
ECE 581: Gaussian Processes: From Finite Dimensional to Fields

and Reproducing Kernel Hilbert Spaces

Henry D. Pfister
Duke University

December 1, 2025

Contents

1 Introduction 2

2 Background 2
2.1 The Gaussian Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Random Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Mean and Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Multivariate Gaussian Distributions 3
3.1 Generating Gaussian Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Deriving the PDF via Change of Variables . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Estimation and Inference 5
4.1 Multiple Random Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2 Conditioning for a Bivariate Gaussian . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.3 Conditioning on Part of a Gaussian Vector . . . . . . . . . . . . . . . . . . . . . . . 7
4.4 Conditioning on Noisy Linear Observations . . . . . . . . . . . . . . . . . . . . . . . 9

5 Gaussian Processes 10
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.2 Examples and Spectral Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3 Gaussian Random Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Reproducing Kernel Hilbert Spaces 14
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.2 Kernel functions and feature maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.3 Connection to Gaussian Random Fields . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.4 Simple kernels, spaces, and GRFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7 Worked examples 19

8 Summary 20

A Useful matrix identities 21

1



B Ancillary Results from Probability 22

1 Introduction

Why Gaussians? Gaussian models are ubiquitous in modern statistics, signal processing, and
machine learning. They enable moderate-complexity algorithms with optimal inference properties
under quadratic loss: linear estimators become optimal, posteriors stay Gaussian, and key computa-
tions reduce to linear algebra. Beyond convenience, the central limit theorem (CLT) explains why
sums of many small, independent effects are approximately Gaussian, making Gaussian assumptions
broadly reasonable in practice.

What this tutorial covers. We begin with one-dimensional and i.i.d. Gaussian basics, lift to
random vectors, and derive the general multivariate Gaussian pdf via affine transformations. We
then develop linear–Gaussian inference, showing that conditionals and posteriors remain Gaussian
with closed-form mean and covariance. Finally, we connect Gaussian processes (GPs) and Gaussian
random fields (GRFs) to reproducing kernel Hilbert spaces (RKHS), highlighting kernels, Mercer
decompositions, and the Karhunen–Loève (KL) connection.

2 Background

2.1 The Gaussian Distribution

A (scalar) Gaussian random variable X with mean µ ∈ R and variance σ2 > 0 is denoted by
X ∼ N (µ, σ2) and defined by its pdf

fX(x) =
1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
=

1

σ
ϕ

(
x− µ

σ

)
, (1)

where ϕ(x) := (2π)−1/2e−x2/2 is the pdf of a standard Gaussian. Its cdf is given by

Φµ,σ(x) = Pr{X ≤ x} =

∫ x

−∞
fX(z) dz = Φ

(
x− µ

σ

)
,

where Φ(x) :=
∫ x
−∞ ϕ(z) dz is the cdf of a standard Gaussian.

Let X1, . . . , Xn
i.i.d.∼ N (0, 1) be a sequence of i.i.d. standard Gaussians. It follows from indepen-

dence that the joint pdf has the product form given by

fX(x) =
n∏

i=1

ϕ(xi) = (2π)−n/2 exp
(
− 1

2 ∥x∥
2 ).

We write X ∼ N (0, In) to denote an n-dimensional standard normal.

2.2 Random Vectors

The theory of random variables extends naturally to vectors. Let X = (X1, . . . , Xn)
⊤ be a vector

where each entry is a random variable. Then, X is called a random vector in Rn. Standard operations
such as addition and scalar multiplication are naturally inherited. Also, the expectation operator
acts componentwise and is defined by

E[X] := (E[X1], . . . ,E[Xn])
⊤.

2



For a matrix A ∈ Rm×n and vector b ∈ Rn, the linearity of expectation implies that E[AX+ b] =
AE[X] + b. We write In for the n× n identity matrix and drop the subscript when the dimension
is clear from context.

2.3 Mean and Covariance

For a random vector X in Rn, the mean vector is defined to be µX = E[X] ∈ Rn. Similarly, the
covariance matrix of X is defined by

ΣX = Cov(X) := E
[
(X− µX)(X− µX)⊤

]
∈ Rn×n, (2)

where subscripts are dropped when they are clear from the context. We also note that the total
variance of a random vector is given by

E
[
∥X− µX∥2

]
= E

[
Tr

(
(X− µX)(X− µX)⊤

)]
= Tr

(
E
[(
(X− µX)(X− µX)⊤

)])
= Tr

(
Σ
)
.

Example 2.1 (Linear Form). For the random vector X in Rn and any c ∈ Rn, the linear form
Y = c⊤X defines a scalar random variable. It is easy to verify that Y has mean E[Y ] = c⊤µX and
variance Var(Y ) = c⊤ΣX c.

We note that Σ is symmetric and positive semidefinite. For example, one can see that Σ is
positive semidefinite just by noting that c⊤ΣX c = Var(Y ) ≥ 0 for all c ∈ Rn. Likewise, it is
symmetric because it equals the average of symmetric matrices given by (x−µ)(x−µ)T for x ∈ Rn.

3 Multivariate Gaussian Distributions

Definition 3.1 (Multivariate Gaussian Distribution). A random vector Y ∈ Rn is (multivariate)
Gaussian with mean µ ∈ Rn and covariance Σ ∈ Rn×n (with Σ positive definite) if it has a PDF of
the form

fY(y) =
1

(2π)n/2
√
detΣ

exp
(
− 1

2(y − µ)⊤Σ−1(y − µ)
)
. (3)

This statement can be written in shorthand as Y ∼ N (µ,Σ).

Proposition 3.2. The moment generating function associated with (3) is given by

MY(t) := E
[
et

⊤Y
]
= exp

(
t⊤µ+ 1

2 t
⊤Σ t

)
. (4)

Proof. Starting from the definition and using the density in (3), we can write

MY(t) =

∫
Rn

exp(t⊤y)
1

(2π)n/2
√
detΣ

exp
(
− 1

2(y − µ)⊤Σ−1(y − µ)
)
dy

=
1

(2π)n/2
√
detΣ

∫
Rn

exp
(
− 1

2

[
y⊤Σ−1y − 2(Σ−1µ+ t)⊤y + µ⊤Σ−1µ

])
dy.

We complete the square in y by defining m := µ+Σt and writing

y⊤Σ−1y − 2(Σ−1µ+ t)⊤y = (y −m)⊤Σ−1(y −m)− t⊤Σt− 2 t⊤µ.
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Plugging in and collecting constants gives

MY(t) = exp
(
t⊤µ+ 1

2 t
⊤Σ t

) 1

(2π)n/2
√
detΣ

∫
Rn

exp
(
− 1

2(y −m)⊤Σ−1(y −m)
)
dy.

The integral equals 1 because it is the integral of an n-dimensional Gaussian density with mean m
and covariance Σ. Hence MY(t) = exp

(
t⊤µ+ 1

2 t
⊤Σ t

)
.

A probability distribution whose mgf exists on an open set containing 0 is uniquely determined
by that mgf. Thus, we equations (3) and (4) both imply each other. See Theorem B.1.

Theorem 3.3 (Characterization of a Gaussian). The following are equivalent for a random vector
Y in Rn with mean µ and positive-definite covariance Σ:

(i) Y has the multivariate Gaussian distribution whose pdf is given by (3).

(ii) For every c ∈ Rn, the real random variable c⊤Y is a scalar Gaussian.

