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1 Introduction

Why Gaussians? Gaussian models are ubiquitous in modern statistics, signal processing, and
machine learning. They enable moderate-complexity algorithms with optimal inference properties
under quadratic loss: linear estimators become optimal, posteriors stay Gaussian, and key computa-
tions reduce to linear algebra. Beyond convenience, the central limit theorem (CLT) explains why
sums of many small, independent effects are approximately Gaussian, making Gaussian assumptions
broadly reasonable in practice.

What this tutorial covers. We begin with one-dimensional and i.i.d. Gaussian basics, lift to
random vectors, and derive the general multivariate Gaussian pdf via affine transformations. We
then develop linear—Gaussian inference, showing that conditionals and posteriors remain Gaussian
with closed-form mean and covariance. Finally, we connect Gaussian processes (GPs) and Gaussian
random fields (GRFs) to reproducing kernel Hilbert spaces (RKHS), highlighting kernels, Mercer
decompositions, and the Karhunen—Loeve (KL) connection.

2 Background

2.1 The Gaussian Distribution

A (scalar) Gaussian random variable X with mean u € R and variance 0 > 0 is denoted by
X ~ N(p,0?) and defined by its pdf

fele) = o e EBE) = g (122, 0

where ¢(z) = (27)"1/2¢77"/2 is the pdf of a standard Gaussian. Its cdf is given by

@w@g—qugm}—/ijy@ym—@<x_“>,

g

where ®(z) = [*__¢(z)dz is the cdf of a standard Gaussian.
Let Xq,..., X, . (0,1) be a sequence of i.i.d. standard Gaussians. It follows from indepen-

dence that the joint pdf has the product form given by

n

fx(x) =[] o(x:) = (2m) 2 exp (- & |x]).

i=1

We write X ~ N (0, I,,) to denote an n-dimensional standard normal.

2.2 Random Vectors

The theory of random variables extends naturally to vectors. Let X = (X1,...,X,)" be a vector
where each entry is a random variable. Then, X is called a random vector in R™. Standard operations
such as addition and scalar multiplication are naturally inherited. Also, the expectation operator
acts componentwise and is defined by

E[X] == (E[X4],...,E[X,])".



For a matrix A € R™*™ and vector b € R", the linearity of expectation implies that E[AX + b] =
AE[X] 4+ b. We write I, for the n x n identity matrix and drop the subscript when the dimension
is clear from context.

2.3 Mean and Covariance

For a random vector X in R", the mean vector is defined to be ux = E[X] € R". Similarly, the
covariance matriz of X is defined by

Sx = Cov(X) =E[(X — px)(X — px) '] € R™", (2)

where subscripts are dropped when they are clear from the context. We also note that the total
variance of a random vector is given by

E[|X — px|*] = B[ Tr (X — px)(X — px) )]
= Tr (E[((X - px)(X = px)")])
=Tr (3).

Example 2.1 (Linear Form). For the random vector X in R™ and any ¢ € R™, the linear form
Y = c¢' X defines a scalar random variable. It is easy to verify that Y has mean E[Y] = ¢ ux and
variance Var(Y) = ¢’ ¥x c.

We note that ¥ is symmetric and positive semidefinite. For example, one can see that ¥ is
positive semidefinite just by noting that ¢ Yx ¢ = Var(Y) > 0 for all ¢ € R”. Likewise, it is
symmetric because it equals the average of symmetric matrices given by (x — pu)(x — p)” for x € R”.

3 Multivariate Gaussian Distributions

Definition 3.1 (Multivariate Gaussian Distribution). A random vector Y € R" is (multivariate)
Gaussian with mean p € R™ and covariance ¥ € R™*" (with ¥ positive definite) if it has a PDF of

the form
1

(27)"/2y/det

This statement can be written in shorthand as Y ~ N (u, X).

frly) = oo (~ 3y -y - m). (3)

Proposition 3.2. The moment generating function associated with s given by
My (t) == E[etTY} = exp (tTu + %tTE t). (4)

Proof. Starting from the definition and using the density in , we can write

_ T 1
My(t)—/nexp(t y) @nyl2 ﬁdet

—iy'ly 25+ t) Ty + uTZ_lu]) dy.

ep(— 4y -y - n) dy

ex
(27r)”/2\/det / e
We complete the square in y by defining m = p + ¥t and writing

y 2 ly 2 lp+t) ly=(y—m) ' (y —m) —t 'St — 2t p.



Plugging in and collecting constants gives

My (t) = exp(tTp, + %tTZ t) M/m /n exp( — iy - m)' Xy — m)) dy.

The integral equals 1 because it is the integral of an n-dimensional Gaussian density with mean m
and covariance X. Hence My (t) = exp(t' p+ 5t'St). O

A probability distribution whose mgf exists on an open set containing 0 is uniquely determined
by that mgf. Thus, we equations and both imply each other. See Theorem |B.1

Theorem 3.3 (Characterization of a Gaussian). The following are equivalent for a random vector
Y in R™ with mean p and positive-definite covariance 3i:

(i) Y has the multivariate Gaussian distribution whose pdf is given by .
(ii) For every c € R™, the real random variable c'Y is a scalar Gaussian.
(i1i) Y = AX + p for invertible A with ¥ = AAT and an iid standard Gaussian X ~ N(0,1,,).

Proof. (i) = (ii). For any ¢ € R” and s € R, we can use to write the moment generating
function of ¢'Y as

M.y (s)=E [eSCTY} = My (sc) = exp (s cp+ %32 c'y c).

This equals the MGF of AM(c"p, ¢"¥ ¢) and thus ¢'Y has the same distribution by Theorem [B.1

(i) = (i). Assume that, for every ¢ € R™, the random variable c'Y is a scalar Gaussian. Since
Y has mean p and covariance ¥, linearity of expectation implies that ¢’ Y has mean ¢’ p and
variance ¢! ¥ ¢. Thus, we have

M.ty (s) =exp <s clp+ %82 c'y c>.

But, for any random vector Y, we know that
M.y (s)=E [eSCTY} = My (sc).

Thus, choosing s = 1 shows that the mgf of Y equals the mgf of a Gaussian random vector with
mean p and covariance 3. By Theorem Y is a Gaussian with these parameters.

