < y < 1.$$

$Y = \cos X$  for  $X \sim \text{Unif}[0, 2\pi]$



### 3 Generating Random Variables via Inverse Transform

#### 3.1 Continuous Case: Inverse CDF Method

Let  $X$  be a continuous random variable where  $F_X$  is continuous and strictly increasing. Then, we can define  $U = F_X(X)$  and observe that, for  $u \in [0, 1]$ , we have

$$\Pr(U \leq u) = \Pr(F_X(X) \leq u) = \Pr(X \leq F_X^{-1}(u)) = F_X(F_X^{-1}(u)) = u.$$

This implies that  $U \sim \text{Unif}(0, 1)$ . Conversely, if  $U \sim \text{Unif}(0, 1)$  and  $V = F_X^{-1}(U)$ , then for any  $x$ ,

$$\Pr(V \leq x) = \Pr(F_X^{-1}(U) \leq x) = \Pr(U \leq F_X(x)) = F_X(x),$$

so  $V$  has CDF  $F_X$  (and PDF  $f_X$  when it exists).

In summary, if  $F_X$  is a continuous, strictly increasing CDF, then:

- If  $U = F_X(X)$ , with  $X$  having CDF  $F_X$ , then  $U \sim \text{Unif}(0, 1)$ .
- Conversely, if  $U \sim \text{Unif}(0, 1)$  and  $V = F_X^{-1}(U)$ , then  $V$  has PDF  $f_X$ .

**Example 4** (Exponential with mean  $\lambda > 0$ ).  $F_X(x) = 1 - e^{-\lambda x}$  for  $x \geq 0$ . Then  $F_X^{-1}(u) = -\frac{1}{\lambda} \log(1 - u)$ . Thus, if  $U \sim \text{Unif}(0, 1)$ ,

$$X = -\frac{1}{\lambda} \log(1 - U) \sim \text{Exp}(\lambda).$$

**Example 5** (Standard Gaussian via Box-Muller). For a standard Gaussian  $X$ ,  $F_X(x)$  does not have closed-form inverse CDF. Thus, to generate a 2D standard Gaussian  $(X_1, X_2)$ , a key insight is to use polar coordinates  $(R, \theta)$ . As noted in Section 2.4, the radius  $R = \sqrt{X_1^2 + X_2^2}$  is Rayleigh and the angle  $\theta$  is uniform on  $[0, 2\pi]$ . Moreover, the variables are independent because their joint density, in polar coordinates, separates into a product form since  $\theta$  is uniform.

If the Rayleigh variable is generated from a uniform, then this method of generating two standard Gaussians is known as the Box-Muller transform.

Formally, if  $(X_1, X_2)$  are independent standard normals, then, in polar coordinates:

- $R = \sqrt{X_1^2 + X_2^2}$  follows a Rayleigh distribution with  $f_R(r) = re^{-r^2/2}$  for  $r > 0$
- $\Theta = \arctan(X_2/X_1)$  is uniform on  $[0, 2\pi)$  and independent of  $R$

From the inverse transform method:

- For the Rayleigh:  $F_R(r) = 1 - e^{-r^2/2}$ , so  $R = \sqrt{-2 \log(1 - U_1)} = \sqrt{-2 \log U_1}$  (since  $1 - U_1$  has the same distribution as  $U_1$ )
- For the uniform angle:  $\Theta = 2\pi U_2$

Converting back to Cartesian coordinates:

$$X_1 = R \cos \Theta = \sqrt{-2 \log U_1} \cos(2\pi U_2) \quad (6)$$

$$X_2 = R \sin \Theta = \sqrt{-2 \log U_1} \sin(2\pi U_2) \quad (7)$$

If  $U_1, U_2 \sim \text{Unif}(0, 1)$  are independent, then  $(X_1, X_2)$  are independent standard normal random variables.

### 3.2 Not Strictly Increasing

When  $F_X$  is not strictly increasing, the generalized (maximal and right-continuous) inverse can be defined in two equivalent ways,

$$F^{-1}(u) := \inf\{x : F(x) \geq u\} = \sup\{x : F(x) < u\}, \quad u \in (0, 1). \quad (8)$$

The first form using the infimum is the most common because defines the quantile function of the distribution. For generating random variables, the same arguments hold with these definitions.

**Proposition 2** (Generalized inverse). *For any CDF  $F$ , the generalized (right-continuous) inverse defined by (8) satisfies:*

- $F^{-1}(F(x)) \leq x$  for all  $x$
- $F(F^{-1}(u)) \geq u$  for all  $u \in (0, 1)$
- If  $F$  is continuous and strictly increasing, then  $F^{-1}(F(x)) = x$  and  $F(F^{-1}(u)) = u$

*Proof.* The key property is that  $F^{-1}(u) \leq x$  if and only if  $u \leq F(x)$ , which follows directly from the definition and the monotonicity of  $F$ . The two definitions are equivalent because CDFs are non-decreasing and right-continuous.  $\square$

### 3.3 Discrete Case: Inverse Transform Sampling

Let  $X$  take ordered values  $x_1 < x_2 < \dots$  with probabilities  $p_X(x_i)$ , and define the cumulative  $F_X(x_i) = \sum_{j \leq i} p_X(x_j)$ , with  $F_X(x_0) \equiv 0$ . Given  $U \sim \text{Unif}(0, 1)$ , set

$$X = x_i \quad \text{if } F_X(x_{i-1}) < U \leq F_X(x_i).$$

Then  $\Pr(X = x_i) = F_X(x_i) - F_X(x_{i-1}) = p_X(x_i)$ .

The algorithm works because the intervals  $(F_X(x_{i-1}), F_X(x_i)]$  partition  $(0, 1]$  and have lengths equal to  $p_X(x_i)$ . Since  $U$  is uniform, it falls in each interval with probability equal to the interval's length.

**Example 6** (Discrete inverse transform). *Let  $X$  take values  $\{1, 3, 5\}$  with probabilities  $\{0.2, 0.5, 0.3\}$ . The cumulative probabilities are:*

- $F_X(1) = 0.2$
- $F_X(3) = 0.7$
- $F_X(5) = 1.0$

Given  $U \sim \text{Unif}(0, 1)$ :

- If  $0 < U \leq 0.2$ , then  $X = 1$
- If  $0.2 < U \leq 0.7$ , then  $X = 3$
- If  $0.7 < U \leq 1.0$ , then  $X = 5$

In practice, precompute cumulative probabilities and use a binary search to locate  $i$ .