(iii) Y = AX+ µ for invertible A with Σ = AA⊤ and an iid standard Gaussian X ∼ N (0, In).

Proof. (i) ⇒ (ii). For any c ∈ Rn and s ∈ R, we can use (3) to write the moment generating
function of c⊤Y as

Mc⊤Y(s) = E
[
esc

⊤Y
]
=MY(sc) = exp

(
s c⊤µ+ 1

2s
2 c⊤Σ c

)
.

This equals the MGF of N (c⊤µ, c⊤Σ c) and thus c⊤Y has the same distribution by Theorem B.1.
(ii) ⇒ (i). Assume that, for every c ∈ Rn, the random variable c⊤Y is a scalar Gaussian. Since

Y has mean µ and covariance Σ, linearity of expectation implies that c⊤Y has mean c⊤µ and
variance c⊤Σ c. Thus, we have

Mc⊤Y(s) = exp
(
s c⊤µ+ 1

2s
2 c⊤Σ c

)
.

But, for any random vector Y, we know that

Mc⊤Y(s) = E
[
esc

⊤Y
]
=MY(sc).

Thus, choosing s = 1 shows that the mgf of Y equals the mgf of a Gaussian random vector with
mean µ and covariance Σ. By Theorem B.1, Y is a Gaussian with these parameters.

(iii) ⇒ (ii),(i). For any c ∈ Rn and s ∈ R, we can use properties of linear forms of Gaussians to
write the moment generating function of c⊤Y = c⊤(AX+ µ) as

Mc⊤Y(s) = E
[
esc

⊤(AX+µ)
]
= E

[
esc

⊤µ+s(c⊤A)X
]
= exp

(
s c⊤µ+ 1

2s
2 c⊤A ΣX︸︷︷︸

In

A⊤ c
)
.

This equals the MGF of N (c⊤µ, c⊤AA⊤ c) and thus c⊤Y is a scalar Gaussian and we have (ii).
For (i), recall that

Mc⊤Y(s) = E
[
esc

⊤Y
]
=MY(sc)

for any random vector Y. Thus, choosing s = 1 shows that the mgf of Y equals the mgf of a
Gaussian random vector with mean µ and covariance Σ = AA⊤.
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3.1 Generating Gaussian Random Variables

By Theorem 3.3, one can generate a Gaussian random vector Y with mean µ and covariance
Σ = AAT simply by computing

Y = AX+ µ,

where X ∼ N (0, In). The only missing element is how to find A from Σ. There are two standard
approaches:

1. Eigenvalue decomposition: For a symmetric positive semidefinite matrix Σ, an orthogonal
set of eigenvectors is guaranteed and we have the decomposition Σ = QΛQ⊤, where Λ is a
diagonal matrix containing the non-negative eigenvalues of Σ and Q is an orthogonal matrix
satisfying Q⊤Q = QQ⊤ = I. Choosing A = Q

√
Λ gives AA⊤ = Σ. For covariance matrices,

this idea is closely related to the Karhunen-Loéve transform.

2. LDL⊤ factorization: For a symmetric matrix, the standard LU decomposition implied by
Gaussian elimination is easily modified to give Σ = LDL⊤, where L is lower triangular with
ones on the diagonal and D is a diagonal matrix. If Σ is positive semidefinite, then D has
non-negative entries and we can choose A = L

√
D to see that AA⊤ = Σ. For Σ ≻ 0, this is

the classic Cholesky factorization Σ = AAT .

3.2 Deriving the PDF via Change of Variables

We derive the density of Y = AX + µ where X ∼ N (0, In) and A ∈ Rn×n is invertible. The
mapping h : x 7→ Ax+ µ is a bijection with inverse h−1(y) = A−1(y − µ). Let C = [−1/2, 1/2]n be
the unit cube in Rn centered at 0. Then, we have

fY(y) = lim
δ→0

Pr(Y ∈ δC + y)

Vol(δC + y)

= lim
δ→0

Pr(h(X) ∈ δC + y)

δn

= lim
δ→0

Pr(X ∈ h−1(δC + y))

Vol(h−1(δC + y))

Vol(h−1(δC + y))

δn

= lim
δ→0

Pr(X ∈ h−1(δC + y))

Vol(h−1(δC + y))

δnVol(A−1C)
δn

= lim
δ→0

Pr(X ∈ h−1(δC + y))

Vol(h−1(δC + y))

∣∣detA−1
∣∣

= fX
(
h−1(y)

) ∣∣detA−1
∣∣

= fX
(
h−1(y)

)
/
√
detΣ

=
1√

(2π)n detΣ
exp

(
− 1

2

∥∥A−1(y − µ)
∥∥2 ),

where
∣∣detA−1

∣∣ = 1/
√
detΛ = 1/

√
detΣ is the volume of the parallelepiped A−1C.

4 Estimation and Inference

4.1 Multiple Random Vectors

Consider joint random vectors X in Rn and Y in Rm with finite second-moments (i.e., E[∥X∥2] <∞
and E[∥Y∥2] < ∞). This implies the existence of their expectations, µX = E[X] ∈ Rn and
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µY = E[Y] ∈ Rm, and their cross-covariance

ΣXY := Cov(X,Y) = E
[
(X− µX)(Y − µY)⊤

]
∈ Rn×m.

The minimum mean-squared error (MMSE) when estimating X from Y is defined to be

mmse(X | Y) := inf
g : Rm→Rn

E
[
∥X− g(Y)∥2

]
= E

[
∥X− E[X | Y]∥2

]
,

where the conditional expectation E[X | Y] = g(Y) is defined by any optimal g. If the conditional
pdf fX|Y(x|y) exists, then we have

E[X | Y = y] = g(y) =

∫
x fX|Y(x|y)dx.

The law of nested conditional expectation says that E
[
E[X | Y]

]
= E[X].

Using the conditional expectation, we can define the conditional covariance matrix with

Cov(X | Y) := E
[
(X− E[X | Y])(X− E[X | Y])⊤ | Y].

In this case, the law of nested conditional expectation implies that

E
[
Tr

(
Cov(X | Y)

)]
= E

[
E
[
∥X− E[X | Y]∥2 | Y

]]
= mmse(X | Y).

In terms of notation, we now introduce notation similar to Y ∼ N (0, In) to define conditional
distributions. To specify the conditional distribution of a random variable Y given the event X = x,
one can use the notation Y|X = x ∼ Dist(x), where Dist(x) represents some distribution whose
parameters depend on x. For example, if Y is an observation X in standard Gaussian noise, then
we would write

Y|X = x ∼ N (x, In).

4.2 Conditioning for a Bivariate Gaussian

Often, one would like to infer the posterior distribution X1 from an observation of X2 when (X1, X2)
are jointly Gaussian. The following lemma addresses this situation.

Lemma 4.1 (Bivariate Gaussian conditioning). Let (X1, X2)
⊤ ∼ N

([
µ1
µ2

]
,

[
σ21 σ1σ2ρ

σ1σ2ρ σ22

])
with

σ21 > 0, σ22 > 0, and ρ ∈ [−1, 1]. Then, we have

X1 | X2 = x2 ∼ N
(
µ1 − J12(x2 − µ2)/J11, 1/J11

)
.

Proof. Let ∆ = det(Σ) = σ21σ
2
2 − ρ2σ21σ

2
2 > 0. Then, we have

J = Σ−1 =
1

∆

[
σ22 −ρσ1σ2

−ρσ1σ2 σ21

]
⇒ J11 =

σ22
∆
, J12 = −ρσ1σ2

∆
.