(iii) = (ii),(i). For any ¢ € R™ and s € R, we can use properties of linear forms of Gaussians to
write the moment generating function of ¢'Y = ¢’ (AX + p) as

MCTY(S) . o) [escT(AX'HJ«)} —E [escT/.L+S(cTA)X:| — GXP(S CT“’ + %52 CTA EX AT C).
~~

In

This equals the MGF of AN(c"p, c" AAT ¢) and thus ¢'Y is a scalar Gaussian and we have (7).
For (i), recall that

M.y (s) =E [eSCTY} = My (sc)

for any random vector Y. Thus, choosing s = 1 shows that the mgf of Y equals the mgf of a
Gaussian random vector with mean g and covariance ¥ = AAT. O



3.1 Generating Gaussian Random Variables

By Theorem [3.3 one can generate a Gaussian random vector Y with mean p and covariance
¥ = AAT simply by computing

Y = AX + u,
where X ~ N (0, 1,,). The only missing element is how to find A from X. There are two standard
approaches:

1. Eigenvalue decomposition: For a symmetric positive semidefinite matrix 3, an orthogonal
set of eigenvectors is guaranteed and we have the decomposition ¥ = QAQ ", where A is a
diagonal matrix containing the non-negative eigenvalues of ¥ and @ is an orthogonal matrix
satisfying QT Q = QQT = I. Choosing A = Qv/A gives AAT = %. For covariance matrices,
this idea is closely related to the Karhunen-Loéve transform.

2. LDL" factorization: For a symmetric matrix, the standard LU decomposition implied by
Gaussian elimination is easily modified to give ¥ = LDLT, where L is lower triangular with
ones on the diagonal and D is a diagonal matrix. If X is positive semidefinite, then D has
non-negative entries and we can choose A = LD to see that AAT = 3. For & = 0, this is
the classic Cholesky factorization ¥ = AAT.

3.2 Deriving the PDF via Change of Variables

We derive the density of Y = AX + p where X ~ AN(0,7,) and A € R"*" is invertible. The
mapping h : x — Ax + p is a bijection with inverse h=(y) = A7 (y — p). Let C = [~1/2,1/2]" be
the unit cube in R"™ centered at 0. Then, we have

.. Pr(YedC+y)
W) = lim —rGe 1)

_ o Pr(a(X) € 6C+y)
§—0 on

Pr(X e h™'(6C +y)) Vol(h~'(6C +y))
550 Vol(h—1(3C + y)) 5"
Pr(X € h=1(0C +y)) 6"Vol(A~1C)
T 550 Vol(h-1(3C +y)) 5"
o PrXehTli@C+y
T 550 Vol(h1(C +y))
= fx(h '(y)) |det A7
= fx(h"(y)) /Vdet ¥
1

= a2l - wl),

where }det A*1| =1/vdet A = 1/v/det ¥ is the volume of the parallelepiped A~'C.

) |det A7

4 Estimation and Inference

4.1 Multiple Random Vectors

Consider joint random vectors X in R” and Y in R™ with finite second-moments (i.e., E[||X]|?] < oo
and E[||Y]|?] < oo). This implies the existence of their expectations, ux = E[X] € R" and



py = E[Y] € R™, and their cross-covariance
Yxy = Cov(X,Y) =E[(X — px)(Y — py)'] € R™™.
The minimum mean-squared error (MMSE) when estimating X from Y is defined to be

mmse(X | Y):= inf E[|X— Q(Y)|’2]

g: Rm—R?

=E[IX -EX | Y]],

where the conditional expectation E[X | Y] = ¢(Y) is defined by any optimal g. If the conditional
pdf fx|y(x|y) exists, then we have

EX|Y =y]=9(y) = /Xfxw(X\y)dX-

The law of nested conditional expectation says that E[E[X | Y]] = E[X].
Using the conditional expectation, we can define the conditional covariance matrix with

Cov(X |Y) = IE[(X -EX|Y)(X-E[X| Y])T | Y].
In this case, the law of nested conditional expectation implies that
E[Tr (Cov(X | Y))] = E[E[X ~ EX | Y]’ | Y]] = mmse(X | Y).

In terms of notation, we now introduce notation similar to Y ~ N(0, I,,) to define conditional
distributions. To specify the conditional distribution of a random variable Y given the event X = x,
one can use the notation Y|X = x ~ Dist(x), where Dist(x) represents some distribution whose
parameters depend on x. For example, if Y is an observation X in standard Gaussian noise, then
we would write

Y X=x ~ N(x,Ip).

4.2 Conditioning for a Bivariate Gaussian

Often, one would like to infer the posterior distribution X from an observation of Xs when (X1, X3)
are jointly Gaussian. The following lemma addresses this situation.

2
Lemma 4.1 (Bivariate Gaussian conditioning). Let (X1, X2)" ~ N (['ul} , [ 71 Ul?ﬂ) with
2 0102p g3

02 >0, 03 >0, and p € [-1,1]. Then, we have
Xy [ Xo =29 ~ /\/(m — Ji2(z2 — p2)/J11, 1/J11)-

Proof. Let A = det(X) = 0303 — p?0203 > 0. Then, we have

2

_ 1 o3 —po102 o pPO109
A [—pm@ o? N A

Since the conditional density of X; given Xs equals

_ fxixe(@,we) /2703 X(
Bapalnled =5 G T e am T

—%(x — S (x - p) + 2%(;@ - u2>2>



1 J J- 1
= —F———¢X (—H(fvl — m)? + oy — ) (w2 — p) — 2 (wa — p2)? + =

&
Var(ajad) T\ 2 202

one can simplify the exponential to verify that
X1 | Xo =29 ~ N(Ml — Jiz(x2 — p2)/J11, 1/J11>-
A simpler method is to observe that

fX1|X2 (.T1|.I2) X exp( - %[Jnx% — 2(J11M1 - J12(582 — ,LLQ)).’I:l] -+ const in xl)
X exp ( - %(l’l - ,u1|2)2/0%|2 + const in xl),

where Jf|2 is the posterior variance and py is the posterior mean. From this, one can easily read

off these parameters from the terms in the exponential involving x;. In particular, the posterior

variance is half the reciprocal of the coefficient z? (i.e., Ule =1/J11) and the mean is Uf|2 times the

coefficient of z; (i.e., p2 = p1 — Jia(xa — p2)/J11). Thus, we have

A L2 — K2
‘7%|2 = Var(Xy | Xp) = i ot (1—p%), prj2 = E[X1 | Xo = 2o] = p1 + poy pa
2

Conceptually, the formula for i1 is natural because (z2 — p2)/02 is the normalized deviation in xo
and the scale factor po; maps this to its linear effect on x;. O

Example 4.2. Under the conditions of the previous lemma, let y3 = 1, g = —2, 02 =4, 05 = 9,
and p = 0.5. For the observation Xy = 1.5, the lemma yields

02

X | Xo =15 ~ N(m+po 222, 031 = 7)) = N (14 52+ 52, 4(1 - 0.25)) = N (o, o3),
where the posterior mean and variance are iy ~ 2.1667 and aig =3.