Since the conditional density of X1 given X2 equals

fX1|X2
(x1|x2) =

fX1,X2(x1, x2)

fX2(x2)
=

√
2πσ22

2π
√
det(Σ)

exp

(
−1

2
(x− µ)Σ−1(x− µ) +

1

2σ22
(x2 − µ2)

2

)
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=
1√

2π(∆/σ22)
exp

(
−J11

2
(x1 − µ1)

2 + J12(x1 − µ1)(x2 − µ2)−
J22
2

(x2 − µ2)
2 +

1

2σ22
(x2 − µ2)

2

)
,

one can simplify the exponential to verify that

X1 | X2 = x2 ∼ N
(
µ1 − J12(x2 − µ2)/J11, 1/J11

)
.

A simpler method is to observe that

fX1|X2
(x1|x2) ∝ exp

(
− 1

2

[
J11x

2
1 − 2(J11µ1 − J12(x2 − µ2))x1

]
+ const in x1

)
∝ exp

(
− 1

2(x1 − µ1|2)
2/σ21|2 + const in x1

)
,

where σ21|2 is the posterior variance and µ1|2 is the posterior mean. From this, one can easily read
off these parameters from the terms in the exponential involving x1. In particular, the posterior
variance is half the reciprocal of the coefficient x21 (i.e., σ21|2 = 1/J11) and the mean is σ21|2 times the

coefficient of x1 (i.e., µ1|2 = µ1 − J12(x2 − µ2)/J11). Thus, we have

σ21|2 = Var(X1 | X2) =
∆

σ22
= σ21(1− ρ2), µ1|2 = E[X1 | X2 = x2] = µ1 + ρσ1

x2 − µ2
σ2

.

Conceptually, the formula for µ1|2 is natural because (x2 − µ2)/σ2 is the normalized deviation in x2
and the scale factor ρσ1 maps this to its linear effect on x1.

Example 4.2. Under the conditions of the previous lemma, let µ1 = 1, µ2 = −2, σ21 = 4, σ22 = 9,
and ρ = 0.5. For the observation X2 = 1.5, the lemma yields

X1 | X2 = 1.5 ∼ N
(
µ1 + ρ σ1

1.5−µ2

σ2
, σ21(1− ρ2)

)
= N

(
1 + 1

2 · 2 ·
3.5
3 , 4(1− 0.25)

)
= N (µ1|2, σ

2
1|2),

where the posterior mean and variance are µ1|2 ≈ 2.1667 and σ21|2 = 3.

4.3 Conditioning on Part of a Gaussian Vector

In many cases, one would like to infer the posterior distribution of some elements of a Gaussian
vector given the other elements. If X is Gaussian, then we can split X into jointly Gaussian random
vectors X1 and X2. Thus, we define

X =

[
X1

X2

]
, µ = E[X] =

[
µ1

µ2

]
, Σ = Cov(X) =

[
Σ11 Σ12

Σ21 Σ22

]
.

Theorem 4.3 (Gaussian conditioning). Assume Σ is positive definite. Then, for any fixed x2, the
conditional distribution of X1 given X2 is Gaussian:

X1

∣∣X2 = x2 ∼ N
(
µ1|2, Σ1|2

)
, (5)

µ1|2 = µ1 − Σ12Σ
−1
22 (x2 − µ2), (6)

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21. (7)

Moreover, the minimum mean-squared error of X1 given X2 satisfies

mmse(X1 | X2) := E
[
∥X1 − E[X1 | X2]∥2

]
= Tr(Σ1|2).
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Proof. The joint density satisfies

fX(x) ∝ exp
(
− 1

2(x− µ)⊤Σ−1(x− µ)
)
,

and we write the inverse covariance (or precision) matrix in blocks with

Σ−1 =

[
J11 J12
J21 J22

]
,

where J11, J22 are positive definite (because they are principal submatrices of Σ−1 which is positive
definite) and J21 = J⊤

12. The conditional pdf of X1 given X2 satisfies

fX1|X2
(x1|x2) =

fX1,X2(x1,x2)

fX2(x2)

∝ exp
(
− 1

2(x− µ)⊤Σ−1(x− µ) + 1
2(x2 − µ2)

⊤Σ−1
22 (x2 − µ2)

)
∝ exp

(
−Q(x1)

)
,

where (since pdfs normalize to 1) we can drop all terms that do not involve x1 to get

Q(x1) =
1
2x

⊤
1 J11x1 − x⊤

1 (J11µ1 − J12(x2 − µ2)) + const in x1.

Since pdfs must normalize to 1, it is sufficient to focus on proportionality and only keep only
terms that involve x1. The conditional distribution of X1 given X2 = x2 is Gaussian because it
matches a Gaussian on all terms that depend on x1 (i.e., terms that are constant with respect to x1

are determined by normalization). In addition, we can determine the parameters of the conditional
distribution by matching terms with

fX1|X2=x2
(x1) ∝ exp

(
− 1

2(x1 − µ1|2)
⊤Σ−1

1|2(x1 − µ1|2)
)

∝ exp
(
− 1

2x
⊤
1 Σ

−1
1|2x1 + x⊤

1 Σ
−1
1|2µ1|2 + const in x1

)
.

Thus, we can write X1|X2 = x2 ∼ N (µ1|2, Σ1|2) with covariance Σ1|2 = J−1
11 and mean µ1|2 =

µ1 − J−1
11 J12(x2 − µ2).

Equivalently, one could observe that

Q(x1) =
1
2(x1 − µ1)

⊤J11(x1 − µ1) + (x1 − µ1)
⊤J12(x2 − µ2) + const in x1

is a quadratic function of x1 for fixed x2 and completing the square yields

Q(x1) =
1
2

(
x1 − µ1|2

)⊤
J11

(
x1 − µ1|2

)
+ const, with µ1|2 = µ1 − J−1

11 J12(x2 − µ2).

Now, we use block-inversion identities in Appendix A to compute the precision blocks explicitly.

Applying the alternative block inverse formula to Σ =

[
Σ11 Σ12

Σ21 Σ22

]
gives

Σ−1
1|2 = J11 = (Σ11 − Σ12Σ

−1
22 Σ21)

−1.

For J12, the alternative block inverse formula gives J12 = −J11Σ12Σ
−1
22 . Therefore, we have

µ1|2 = µ1 − J−1
11 J12(x2 − µ2) = µ1 +Σ12Σ

−1
22 (x2 − µ2).
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Conceptually, this formula makes sense because Σ22(x2 − µ2) gives the whitened x2 deviation and
multiplication by Σ12 linearly maps the whitened x2 deviation to its effect on x1.

For the MMSE claim, note that for fixed x2,

E
[
∥X1 − E[X1 | X2]∥2

∣∣X2 = x2

]
= Tr

(
Cov(X1 | X2 = x2)

)
= Tr(Σ1|2),

and Σ1|2 is independent of x2. Taking expectation over X2 yields mmse(X1 | X2) = Tr(Σ1|2).

Example 4.4. Consider the setup of the previous theorem where X = (X1,X2) ∈ R4 is jointly
Gaussian with

µ1 =

[
0

0

]
, µ2 =

[
1

−1

]
, Σ11 =

[
2 0.3

0.3 1.5

]
, Σ22 =

[
1.2 0.4

0.4 2.0

]
, Σ12 =

[
0.5 0.2

0.1 0.3

]
.

For the observation x2 =

[
1.2

−0.6

]
, Theorem 4.3 gives X1 | X2 = x2 ∼ N (µ1|2,Σ1|2) with

µ1|2 = µ1 +Σ12Σ
−1
22 (x2 − µ2), Σ1|2 = Σ11 − Σ12Σ

−1
22 Σ21.

Numerically, we have

Σ−1
22 ≈

[
0.8929 −0.1786

−0.1786 0.5357

]
, Σ12Σ

−1
22 ≈

[
0.4107 0.0179

0.0357 0.1429

]
.

Thus, with x2 − µ2 = [0.2, 0.4]⊤, we obtain

µ1|2 ≈
[
0.0893

0.0643

]
, Σ1|2 ≈

[
1.7911 0.2536

0.2536 1.4536

]
.

Remark 4.5. It is quite common to ignore the overall normalization constant when analyzing
distributions by using statements like f(x) ∝ g(x) which means that f(x) = a g(x) for some
unspecified constant a. For distributions, this implies equality because the difference will vanish
when both are normalized to integrate to 1. Moreover any function proportional to e−z⊤Jz+c⊤z will
normalize to a Gaussian when J is positive definite.

4.4 Conditioning on Noisy Linear Observations

Theorem 4.6 (Noisy Linear Observations). Consider the model

Y = HX+ Z, X ∼ N (µX,ΣX), Z ∼ N (0,ΣZ) with ΣZ ≻ 0, X ⊥⊥ Z.

Then, the posterior of X given Y is the Gaussian fX|Y ∼ N (µ′,Σ′) with

µ′ = µX +Σ′H⊤Σ−1
Z

(
y −HµX

)
, (8)

Σ′ = ΣX − ΣXH
⊤(HΣXH

⊤ +ΣZ

)−1
HΣX. (9)

Also, the minimum mean-squared error of X given Y satisfies

mmse(X | Y) := E
[
∥X− E[X | Y]∥2

]
= Tr(Σ′).

9



Proof. Using this setup, we define a new Gaussian random vector W satisfying

W =

[
X
Y

]
=

[
I
H

]
X+

[
0
Z

]
, µW =

[
µX

HµX

]
, ΣW =

[
ΣX ΣXH

⊤

HΣX HΣXH
⊤ +ΣZ

]
.

Then, we apply Theorem 4.3 with µ1 = µX, µ2 = HµX, Σ11 = ΣX, Σ12 = ΣXH
⊤ and Σ22 =

HΣXH
⊤ +ΣZ to obtain the formulas

µ1|2 = µ1 +Σ12Σ
−1
22 (x2 − µ2) = µX +ΣXH

⊤(HΣXH
⊤ +ΣZ)

−1(x2 −HµX),

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21 =

(
Σ−1
X +H⊤Σ−1

Z H
)−1

.

The Woodbury identity is used to rewrite the stated expressions above for µ′ and Σ′. Also, we have
mmse(X | Y) = Tr(Σ1|2).

Example 4.7 (Two correlated sensors). Define X ∼ N (0, 1), sensors Y1 = X+Z1, Y2 = X+Z2 with

Var(Zi) = σ2i and Cov(Z1, Z2) = ρσ1σ2. Stacking Y = (Y1, Y2)
⊤ and defining H =

[
1 1

]⊤
, one

obtains Σ′ = (1 + 1⊤Σ−1
Z 1)−1 and µ′ = Σ′ 1⊤Σ−1

Z y. This estimate reduces the relative contribution
of the noisier sensor.

For a concrete numeric illustration, let σ21 = 0.25, σ22 = 1, ρ = 0.3, and observe y = (0.8,−0.2)⊤.
Then

ΣZ =

[
0.25 0.15

0.15 1

]
, Σ−1

Z =
1

0.2275

[
1 −0.15

−0.15 0.25

]
.

Hence 1 + 1⊤Σ−1
Z 1 = 1 + 0.95

0.2275 ≈ 5.1758, so Σ′ ≈ 0.1932. Moreover,

µ′ = Σ′ 1⊤Σ−1
Z y = Σ′ [ 0.83, −0.17 ]1

0.2275
≈ 0.1932× 2.9022 ≈ 0.5607.

Remark 4.8 (MMSE and MAP estimates). Under Gaussian priors/likelihoods with quadratic loss,
the posterior mean is both the MMSE estimate due to symmetry and the MAP estimate due to
unimodality. Indeed, if X | Y = y ∼ N (µ′,Σ′), then

log p(x | y) = const− 1
2(x− µ′)⊤Σ′−1(x− µ′),

whose gradient vanishes uniquely at x = µ′. Thus the MAP estimate is x̂MAP = µ′. Under squared
error, the MMSE estimator is the conditional mean and x̂MMSE = E[X | Y = y] = µ′.

5 Gaussian Processes

5.1 Introduction

A Gaussian process (GP) is a stochastic process with a single index such that joint distributions of
samples are always Gaussian. Let the index set T be an arbitrary discrete or continuous set. Note
that, from now on, we will use the shorthand [N ] := {1, 2, . . . , N} ⊂ N.

Definition 5.1. A stochastic process {Xt}t∈T is a Gaussian process if for every finite set of indices
t1, . . . , tm ∈ T , the vector (Xt1 , . . . , Xtm) is jointly Gaussian.

Definition 5.2 (Mean and covariance). For a Gaussian process, the mean function is µ(t) := E[Xt]
for t ∈ T and the covariance function is k(s, t) := Cov(Xs, Xt) = E

[
(Xs − µ(s))(Xt − µ(t))

]
for

s, t ∈ T . It is called centered if µ(·) ≡ 0.
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Proposition 5.3 (Characterization). For a Gaussian process with µ(t) = E[Xt] and k(s, t) =
Cov(Xs, Xt) and any t1, . . . , tm ∈ T , we have (Xt1 , . . . , Xtm)

⊤ ∼ N
(
[µ(ti)]i∈[m], [k(ti, tj)]i,j∈[m]).

Conversely, any pair (µ, k) where K = [k(ti, tj)]i,j∈[m] is positive definite for every finite set of times
defines a GP.

Proof. For the forward direction, each finite subvector is multivariate normal by definition. For
the converse, any family of finite-dimensional Gaussians with moments specified by a positive-
definite kernel is consistent under marginalization. Thus, one can apply Kolmogorov’s Extension
Theorem [2].

Theorem 5.4 (Gaussian Process Regression). Let Xt be a GP with mean µ(t) = 0 and covariance

k(s, t). Let t1, . . . , tn ∈ T be n distinct indices and define Yi = Xti + Zi with Zi
i.i.d.∼ N (0, σ2) for

i ∈ [n]. Then, for any t′ ∈ T \ {t1, . . . , tn}, the conditional distribution of Xt′ given Y = y is
Gaussian with mean and variance

m′ = E[Xt′ | Y = y] = r⊤(K + σ2I)−1 y, (10)

v′ = Var(Xt′ | Y = y) = k(t′, t′)− r⊤(K + σ2I)−1 r, (11)

where K ∈ Rn×n with Kij = k(ti, tj) is the covariance matrix of (Xt1 , . . . , Xtn) and r ∈ Rn is the
cross-correlation vector with Xt′ defined by [r]i = k(ti, t

′).

Proof. For this construction, the joint distribution of (Y, Xt′) is Gaussian with mean 0 and covariance

K =

[
K + σ2I r

r⊤ k(t′, t′)

]
.