4.3 Conditioning on Part of a Gaussian Vector

In many cases, one would like to infer the posterior distribution of some elements of a Gaussian
vector given the other elements. If X is Gaussian, then we can split X into jointly Gaussian random
vectors X1 and Xs. Thus, we define

X4 M1 Y11 22
X = R = EIX] = , >»=C X) = .
[Xz] ® [X] [M2] ov(X) [221 E22]

Theorem 4.3 (Gaussian conditioning). Assume X is positive definite. Then, for any fized xa, the
conditional distribution of X1 given Xqo is Gaussian:

Xi|Xog=x5 ~ N(Muz, 21|2)7 (5)
pie = 1 — 1255, (X2 — p2), (6)
Sip = Z11 — S12555 So1. (7)

Moreover, the minimum mean-squared error of X1 given Xo satisfies

mmse(X; | Xp) = E[[| X1 — E[X1 | Xo]||*] = Tr(Zqp).

(w2 — M2)2) ,



Proof. The joint density satisfies

fx(x) o< exp ( — %(x — u)TE_l(x - u)),

and we write the inverse covariance (or precision) matrix in blocks with

_ Ji1n Ji2
»= ,
[le sz

where J11, Jao are positive definite (because they are principal submatrices of ! which is positive
definite) and Jy; = JlTQ. The conditional pdf of X; given Xs satisfies

fx1,%, (%1, %2)

fX2(X2)
o exp (— 3(x — ) 'S (x — ) + §(x2 — p2) ' Ty (x2 — p2))
o exp (— Q(x1)),

Ix,x, (X1|x2) =

where (since pdfs normalize to 1) we can drop all terms that do not involve x; to get
Q(Xl) = %XIJHXl — XI(JHMI — J12(X2 — ﬂg)) + const in x7.

Since pdfs must normalize to 1, it is sufficient to focus on proportionality and only keep only
terms that involve x;. The conditional distribution of X; given X = x5 is Gaussian because it
matches a Gaussian on all terms that depend on x; (i.e., terms that are constant with respect to x3
are determined by normalization). In addition, we can determine the parameters of the conditional
distribution by matching terms with

Fafamses (1) o exp (= 31 = papa) S350 = o))
o exp( — %XIEI‘;xl + XIZ;‘;M]_IQ + const in x1>.
Thus, we can write XXy = xa ~ N(py)2, X1)2) with covariance ¥, = J1_11 and mean pyp =
p1 — Jiy Jia(x2 — pa).
Equivalently, one could observe that
Q(x1) = %(Xl — 1) Ty (%1 — ) + (x1 — ) T Jia(x2 — p2) + const in x;
is a quadratic function of x; for fixed x5 and completing the square yields
T . _
Q(x1) = %(Xl - M1|2) J11(x1 — u1|g) + const, with Hijg = p1 — J111J12(X2 — p2).

Now, we use block-inversion identities in Appendix [A] to compute the precision blocks explicitly.

Applying the alternative block inverse formula to > = {gn gu] gives
21 2422

El_é =Ji1 = (211 — 21222_21221)71.
For Jis, the alternative block inverse formula gives Jio = —J11 2122521. Therefore, we have

K12 = p1 — It Jia(x2 — p2) = 1 + S1285, (X2 — pa).



Conceptually, this formula makes sense because ¥ga(x2 — p2) gives the whitened x3 deviation and
multiplication by Y12 linearly maps the whitened x5 deviation to its effect on x7.
For the MMSE claim, note that for fixed xo,

E[[|X1 — E[X1 | Xo]||* | X2 = x2] = Tr (Cov(X; | Xz = x2)) = Tr(Zy)),
and ¥}, is independent of xz. Taking expectation over Xy yields mmse(X; | X2) = Tr(2yp). O

Example 4.4. Consider the setup of the previous theorem where X = (X1, X5) € R* is jointly
Gaussian with

0 1 2 0.3 12 0.4 0.5 0.2
H1 = [0]’ H2 = [—J I = [0.3 1.5] 222 = [0.4 2.0] , 212 = [0.1 0.3] '

1.2

0 6}’ Theoremgives X1 | Xg =x2 ~ N(pp2,Xq)2) with

For the observation xo = {

B = 1+ L1255 (X2 — p12), Y12 = S11 — S1285 Yot
Numerically, we have

o1 [0.8929 —0.1786 0.4107 0.0179}
2 .

2122_1 ~
—0.1786  0.5357 |’ 22 0.0357 0.1429
Thus, with xo — o = [0.2, 0.4] T, we obtain

0.0893] N [1.7911 0.2536:|
) 12 ~ .

Hz = [0.0643 0.2536 1.4536

Remark 4.5. It is quite common to ignore the overall normalization constant when analyzing
distributions by using statements like f(x) o g(z) which means that f(z) = ag(z) for some
unspecified constant a. For distributions, this implies equality because the difference will vanish
when both are normalized to integrate to 1. Moreover any function proportional to e~z Jatez i)
normalize to a Gaussian when J is positive definite.

4.4 Conditioning on Noisy Linear Observations
Theorem 4.6 (Noisy Linear Observations). Consider the model
Y =HX +7Z, X ~N(px,Xx), Z~N(0,Xz) withYgz >0, X L1l Z.

Then, the posterior of X given Y is the Gaussian fxpy ~ N(u', %) with

'=pux +¥'H'S; (y — Hux), (8)
Y =¥x —SxH' (HESxH' +%z7) 'HYx. 9)

Also, the minimum mean-squared error of X given Y satisfies

mmse(X | Y) =E[|X - E[X | Y]||*] = Tx(¥").