Thus, we can apply Theorem 4.3 to get formulas for m′ and v′. Notice that the posterior mean is a
linear combination of the observed values in y.

5.2 Examples and Spectral Methods

If the index set forms an additive group, then the correlation may be a function only of the difference
between s and t.

Definition 5.5 (Stationary). A stochastic process is strictly stationary if all its finite-dimensional
distributions are invariant under translation. It is (wide-sense) stationary if µ(t) is constant and the
covariance depends only on the difference between indices: k(s, t) = r(t − s) for all s, t ∈ T and
some autocovariance function r(τ).

Example 5.6 (Discrete time). Let Xt = aXt−1 +
√
1− a2Wt for t ∈ T = Z with |a| < 1 and

Wt
i.i.d.∼ N (0, 1). This is the unique stationary Gaussian process with E[Xt] = 0, Var(Xt) = 1, and

autocovariance r(τ) = Cov(Xt, Xt+τ ) = a|τ |.
To see this, we iterate the defining equation to get Xt =

√
1− a2

∑∞
k=0 a

kWt−k for all t ∈ T ,
where the sum converges almost surely because |a| < 1. Thus, Xt is a linear combination of
standard Gaussians and it follows that Xt is Gaussian with mean µ(t) = 0 and variance Var(Xt) =
(1− a2)

∑
k≥0 a

2k = 1. For τ ≥ 0, the covariance function is given by

k(t, t+ τ) = Cov(Xt, Xt+τ )

= (1− a2)
∑
k≥0

∑
ℓ≥0

ak+ℓ Cov(Wt−k,Wt+τ−ℓ)

11



= (1− a2)
∑
k≥0

a2k+τ

= aτ .

Since k(t, t+ τ) is independent of t, we can define the autocovariance r(τ) = k(t, t+ τ) and note
that choosing t = −τ shows that r(−τ) = r(τ).

The following example connects this material with earlier results. First, we know the Wiener or
linear MMSE estimate of one random variable given others follows directly from the inner product
space viewpoint and normal equations. Second, recall from Section 4 and Theorem 4.3 that, for
jointly Gaussian variables under squared loss, the posterior mean also equals the linear MMSE
estimator.

Example 5.7 (Optimal Wiener filter). For the autoregressive process Xt = aXt−1 +
√
1− a2Wt

with Var(Xt) = 1, the covariance of (X−1, X0, X+1) is

K =

 1 a a2

a 1 a
a2 a 1

 .
Thus, the linear MMSE estimate of X0 given X−1 and X1 equals w⊤x with w = R−1r where

R =

[
1 a2

a2 1

]
is the covariance of x = (X−1, X+1) and r = [a, a]⊤ is the cross-covariance with X0.

Likewise, by Theorem 4.3, letting X1 = X0 and X2 = (X−1, X+1)
⊤ with zero mean and blocks

Σ11 = 1, Σ22 = R, and Σ12 = r⊤, we obtain

E[X0 | (X−1, X1) = x] = Σ12Σ
−1
22 x = r⊤R−1x = (R−1r)⊤x = w⊤x,

Var(X0 | X2) = Σ11 − Σ12Σ
−1
22 Σ21 = 1− r⊤R−1r.

Since R−1r =
a

1 + a2
[ 1, 1 ]⊤ and 1− r⊤R−1r = 1/(1 + a2), conditioning on the neighbors yields

E[X0 | X−1 = x−1, X+1 = x+1] =
a

1 + a2
(
x−1 + x+1

)
, Var(X0 | X−1, X+1) =

1

1 + a2
.

For a numerical example with a = 0.8, x−1 = 0.5, x+1 = −0.1, we get x̂0 =
0.8

1+0.64(0.5− 0.1) ≈
0.195, which matches the formulas above. The final form of the conditional expectation illustrates
the “matched-filter” perspective where the optimal estimator is shift invariant because the signal is
shift invariant.

Example 5.8 (Continuous time). Let W (t) denote a standard zero-mean Gaussian white noise
with covariance kW (t, t + τ) = δ(τ), where δ(·) denotes the Dirac delta. For h(t) satisfying∫
R |h(t)|2dt <∞, we can define the random process X(t) via convolution1

X(t) = (h ∗W )(t) :=

∫
R
h(τ)W (t− τ) dτ.

Then, X(t) is a stationary Gaussian stationary process with autocovariance

r(τ) = k(t, t+ τ)

1The process X(t) is well-defined and can be constructed in a fully rigorous manner even though the construction
given here based on W (t) is a less formal shortcut.
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= Cov
(
X(t), X(t+ τ)

)
= E

[∫∫
h(u)h(v)W (t− u)W (t+ τ − v) du dv

]
=

∫∫
h(u)h(v)E [W (t− u)W (t+ τ − v)] du dv

=

∫∫
h(u)h(v) δ(τ − (v − u)) du dv

=

∫
R
h(u)h(u+ τ) du.

Power spectral density (PSD). For a zero-mean, wide-sense stationary (WSS) process X(t)
with autocovariance rX(τ) = E[X(t)X(t+ τ)], define the finite-time Fourier transform

XT (ω) :=

∫ T

−T
X(t) e−iωt dt

and the expected finite-time normalized power spectral density is given by

S
(T )
X (ω) :=

1

2T
E
[
|XT (ω)|2

]
.

If the autocorrelation function is absolutely integrable, then the following limit exists and gives the
two-sided power spectral density:

SX(ω) = lim
T→∞

S
(T )
X (ω).

Theorem 5.9 (Wiener–Khinchin). If X is zero-mean WSS and rX is absolutely integrable, then

SX(ω) =

∫
R
rX(τ) e−iωτ dτ, rX(τ) =

1

2π

∫
R
SX(ω) eiωτ dω.

Proof sketch. Compute

S
(T )
X (ω) =

1

2T

∫ T

−T

∫ T

−T
E[X(t)X(s)] e−iω(t−s) dt ds =

1

2T

∫ T

−T

∫ T

−T
rX(t− s) e−iω(t−s) dt ds.

Let u = (t + s)/2 and τ = t − s. The u–integration yields (2T − |τ |)+, where (a)+ := max(a, 0).
Dividing by 2T and taking T → ∞, dominated convergence (using absolute integrability of rX) gives
SX(ω) =

∫
R rX(τ) e−iωτ dτ . The inverse formula follows from Fourier inversion under the stated

convention.

Filtered white noise. If X(t) = (h ∗W )(t) with W unit white noise (E[W (t)W (s)] = δ(t− s)),
then rX(τ) =

∫
R h(u)h(u+ τ) du. By Wiener–Khinchin and the correlation theorem,

SX(ω) =

∫
R
rX(τ) e−iωτ dτ = |H(ω)|2 , (12)

H(ω) =

∫
R
h(t) e−iωt dt. (13)

These expressions use the Fourier transform convention adopted in the Wiener–Khinchin section.
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Example 5.10 (Wiener filter for filtered white noise). If Y = X + N with X WSS and N
independent WSS, the optimal LTI estimator in frequency is

G⋆(ω) =
SXY (ω)

SY Y (ω)
=

SX(ω)

SX(ω) + SN (ω)
.

For X = h ∗W driven by unit white noise (so SX(ω) = |H(ω)|2) and white measurement noise with

PSD σ2N , this gives G⋆(ω) = |H(ω)|2

|H(ω)|2+σ2
N

. In this setting, the posterior mean (and linear MMSE

estimator) is obtained by passing Y through the LTI filter with frequency response G⋆(ω) above.