Proof. Using this setup, we define a new Gaussian random vector W satisfying

X1 1 0 [ px [ =x SxH'
W= [Y] - [H] X+ [z] MW= [H,ux]  Bw= [HEX HYxHT + 5]

Then, we apply Theorem with u; = pux, pe = Hpx, Y11 = Xx, 212 = EXHT and Yoy =
HYxH' + £z to obtain the formulas

K12 = p1 + Y1980 (x2 — po) = px + SxH (HExH ' +Xz) ! (x2 — Hpx),
_ _ 11
Yipp =X — 219850 801 = (2" + HTEle) .

The Woodbury identity is used to rewrite the stated expressions above for p’ and ¥'. Also, we have
mmse(X | Y) = Tr(2)2). O

Example 4.7 (Two correlated sensors). Define X ~ N(0,1), sensors Y1 = X+ 77, Yo = X + Z5 with
Var(Z;) = o and Cov(Z1, Z3) = poyos. Stacking Y = (Y7,Y3)" and defining H = [1 I]T, one
obtains ¥’ = (1+17%,'1)7! and ¢/ = ¥/ 17X 'y, This estimate reduces the relative contribution
of the noisier sensor.

For a concrete numeric illustration, let o7 = 0.25, 02 = 1, p = 0.3, and observe y = (0.8, —0.2) .
Then

s _[0:25 015 41 1 —0.15
Z7 0015 1|7 7% T 02275 |-0.15 025 |°
Hence 1 +17%,'1 = 1+ % ~ 5.1758, so ¥/ ~ 0.1932. Moreover,
_ 0.83, —0.17]1
=1y ly =% [0.83, ~ 0.1932 x 2.9022 =~ 0.5607.
K zY 0.2275 %

Remark 4.8 (MMSE and MAP estimates). Under Gaussian priors/likelihoods with quadratic loss,
the posterior mean is both the MMSE estimate due to symmetry and the MAP estimate due to
unimodality. Indeed, if X |Y =y ~ N (u/, %), then

logp(x | y) = comst — §(x — p/) "= (x — ),

whose gradient vanishes uniquely at x = g’. Thus the MAP estimate is xyap = p/. Under squared
error, the MMSE estimator is the conditional mean and xyyvsg = E[X | Y =y] = o/,

5 (Gaussian Processes

5.1 Introduction

A Gaussian process (GP) is a stochastic process with a single index such that joint distributions of
samples are always Gaussian. Let the index set 7 be an arbitrary discrete or continuous set. Note
that, from now on, we will use the shorthand [N] :={1,2,...,N} C N,

Definition 5.1. A stochastic process {X;}ic7 is a Gaussian process if for every finite set of indices
ti,...,tm € T, the vector (Xy,,..., X, ) is jointly Gaussian.

Definition 5.2 (Mean and covariance). For a Gaussian process, the mean function is p(t) == E[X]
for t € T and the covariance function is k(s,t) = Cov(Xs, Xt) = E[(XS — u(s)) (X — u(t))] for
s,t € T. It is called centered if u(-) = 0.

10



Proposition 5.3 (Characterization). For a Gaussian process with u(t) = E[X:] and k(s,t) =
Cov(Xs, X;) and any t1,...,ty, € T, we have (X, ..., Xyp,,) | ~ N ([1t)iepm)» (k(tis t)]i jemm))-
Conversely, any pair (u1, k) where K = [k(t;, t;)]; jepm) is positive definite for every finite set of times
defines a GP.

Proof. For the forward direction, each finite subvector is multivariate normal by definition. For
the converse, any family of finite-dimensional Gaussians with moments specified by a positive-
definite kernel is consistent under marginalization. Thus, one can apply Kolmogorov’s Extension
Theorem [2]. O

Theorem 5.4 (Gaussian Process Regression). Let X; be a GP with mean pu(t) =0 and covariance
k(s,t). Letti,...,tn € T be n distinct indices and define Y; = Xy, + Z; with Z; ik (0,02) for
i € [n]. Then, for any t' € T \ {t1,...,tn}, the conditional distribution of Xy given Y =y is

Gaussian with mean and variance

m' =EXy | Y =y]=r (K+I) 'y, (10)
v =Var(Xy | Y =y) =k(t',t') — v (K + o), (11)
where K € R™"™ with K;; = k(t;,t;) is the covariance matriz of (Xy,,...,Xy,) and r € R™ is the

cross-correlation vector with Xy defined by [r]; = k(t;,t).
Proof. For this construction, the joint distribution of (Y, X/) is Gaussian with mean 0 and covariance

K + 0?1 r
K= k', t)

Thus, we can apply Theorem to get formulas for m’ and v’. Notice that the posterior mean is a
linear combination of the observed values in y. O

5.2 Examples and Spectral Methods

If the index set forms an additive group, then the correlation may be a function only of the difference
between s and ¢.

Definition 5.5 (Stationary). A stochastic process is strictly stationary if all its finite-dimensional
distributions are invariant under translation. It is (wide-sense) stationary if u(¢) is constant and the
covariance depends only on the difference between indices: k(s,t) = r(t — s) for all s,t € T and
some autocovariance function r(7).

Example 5.6 (Discrete time). Let X; = aX;—1 + V1 —a?W; for t € T = Z with |a| < 1 and

UARSS N(0,1). This is the unique stationary Gaussian process with E[X;] = 0, Var(X;) = 1, and
autocovariance (1) = Cov(Xy, Xy4r) = all.

To see this, we iterate the defining equation to get X; = V1 —a?> 7, a*W,_j, for all t € T,
where the sum converges almost surely because |a| < 1. Thus, X; is a linear combination of
standard Gaussians and it follows that X; is Gaussian with mean p(t) = 0 and variance Var(X;) =
(1 —a?)>5pa?* = 1. For 7 > 0, the covariance function is given by

k‘(t, t+ T) = COV(Xt, Xt+T)
= (1—a% Z Z "+ Cov(Wy_k, Wigr—0)

k>0 ¢>0

11



_ (1 o (12) Za2k+r
k>0
=a.
Since k(t,t + 7) is independent of ¢, we can define the autocovariance r(7) = k(¢,t + 7) and note
that choosing t = —7 shows that r(—7) = r(7).

The following example connects this material with earlier results. First, we know the Wiener or
linear MMSE estimate of one random variable given others follows directly from the inner product
space viewpoint and normal equations. Second, recall from Section [4] and Theorem [A.3] that, for
jointly Gaussian variables under squared loss, the posterior mean also equals the linear MMSE
estimator.

Example 5.7 (Optimal Wiener filter). For the autoregressive process X; = aX;_1 + V1 — a2 W,
with Var(X;) = 1, the covariance of (X_1, Xo, X41) is

1 a a
K=|a 1 a
a® a 1

Thus, the linear MMSE estimate of Xy given X_; and X; equals w'x with w = R™'r where

1 2
R= LLQ al ] is the covariance of x = (X_1,X,1) and r = [a, a]" is the cross-covariance with Xj.

Likewise, by Theorem letting X; = X and Xo = (X_1,X,1)" with zero mean and blocks
Yi1=1 29 =R, and Z;2 =, we obtain
EXo | (X_1,X1) =% =YpYpx=r R lx=(R'r)'x=w'x,
Var(XO | Xg) = 211 - 2122;21221 =1- I‘TR_II‘.

Since R~ 'r = %[ 1, 1]" and 1 —r"R~'r = 1/(1 + @?), conditioning on the neighbors yields
a
a 1
E[Xo | X 1=2_1,X41 = .CU+1] = m($_1 + :U+1), Var(Xo ‘ X—l,X—i-l) = m
For a numerical example with a = 0.8, x_; = 0.5, z11 = —0.1, we get &y = %(0.5 —-0.1) =

0.195, which matches the formulas above. The final form of the conditional expectation illustrates
the “matched-filter” perspective where the optimal estimator is shift invariant because the signal is
shift invariant.

Example 5.8 (Continuous time). Let W (t) denote a standard zero-mean Gaussian white noise
with covariance kw (t,t + 7) = 0(7), where §(-) denotes the Dirac delta. For h(t) satisfying
Jg |1 (t)[?dt < 0o, we can define the random process X (t) via convolutionﬂ

X(t) = (h+ W)(t) == /R W)Wt — 1) dr.

Then, X () is a stationary Gaussian stationary process with autocovariance

r(7) =k(t,t + 1)

'The process X (t) is well-defined and can be constructed in a fully rigorous manner even though the construction
given here based on W (t) is a less formal shortcut.
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= Cov (X (t), X (t + 7'))

—E[// Wt —uw)W(t+7—v)dudv

_ // h(u) h(0) E[W(t — )W (t + 7 — v)] dudv

_ // h(u) h(v) 6(r — (v — ) du dv
/h h(u + ) du.

Power spectral density (PSD). For a zero-mean, wide-sense stationary (WSS) process X (t)
with autocovariance rx (7) = E[X ()X (t + 7)], define the finite-time Fourier transform

T .
= / X(t)e @ at
=T

and the expected finite-time normalized power spectral density is given by
T 1
Y (@) = rE [Xr@)].

If the autocorrelation function is absolutely integrable, then the following limit exists and gives the
two-sided power spectral density:

Sx(w) = lim S(T)( )

T—o0

Theorem 5.9 (Wiener—Khinchin). If X is zero-mean WSS and rx is absolutely integrable, then

. 1 .
Sx(w) = / rx(r)e®Tdr, rx(r)= o / S (w) €7 duw.
R R

Proof sketch. Compute

s 2T/ / (s)] e (=) dt ds / / x(t —s) e %) gt ds.

Let u = (t 4+ s)/2 and 7 =t — s. The u—integration yields (27" — |7|)+, where (a)+ = max(a,0).
Dividing by 27" and taking T" — oo, dominated convergence (using absolute integrability of rx) gives
Sx(w) = [prx(r)e T dr. The inverse formula follows from Fourier inversion under the stated
convention. U

Filtered White noise If X(t) = (h*W)(t) with W unit white noise (E[W (t)W(s)] = 0(t — s)),
then rx ( fR h(u + 7) du. By Wiener—Khinchin and the correlation theorem,

Sx(w) = / rx(t) e “Tdr = |H(w)|, (12)
R
H(w) = / h(t) e ! dt. (13)
R
These expressions use the Fourier transform convention adopted in the Wiener—Khinchin section.
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Example 5.10 (Wiener filter for filtered white noise). If ¥ = X + N with X WSS and N
independent WSS, the optimal LTT estimator in frequency is

oy _ Sxy(w) _ Sx(w)
Glw) = Syy (@)~ Sx(w) + Sn(w)’

For X = h* W driven by unit white noise (so Sx (w) = |H(w)|*) and white measurement noise with

2
PSD 0%, this gives G*(w) = % In this setting, the posterior mean (and linear MMSE

estimator) is obtained by passing Y through the LTT filter with frequency response G*(w) above.

5.3 Gaussian Random Fields

In the previous section, we considered GPs with a single index. But, this was only to simplify the
description at first. All the previous statements actually apply immediately to Gaussian processes
indexed by arbitrary sets. Only the examples are limited to one dimension. Thus, we can index by
vectors and the resulting objects are called Gaussian random fields (GRFs). To lighten notation, we
will still use the indices s,t € T though in some cases they may represent vectors.

Definition 5.11. A collection {X;}ic7 is a Gaussian random field if, for any finite locations
t1,... tm € T, the vector X = (Xy,,..., Xy, ) is jointly Gaussian ~ N ([1(t:)]icpm]> [k (i, £5)]i jem))-

If the index set T is equipped with the structure of an abelian group, then Definition [5.5] can be
used to define stationarity without change. A stationary GRF is called isotropic if T is equipped
with the structure of a normed vector space and the covariance function k(s,t) is a function of
||s — t||. For example, a GRF defined by radial basis functions (RBFs) has, for some a,b € (0, 00),

the covariance function H H2
s—t
k(s,t) =a exp<—2b2> :

Remark 5.12. These ideas also extend naturally to vector-valued GRFs, X; € RP, where the
covariance function K (s,t) € RP*P becomes matrix-valued and is defined to be the cross-covariance
K(s,t) = E[(Xs — u(s))(X¢ — p(t))T]. This is similar to choosing 7 = T’ x [p] so that each
t = (t',j) € T indexes the j-th element located at the point ¢'.