5.3 Gaussian Random Fields

In the previous section, we considered GPs with a single index. But, this was only to simplify the
description at first. All the previous statements actually apply immediately to Gaussian processes
indexed by arbitrary sets. Only the examples are limited to one dimension. Thus, we can index by
vectors and the resulting objects are called Gaussian random fields (GRFs). To lighten notation, we
will still use the indices s, t ∈ T though in some cases they may represent vectors.

Definition 5.11. A collection {Xt}t∈T is a Gaussian random field if, for any finite locations
t1, . . . , tm ∈ T , the vector X = (Xt1 , . . . , Xtm) is jointly Gaussian ∼ N

(
[µ(ti)]i∈[m], [k(ti, tj)]i,j∈[m]).

If the index set T is equipped with the structure of an abelian group, then Definition 5.5 can be
used to define stationarity without change. A stationary GRF is called isotropic if T is equipped
with the structure of a normed vector space and the covariance function k(s, t) is a function of
∥s− t∥. For example, a GRF defined by radial basis functions (RBFs) has, for some a, b ∈ (0,∞),
the covariance function

k(s, t) = a exp

(
−∥s− t∥2

2b2

)
.

Remark 5.12. These ideas also extend naturally to vector-valued GRFs, Xt ∈ Rp, where the
covariance function K(s, t) ∈ Rp×p becomes matrix-valued and is defined to be the cross-covariance
K(s, t) = E[(Xs − µ(s))(Xt − µ(t))⊤]. This is similar to choosing T = T ′ × [p] so that each
t = (t′, j) ∈ T indexes the j-th element located at the point t′.

6 Reproducing Kernel Hilbert Spaces

6.1 Introduction

Consider the problem of estimating an unknown function f : X → R from input-output observations
(xi, yi) ∈ X × R satisfying yi = f(xi) for i ∈ N. For any candidate g : X → R, we consider the risk
(or loss) associated with using g instead of f . Using ℓ(ŷ, y) for the loss due to estimating ŷ when y
is correct, the empirical risk for the first N data points is

LN (g, f) :=
1

N

N∑
i=1

ℓ(g(xi), f(xi)) =

∫
X
ℓ(g(x), f(x)) dνN (x),

where νN is the empirical distribution of {x1, . . . , xN}. If we assume that νN converges weakly to ν
as N → ∞, then we can also define

L(g, f) = lim
N→∞

LN (g, f) :=

∫
X
ℓ(g(x), f(x)) dν(x).
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One can think of ν as the distribution from which the evaluation points are drawn. In this work, we
will focus exclusively on the squared-error loss ℓ(ŷ, y) = (ŷ − y)2.

To compute an estimate of f(x), a standard approach is to use a smoothing kernel k(x, x′) to
give the estimate

gθ(x) =

N∑
i=1

θi k(x, xi),

where the parameters θ1, . . . , θN are chosen to minimize the overall loss function

L(θ) = LN (gθ, f) +R(gθ).

The first term in the loss is the empirical risk and the second term is a regularization term, which is
often associated with a prior distribution on the set of functions.

Another common approach to fitting data is to first choose a non-linear feature map and then
learn a linear function of the features. For example, we can let ϕ : X → ℓ2 map X to the standard
Hilbert space ℓ2 of square summable sequences whose inner product is the dot product. Then, the
Riesz representation theorem implies that any linear functional (i.e., a mapping from ℓ2 to R) of
the feature vector ϕ(x) can be written as an inner product ⟨ϕ(x), h⟩ℓ2 , where h ∈ ℓ2 defines the
linear functional. Thus, this approach leads to

gh(x) = ⟨ϕ(x), h⟩ℓ2 .

If the feature map is matched to the covariance kernel, then we can estimate f by minimizing the
loss

L(h) = LN (gh, f) +
1

2
∥h∥2ℓ2 .

This will match the previous solution if the regularization term R is chosen correctly.
Lastly, one can also treat the data, (xi, yi) ∈ X ×R for i ∈ [N ], as being generated by a Gaussian

random field with covariance function k(x, x′). In this case, one can use ideas from GRFs to estimate
the posterior mean g(x) of f(x) given the observed data.

Surprisingly, all these perspectives are closely related and their optimal estimates are equal.

6.2 Kernel functions and feature maps

Definition 6.1 (Positive-definite kernel). For any set X , a function k : X × X → R is symmetric
positive semidefinite if k(x, x′) = k(x′, x) for all x, x′ ∈ X and, for any x1, . . . , xn ∈ X and c ∈ Rn,
we have

∑
i,j cicjk(xi, xj) ≥ 0.

Remark 6.2. While the above kernel is positive semidefinite, this is the standard naming convention.

Theorem 6.3 (Mercer’s theorem). If k is continuous, symmetric, and positive semidefinite on a
compact domain (X , ν) with ν a finite measure, then the integral operator

(Tf)(x) =

∫
X
k(x, x′)f(x′) dν(x′)

is self-adjoint, positive, and compact. Thus, the eigenvectors {ψi : X → R}i∈N form a complete
orthonormal basis for the range of k with

⟨ψi, ψj⟩L2(ν) =

∫
X
ψi(x)ψj(x) dν(x) = δi,j .
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Thus, we can write

k(x, x′) =
∞∑
i=1

λi ψi(x)ψi(x
′),

where convergence is uniform on X × X .

Proof Idea. If X = {x1, . . . , xM} is a finite set, then this follows directly from the eigenvalue
decomposition of the covariance matrix K with entries Ki,j = k(xi, xj) for i, j ∈ [M ]. In particular,
the matrix is guaranteed to have an orthonormal set of eigenvectors (due to symmetry) with
non-negative eigenvalues (due to positivity) that span the space.

For the continuous case, the same idea generalizes naturally to integral operators that are compact,
self-adjoint, and positive. In this case, a compact operator has a countable set of eigenvalues, a
self-adjoint operator (the infinite-dimensional analogue of a symmetric matrix) has orthonormal
eigenfunctions that span the range, and a positive operator has non-negative eigenvalues.

Remark 6.4. Let us take a moment to consider the effect of the background measure ν. While one
gets an orthonormal basis and decomposition of the kernel for any positive ν, choosing the proper ν
does matter. For example, if one computes ∥f − g∥2L2(ν) with ν equal to the true data distribution,
then this norm equals the expected mean-squared error of the approximation when the x values are
drawn i.i.d. from ν.

Definition 6.5. The feature map ϕ : X → ℓ2 associated with a Mercer kernel k(x, x′) is defined by
its eigenvalue decomposition (i.e., {λi}i∈N and {ψi}i∈N) using

ϕ(x) := (ϕ1(x), ϕ2(x), ϕ3(x) . . .), (14)

where ϕi(x) :=
√
λiψi(x) for i ∈ N.

Using these definitions and results, we observe that

〈
ϕ(x), ϕ(x′)

〉
ℓ2

=

∞∑
i=1

λi ψi(x)ψi(x
′) = k(x, x′).