6 Reproducing Kernel Hilbert Spaces

6.1 Introduction

Consider the problem of estimating an unknown function f: X — R from input-output observations
(zi,y;) € X x R satistying y; = f(z;) for i € N. For any candidate g: X — R, we consider the risk
(or loss) associated with using g instead of f. Using ¢(y,y) for the loss due to estimating § when y
is correct, the empirical risk for the first N data points is

N

1
In(o. 1) = 3 3o talwi). S(w)) = [ tlote). f(@) (o)
i=1
where vy is the empirical distribution of {x1,...,zx}. If we assume that v converges weakly to v

as N — oo, then we can also define
Lg. ) = Jim In(o. )= [ tlota). (a) (o).

14



One can think of v as the distribution from which the evaluation points are drawn. In this work, we
will focus exclusively on the squared-error loss £(9,y) = (§ — y)2.

To compute an estimate of f(z), a standard approach is to use a smoothing kernel k(z,z) to
give the estimate

N
go(x) = 0ik(w, ),
i=1
where the parameters 61, ...,0y are chosen to minimize the overall loss function

L(0) = Ln(go, f) + R(gs)-

The first term in the loss is the empirical risk and the second term is a regularization term, which is
often associated with a prior distribution on the set of functions.

Another common approach to fitting data is to first choose a non-linear feature map and then
learn a linear function of the features. For example, we can let ¢: X — ¢? map X to the standard
Hilbert space £2 of square summable sequences whose inner product is the dot product. Then, the
Riesz representation theorem implies that any linear functional (i.e., a mapping from ¢2 to R) of
the feature vector ¢(x) can be written as an inner product (¢(x), h)., where h € ¢? defines the
linear functional. Thus, this approach leads to

If the feature map is matched to the covariance kernel, then we can estimate f by minimizing the
loss

1
L(h) = Ln(gn, f) + 5th|§2-

This will match the previous solution if the regularization term R is chosen correctly.

Lastly, one can also treat the data, (x;,y;) € X xR for i € [N], as being generated by a Gaussian
random field with covariance function k(z,2’). In this case, one can use ideas from GRFs to estimate
the posterior mean g(x) of f(z) given the observed data.

Surprisingly, all these perspectives are closely related and their optimal estimates are equal.

6.2 Kernel functions and feature maps

Definition 6.1 (Positive-definite kernel). For any set X, a function k: X x X — R is symmetric
positive semidefinite if k(z,2’) = k(2/, x) for all z,2’ € X and, for any z1,...,z, € X and ¢ € R",
we have Z” cicik(x;, xj) > 0.

Remark 6.2. While the above kernel is positive semidefinite, this is the standard naming convention.

Theorem 6.3 (Mercer’s theorem). If k is continuous, symmetric, and positive semidefinite on a
compact domain (X,v) with v a finite measure, then the integral operator

(Tf)(x) = /X ko, ') (a') du(a)

is self-adjoint, positive, and compact. Thus, the eigenvectors {1;: X — R};en form a complete
orthonormal basis for the range of k with

Wi i)y = [ () (@) dve) = b

15



Thus, we can write
oo
k(w,a') = M) (),
i=1
where convergence is uniform on X x X.

Proof Idea. If X = {x1,...,xp} is a finite set, then this follows directly from the eigenvalue
decomposition of the covariance matrix K with entries K; ; = k(x;, ;) for ¢, 5 € [M]. In particular,
the matrix is guaranteed to have an orthonormal set of eigenvectors (due to symmetry) with
non-negative eigenvalues (due to positivity) that span the space.

For the continuous case, the same idea generalizes naturally to integral operators that are compact,
self-adjoint, and positive. In this case, a compact operator has a countable set of eigenvalues, a
self-adjoint operator (the infinite-dimensional analogue of a symmetric matrix) has orthonormal
eigenfunctions that span the range, and a positive operator has non-negative eigenvalues. O

Remark 6.4. Let us take a moment to consider the effect of the background measure v. While one
gets an orthonormal basis and decomposition of the kernel for any positive v, choosing the proper v
does matter. For example, if one computes || f — gH%Q(V) with v equal to the true data distribution,
then this norm equals the expected mean-squared error of the approximation when the x values are
drawn i.i.d. from v.

Definition 6.5. The feature map ¢: X — £? associated with a Mercer kernel k(z,2’) is defined by
its eigenvalue decomposition (i.e., {A; }ien and {4 }ien) using

o(x) = (¢1(x), da(x), ¢3(2) . ..), (14)

where ¢;(x) = v/ \i;(z) for i € N.

Using these definitions and results, we observe that
(D(x), d(a")) o = D Nithi@)hi(a) = k(w, ).
i=1

Moreover, this implies that

N
= <¢5(~’U), > 9i¢($i)>
=1

= <¢(':U)7 90>52 5

62

where we abuse notation by defining gy = Zfi 10id(z;) € £2. A key observation is that the vector
gp is a representation of the function gg: X — R where evaluation at x is given by an inner product
(i.e., go(x) = (¢(z), gp)). This also implies that all such weighted averages of kernels can be written
as the inner product between the feature vector ¢(x), which depends only on the evaluation point z,
and another ¢? vector that determines gg.
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Remark 6.6. From a signal processing point of view, the change of variables associated with the
feature map is a decorrelating transform that whitens the process.

Definition 6.7 (Reproducing kernel Hilbert space). A vector space of functions f : X — R is called
an RKHS H; with kernel k if the:

1. kernel satisfies k(-,2') € Hy, for all 2’ € X,

2. inner product is reproducing, (f, k(-,2'))y, = f(2') for all f € Hj and 2’ € X

Theorem 6.8. If k(x,2') is a kernel satisfying the conditions of Theorem then it defines an
RKHS spanned by the eigenfunctions {1; }ien with inner product defined by

1
(i, ¢j>Hk = )\751‘,3'- (15)
Proof. From Theorem we know that the space Hj equals the range of k and is spanned by
{¥i}ien. Since ¢; € Hy, we can use the reproducing property to observe that

wz(ml) = <wz( ’ )7 k( ’ 7x/)>7{k

= <¢z‘( ), Z/\j%‘( : )¢j($')>

Hy
= S A ) ), i D
j=1

Taking the L?(v) inner product (with respect to ') of both sides with 1, gives
0ie = Aj0je (i) ¥5(+ )y, -
Ifi = j = ¢, then this gives (1;(- ), ¥i(+))y, = 1/Ai. If i # j = £, then this gives (¢;(-), ¥;(- )y, =

k

0. Together, these establish . O

Remark 6.9. From this, we can better understand the RKHS inner product. Recall that k is diagonal
in the orthonormal basis {1; };en with eigenvalues {)\; };en. By computing the RKHS inner product
between pairs of basis vectors in this orthonormal basis, we see that the implied Gram matrix is
diagonal in that basis but its eigenvalues are the reciprocals {1/\;};en. Thus, it is a standard inner
product weighted by the inverse of the covariance function. Such an inner product naturally induces
the Mahalanobis distance d(z,2") = v/(z —2/) TS ~1(x — 2/) that appears in the exponent of the
Gaussian pdf when z’ is chosen to be the mean.

6.3 Connection to Gaussian Random Fields

In Section [3.1], we saw how an eigenvalue decomposition of the covariance matrix can allow one to
transform a Gaussian with identity covariance into a Gaussian with general covariance. The same
idea extends to GRFs with the Mercer decomposition of the covariance function.

Theorem 6.10 (Karhunen—Loéve expansion). Consider a centered GRF { X, }1e with mean pu(t) = 0
and covariance function k(s,t). If k(s,t) satisfies the conditions of Theorem[6.3, then there exist
i.i.d. standard Gaussians Z; ~ N (0,1) such that

X(t) =Y Vi Ziwu(t),
=1

with convergence in L?(X x Q) and covariance E[X (s)X (t)] = k(s, ).
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Proof. Let {(Xi,1;)}i>1 be the Mercer eigenpairs of k on (X, v), so that k(s,t) =Y i) Nihi(s)i(t)
with {¢;} orthonormal in L?(v) and A; > 0. Define the random coefficients

1 o
7 = m/XX(t)sz(t)d (®).

This is well-defined because E[X (¢)?] = k(t,t) < oo is integrable under the Mercer assumptions (i.e.,
k is continuous on a compact domain). Then, E[Z;] = 0 and, for 7, j € N, we have

Cov(Z;, Z;) = £)]i(s)1; (1) dv(s) dv(t)

7w e

W// (5,) ()5 (8) dv(s) dw(2)

MZAK /w o) dv(s)) ([ o0 dv )

/=1

\/W Z Ao 0gi o = 0

(=1

Thus {Z;} are uncorrelated standard Gaussians. Since X (¢) is a Gaussian random field and Z; are
linear functionals on X (t), they are jointly Gaussian. Together, these imply that Zi, Zs, ... are
independent.

Consider the m-term approximation

= Y VA Zihi(t)
i=1
It has mean zero and covariance E[X,,(s) Xy, (t)] = > 7% i ¥i(s)i(t). Moreover,

IE/X(X(t)—Xm( /X 2 du(t —2IE/X t) du(t +IE/X 2 du(t)
:Z)\i—2z>\i+2)\i: Ai —— 0,

i>1 i<m i<m i>m

where we used Parseval’s Theorem with the Mercer basis and the definitions above. Hence X, (t) —
X (t) in L2(X x Q). Taking limits of the covariance also establishes E[X (s)X (t)] = k(s,t). O

This highlights the connection between kernel methods and GPs. Any positive-definite kernel
can be used to define a GP. Observations of that GP at fixed locations allow optimal inference of
the process at other locations. Moreover, the Karhunen—Loéve expansion shows any centered GRF
with kernel k£ can be written as a linear combination of orthogonal Gaussian coordinates.

Theorem 6.11 (Representer theorem for GP posterior mean). Consider data (x;,y;) with y; =
flxy) + oZ; with Z; b N(0,1), where f has a GP prior with mean 0 and covariance k(z,z’).
Then, the posterior mean is the unique minimizer of

n

. 2 2 2
min i — f(xi))" +o ;
Fer, - 1(% f(xi)) 1/ 13,

and has the finite expansion fo(z) = Y1, aik(z, ;) with o = (K + o?I)7!
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Proof. From a Bayesian view, we have a GP prior and the independent conditional distributions
Y; | f ~ N(f(x;),0?). Thus, the negative log-posterior (up to an additive constant) equals

1 — 1
M;(yif(%))2 +3 1£113,, -

Multiplying by 20?2 yields exactly the stated objective and the MAP estimator minimizes it. For
Gaussians, the posterior is Gaussian and unimodal, so by Section [4] the MAP equals the posterior
mean.

We can solve the optimization by defining f = [f(z;)]?.; = Ko so that the objective over o
becomes ||y — Ka2 + 02 o’ K a.. Setting the gradient to zero gives —2K(y — Ka) + 202Ka = 0,
ie., (K +0’l)a=y. Thus a = (K + ¢?I)"'y and f, equals the GP posterior mean. O

Remark 6.12. This provides yet another way to see that the posterior mean of any point in a
Gaussian process can be written a linear combination of all the observed values. Of course, the
coefficients of the linear combination depend on the covariance matrix induced by the locations
of the observations and the point of interest. Also, this correlation matrix is essentially given by
evaluating the covariance function of the process at all pairs of locations.

6.4 Simple kernels, spaces, and GRFs

e Linear kernel: k(s,t) =s't.

— RKHS: linear functions with norm || f|| = ||w||, where f(z) =w'z.

— GREF: prior equivalent to Bayesian linear regression.
e Polynomial kernel: k(s,t) = (st + c)P.

— RKHS: finite-dimensional space of degree-< p polynomials in lifted coordinates.

— GREF: equivalent to Bayesian linear regression in the polynomial feature space. Let ¢(x) collect
all monomials up to degree p (with appropriate scaling depending on ¢). Then, we see that
X(t) = 07 $(t) with Gaussian coefficients # ~ N(0,I) induces Cov(X (s), X (t)) = (st + c)P.
Sample paths are a.s. equal to polynomials of degree < p.

e RBF kernel: k(s,t) = o2 exp(—||s — t||* /(262)).