Moreover, this implies that

gθ(x) =

N∑
i=1

θi k(x, xi)

=

N∑
i=1

θi ⟨ϕ(x), ϕ(xi)⟩ℓ2

=

〈
ϕ(x),

N∑
i=1

θiϕ(xi)

〉
ℓ2

= ⟨ϕ(x), gθ⟩ℓ2 ,

where we abuse notation by defining gθ =
∑N

i=1 θiϕ(xi) ∈ ℓ2. A key observation is that the vector
gθ is a representation of the function gθ : X → R where evaluation at x is given by an inner product
(i.e., gθ(x) = ⟨ϕ(x), gθ⟩). This also implies that all such weighted averages of kernels can be written
as the inner product between the feature vector ϕ(x), which depends only on the evaluation point x,
and another ℓ2 vector that determines gθ.
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Remark 6.6. From a signal processing point of view, the change of variables associated with the
feature map is a decorrelating transform that whitens the process.

Definition 6.7 (Reproducing kernel Hilbert space). A vector space of functions f : X → R is called
an RKHS Hk with kernel k if the:

1. kernel satisfies k(·, x′) ∈ Hk for all x′ ∈ X ,

2. inner product is reproducing, ⟨f, k( · , x′)⟩Hk
= f(x′) for all f ∈ Hk and x′ ∈ X .

Theorem 6.8. If k(x, x′) is a kernel satisfying the conditions of Theorem 6.3, then it defines an
RKHS spanned by the eigenfunctions {ψi}i∈N with inner product defined by

⟨ψi, ψj⟩Hk
=

1

λi
δi,j . (15)

Proof. From Theorem 6.3, we know that the space Hk equals the range of k and is spanned by
{ψi}i∈N. Since ψi ∈ Hk, we can use the reproducing property to observe that

ψi(x
′) =

〈
ψi( · ), k( · , x′)

〉
Hk

=

〈
ψi( · ),

∞∑
j=1

λjψj( · )ψj(x
′)

〉
Hk

=
∞∑
j=1

λjψj(x
′) ⟨ψi( · ), ψj( · )⟩Hk

.

Taking the L2(ν) inner product (with respect to x′) of both sides with ψℓ gives

δi,ℓ = λjδj,ℓ ⟨ψi( · ), ψj( · )⟩Hk
.

If i = j = ℓ, then this gives ⟨ψi( · ), ψi( · )⟩Hk
= 1/λi. If i ̸= j = ℓ, then this gives ⟨ψi( · ), ψj( · )⟩Hk

=
0. Together, these establish (15).

Remark 6.9. From this, we can better understand the RKHS inner product. Recall that k is diagonal
in the orthonormal basis {ψi}i∈N with eigenvalues {λi}i∈N. By computing the RKHS inner product
between pairs of basis vectors in this orthonormal basis, we see that the implied Gram matrix is
diagonal in that basis but its eigenvalues are the reciprocals {1/λi}i∈N. Thus, it is a standard inner
product weighted by the inverse of the covariance function. Such an inner product naturally induces
the Mahalanobis distance d(x, x′) =

√
(x− x′)⊤Σ−1(x− x′) that appears in the exponent of the

Gaussian pdf when x′ is chosen to be the mean.

6.3 Connection to Gaussian Random Fields

In Section 3.1, we saw how an eigenvalue decomposition of the covariance matrix can allow one to
transform a Gaussian with identity covariance into a Gaussian with general covariance. The same
idea extends to GRFs with the Mercer decomposition of the covariance function.

Theorem 6.10 (Karhunen–Loève expansion). Consider a centered GRF {Xt}t∈T with mean µ(t) = 0
and covariance function k(s, t). If k(s, t) satisfies the conditions of Theorem 6.3, then there exist
i.i.d. standard Gaussians Zi ∼ N (0, 1) such that

X(t) =

∞∑
i=1

√
λi Zi ψi(t),

with convergence in L2(X × Ω) and covariance E[X(s)X(t)] = k(s, t).
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Proof. Let {(λi, ψi)}i≥1 be the Mercer eigenpairs of k on (X , ν), so that k(s, t) =
∑∞

i=1 λiψi(s)ψi(t)
with {ψi} orthonormal in L2(ν) and λi > 0. Define the random coefficients

Zi :=
1√
λi

∫
X
X(t)ψi(t) dν(t).

This is well-defined because E[X(t)2] = k(t, t) <∞ is integrable under the Mercer assumptions (i.e.,
k is continuous on a compact domain). Then, E[Zi] = 0 and, for i, j ∈ N, we have

Cov(Zi, Zj) =
1√
λiλj

∫∫
E[X(s)X(t)]ψi(s)ψj(t) dν(s) dν(t)

=
1√
λiλj

∫∫
k(s, t)ψi(s)ψj(t) dν(s) dν(t)

=
1√
λiλj

∞∑
ℓ=1

λℓ

(∫
ψℓ(s)ψi(s) dν(s)

)(∫
ψℓ(t)ψj(t) dν(t)

)
=

1√
λiλj

∞∑
ℓ=1

λℓ δℓ,i δℓ,j = δi,j .

Thus {Zi} are uncorrelated standard Gaussians. Since X(t) is a Gaussian random field and Zi are
linear functionals on X(t), they are jointly Gaussian. Together, these imply that Z1, Z2, . . . are
independent.

Consider the m-term approximation

Xm(t) :=
m∑
i=1

√
λi Zi ψi(t).

It has mean zero and covariance E[Xm(s)Xm(t)] =
∑m

i=1 λi ψi(s)ψi(t). Moreover,

E
∫
X

(
X(t)−Xm(t)

)2
dν(t) = E

∫
X
X(t)2 dν(t)− 2E

∫
X(t)Xm(t) dν(t) + E

∫
Xm(t)2 dν(t)

=
∑
i≥1

λi − 2
∑
i≤m

λi +
∑
i≤m

λi =
∑
i>m

λi −−−−→
m→∞

0,

where we used Parseval’s Theorem with the Mercer basis and the definitions above. Hence Xm(t) →
X(t) in L2(X × Ω). Taking limits of the covariance also establishes E[X(s)X(t)] = k(s, t).

This highlights the connection between kernel methods and GPs. Any positive-definite kernel
can be used to define a GP. Observations of that GP at fixed locations allow optimal inference of
the process at other locations. Moreover, the Karhunen–Loéve expansion shows any centered GRF
with kernel k can be written as a linear combination of orthogonal Gaussian coordinates.

Theorem 6.11 (Representer theorem for GP posterior mean). Consider data (xi, yi) with yi =

f(xi) + σZi with Zi
i.i.d.∼ N (0, 1), where f has a GP prior with mean 0 and covariance k(x, x′).

Then, the posterior mean is the unique minimizer of

min
f∈Hk

n∑
i=1

(yi − f(xi))
2 + σ2 ∥f∥2Hk

,

and has the finite expansion fα(x) =
∑n

i=1 αik(x, xi) with α = (K + σ2I)−1y.
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Proof. From a Bayesian view, we have a GP prior and the independent conditional distributions
Yi | f ∼ N (f(xi), σ

2). Thus, the negative log-posterior (up to an additive constant) equals

1

2σ2

n∑
i=1

(yi − f(xi))
2 +

1

2
∥f∥2Hk

.

Multiplying by 2σ2 yields exactly the stated objective and the MAP estimator minimizes it. For
Gaussians, the posterior is Gaussian and unimodal, so by Section 4 the MAP equals the posterior
mean.

We can solve the optimization by defining f = [f(xi)]
n
i=1 = Kα so that the objective over α

becomes ∥y −Kα∥22 + σ2α⊤K α. Setting the gradient to zero gives −2K(y −Kα) + 2σ2Kα = 0,
i.e., (K + σ2I)α = y. Thus α = (K + σ2I)−1y and fα equals the GP posterior mean.