— RKHS: consists of very smooth (indeed real-analytic) functions. One can show that the
norm admits the spectral form

Aw 2 2
1B = e [, o S) = @m0 exp(( - §1wl?).

— GREF: stationary with spectral density given S(w) above. The sample paths are a.s. real-
analytic on R% and the posterior mean function also inherits this property.

7 Worked examples

0 1
Example 7.1 (Deriving a bivariate conditional). Let (X,Y)" ~ N ( {0] , [p ﬂ) with [p| < 1.
Apply Theorem [£.3 with 1 = po =0, X117 = Yoo = 1, 19 = Y91 = p
EX |V =yl =+ L1255 (y — p2) = py, Var(X |Y) =511 — 819855 Tg1 = 1 — p.
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Thus X | Y =y~ N(py, 1 — p?).

Example 7.2 (Posterior for linear regression). Model y = X3 + ¢, with ¢ ~ N(0,02I) and prior
B ~ N (Bo,X0). The log-posterior (up to a constant) is

Ly — XBI13 - 28— Bo) "S5 H(B - Bo)-

Completing the square in [ gives a Gaussian posterior with
-1
Zpost = <Zal + #XTX) ) Bpost = Epost (Zalﬁo + #XTY)'

Equivalently, view (8,y) as jointly Gaussian and apply Theorem

8 Summary

We develop a tutorial path from scalar Gaussians to multivariate normals including core infer-
ence tools (conditioning, MMSE/MAP equivalence for Gaussians, linear observation models, and
Woodbury/Schur complements). We then lift these ideas to Gaussian processes/fields, showing how
covariance functions determine finite-dimensional laws, how GP regression arises from Gaussian
conditioning, and how spectral viewpoints (Wiener—Khinchin) connect filtering and power spectra.
Through Mercer’s theorem we built feature maps and RKHSs, explaining the reproducing property
and the RKHS inner product as an inverse-covariance weighting (Mahalanobis geometry). The
Karhunen—Loéve expansion is linked to GRFs and orthogonal Gaussian coordinates. Finally, the
representer theorem shows that GP posterior means solve a regularized risk in H; with closed-form
coeflicients.
Practical takeaways:

e For linear—Gaussian models, posteriors remain Gaussian with means/covariances computable
by linear algebra; MMSE=MAP=posterior mean.

o GP regression is just Gaussian conditioning with kernels playing the role of covariances; RBF
kernels yield analytic interpolants and a simple spectral density.

e RKHS methods, GP priors, and Wiener filtering are different faces of the same quadratic,
kernel-driven machinery. These principles underpin algorithms from Kalman filters to kernel
ridge regression and modern GP modeling.
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A  Useful matrix identities

Lemma A.1. The following well-known matriz identities are quite useful:

A Br B [A‘1+A_1BS_1C’A_1 —A"1BS1

(Block inverse) [ } ., S=D—-CA !B, (16)

C D -S-tca-t St
(Woodbury) (A+UCV) 1 =471 —A7lU(C 4+ vA Uy tvAa~t (17)
(Matriz determinant lemma) det(A+UCV) = det(C~ + VATIU) det(C) det(A). (18)

Proof. Block inverse. Define the matrices.

A B I 0 I —-A'B
M_[C D}’ L_[—CA‘l 1]’ R_{o I ]

Gaussian elimination generalizes to block matrices and it is easy to verify that LM is zero in the
bottom left block while M R is zero in the top right block. Moreover, direct calculation shows LM R
is block diagonal with A in the top left position and S (the Schur complement of A) in the bottom

right. Thus, we have
A7t 0 At ATIBS-lCcA™! —AIBST!
—1 _ _

M= =R [ 0 Sl] L= [ -Ss~tcA—! S '
One can also do the elimination in a different order. In particular, we can define alternative
matrices L', R’ so that R’ eliminates C' and L’ eliminates B. This gives

[T 0 , _[I —A7'B 1
L_[—CA—l I]’R_[o r |0 M=

71 —T7-'BD™!
—-DpDlcr! D4+ ploT-'BD!

)

where T = A — BD~'C is the Schur complement of D.

For block matrices, if all blocks above (or below) the diagonal are zero, then the matrix is
called block lower (or upper) triangular. In both cases, the determinant equals the product of the
determinants of the blocks on the diagonal. One can prove this via standard cofactor expansion.
For the 2 by 2 case, this implies that det(L) = det(R) = 1 and det(M) = det(L) det(M) det(R) =
det(LMR) = det(A) det(S). Moreover, if the block matrices in any row or column commute, then
this reduces to the simple formula det(M) = det(AD — BC).

Woodbury. First, we note that the Woodbury formula is equivalent to
I+UV)l=1-UI+VU)'V,

which one gets by replacing A and C' with identity matrices. To verify this simplified identity, we
multiply on the left by I + UV to get
I+UV)I-UI+VU)W)=I+UV-UI+VU)'V-UVUI+VU)'V
=I1+UV-U(I+VU) ' +VUI+VU) ")V =1L
I

The same idea works for multiplication on the right.
Now, we will derive Woodbury’s formula from the simpler identity by substituting U’ = A='U
and V' = CV. To do this, we write

(A+UCV)™ = (I+A7'UCV) A = (14 U'V') 1A

21



=(I-U{I+VU)y VYA =4 Aluqg+cvalu)ytcvaT?
=A' - A'u(cct+vaTlu)ylvaTh

Determinant. First, we note that
det(A + UCV) = det(A) det(I + A~'UCV).

Using the block inverse notes, we can easily establish Sylvester’s determinant identity

det(I+AB):det<[é ﬂ Lé IAD :det<[é IA] [g ﬂ) = det(I + BA).

With this, we find that

det(I + AT'UCV) = det(I + CVA™'U)
=det(C(C™' +VAT'U)) = det(C) det(C' + VAT'U).

Hence, we have det(A + UCV) = det(C~! + VA™IU) det(C) det(A). O

B Ancillary Results from Probability

Theorem B.1 (Uniqueness of the mgf/Laplace transform). If two real-valued random variables have
mgfs that agree on an open interval around 0, then their distributions are identical. Equivalently,
for integrable densities f,g with Laplace transforms L{f} and L{g} equal on an interval, one has
f = g almost everywhere.
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