Remark 6.12. This provides yet another way to see that the posterior mean of any point in a
Gaussian process can be written a linear combination of all the observed values. Of course, the
coefficients of the linear combination depend on the covariance matrix induced by the locations
of the observations and the point of interest. Also, this correlation matrix is essentially given by
evaluating the covariance function of the process at all pairs of locations.

6.4 Simple kernels, spaces, and GRFs

• Linear kernel: k(s, t) = s⊤t.

– RKHS: linear functions with norm ∥f∥ = ∥w∥2 where f(x) = w⊤x.

– GRF: prior equivalent to Bayesian linear regression.

• Polynomial kernel: k(s, t) = (s⊤t+ c)p.

– RKHS: finite-dimensional space of degree-≤ p polynomials in lifted coordinates.

– GRF: equivalent to Bayesian linear regression in the polynomial feature space. Let ϕ(x) collect
all monomials up to degree p (with appropriate scaling depending on c). Then, we see that
X(t) = θ⊤ϕ(t) with Gaussian coefficients θ ∼ N (0, I) induces Cov(X(s), X(t)) = (s⊤t+ c)p.
Sample paths are a.s. equal to polynomials of degree ≤ p.

• RBF kernel: k(s, t) = σ2 exp(−∥s− t∥2 /(2ℓ2)).

– RKHS: consists of very smooth (indeed real-analytic) functions. One can show that the
norm admits the spectral form

∥f∥2Hk
=

1

(2π)d

∫
Rd

|f̂(ω)|2

S(ω)
dω, S(ω) = (2π)d/2σ2ℓd exp

(
− ℓ2

2 ∥ω∥
2
)
.

– GRF: stationary with spectral density given S(ω) above. The sample paths are a.s. real-
analytic on Rd and the posterior mean function also inherits this property.

7 Worked examples

Example 7.1 (Deriving a bivariate conditional). Let (X,Y )⊤ ∼ N
([

0

0

]
,

[
1 ρ

ρ 1

])
with |ρ| < 1.

Apply Theorem 4.3 with µ1 = µ2 = 0, Σ11 = Σ22 = 1, Σ12 = Σ21 = ρ:

E[X | Y = y] = µ1 +Σ12Σ
−1
22 (y − µ2) = ρ y, Var(X | Y ) = Σ11 − Σ12Σ

−1
22 Σ21 = 1− ρ2.
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Thus X | Y = y ∼ N (ρy, 1− ρ2).

Example 7.2 (Posterior for linear regression). Model y = Xβ + ε, with ε ∼ N (0, σ2I) and prior
β ∼ N (β0,Σ0). The log-posterior (up to a constant) is

− 1
2σ2 ∥y −Xβ∥22 − 1

2(β − β0)
⊤Σ−1

0 (β − β0).

Completing the square in β gives a Gaussian posterior with

Σpost =
(
Σ−1
0 + 1

σ2X
⊤X

)−1
, βpost = Σpost

(
Σ−1
0 β0 +

1
σ2X

⊤y
)
.

Equivalently, view (β,y) as jointly Gaussian and apply Theorem 4.3.

8 Summary

We develop a tutorial path from scalar Gaussians to multivariate normals including core infer-
ence tools (conditioning, MMSE/MAP equivalence for Gaussians, linear observation models, and
Woodbury/Schur complements). We then lift these ideas to Gaussian processes/fields, showing how
covariance functions determine finite-dimensional laws, how GP regression arises from Gaussian
conditioning, and how spectral viewpoints (Wiener–Khinchin) connect filtering and power spectra.
Through Mercer’s theorem we built feature maps and RKHSs, explaining the reproducing property
and the RKHS inner product as an inverse-covariance weighting (Mahalanobis geometry). The
Karhunen–Loéve expansion is linked to GRFs and orthogonal Gaussian coordinates. Finally, the
representer theorem shows that GP posterior means solve a regularized risk in Hk with closed-form
coefficients.

Practical takeaways:

• For linear–Gaussian models, posteriors remain Gaussian with means/covariances computable
by linear algebra; MMSE=MAP=posterior mean.

• GP regression is just Gaussian conditioning with kernels playing the role of covariances; RBF
kernels yield analytic interpolants and a simple spectral density.

• RKHS methods, GP priors, and Wiener filtering are different faces of the same quadratic,
kernel-driven machinery. These principles underpin algorithms from Kalman filters to kernel
ridge regression and modern GP modeling.
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A Useful matrix identities

Lemma A.1. The following well-known matrix identities are quite useful:

(Block inverse)

[
A B
C D

]−1

=

[
A−1 +A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

]
, S = D − CA−1B, (16)

(Woodbury) (A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1. (17)

(Matrix determinant lemma) det(A+ UCV ) = det(C−1 + V A−1U) det(C) det(A). (18)

Proof. Block inverse. Define the matrices.

M =

[
A B
C D

]
, L =

[
I 0

−CA−1 I

]
, R =

[
I −A−1B
0 I

]
.

Gaussian elimination generalizes to block matrices and it is easy to verify that LM is zero in the
bottom left block while MR is zero in the top right block. Moreover, direct calculation shows LMR
is block diagonal with A in the top left position and S (the Schur complement of A) in the bottom
right. Thus, we have

M−1 = R

[
A−1 0
0 S−1

]
L =

[
A−1 +A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

]
.

One can also do the elimination in a different order. In particular, we can define alternative
matrices L′, R′ so that R′ eliminates C and L′ eliminates B. This gives

L′ =

[
I 0

−CA−1 I

]
, R′ =

[
I −A−1B
0 I

]
, M−1 =

[
T−1 −T−1BD−1

−D−1CT−1 D−1 +D−1CT−1BD−1

]
,

where T = A−BD−1C is the Schur complement of D.
For block matrices, if all blocks above (or below) the diagonal are zero, then the matrix is

called block lower (or upper) triangular. In both cases, the determinant equals the product of the
determinants of the blocks on the diagonal. One can prove this via standard cofactor expansion.
For the 2 by 2 case, this implies that det(L) = det(R) = 1 and det(M) = det(L) det(M) det(R) =
det(LMR) = det(A) det(S). Moreover, if the block matrices in any row or column commute, then
this reduces to the simple formula det(M) = det(AD −BC).

Woodbury. First, we note that the Woodbury formula is equivalent to

(I + UV )−1 = I − U(I + V U)−1V,

which one gets by replacing A and C with identity matrices. To verify this simplified identity, we
multiply on the left by I + UV to get

(I + UV )
(
I − U(I + V U)−1V

)
= I + UV − U(I + V U)−1V − UV U(I + V U)−1V

= I + UV − U
(
(I + V U)−1 + V U(I + V U)−1︸ ︷︷ ︸

I

)
V = I.

The same idea works for multiplication on the right.
Now, we will derive Woodbury’s formula from the simpler identity by substituting U ′ = A−1U

and V ′ = CV . To do this, we write

(A+ UCV )−1 = (I +A−1UCV )−1A−1 = (I + U ′V ′)−1A−1
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= (I − U ′(I + V ′U ′)−1V ′)A−1 = A−1 −A−1U(I + CV A−1U)−1CV A−1

= A−1 −A−1U(C−1 + V A−1U)−1V A−1.

Determinant. First, we note that

det(A+ UCV ) = det(A) det
(
I +A−1UCV

)
.

Using the block inverse notes, we can easily establish Sylvester’s determinant identity

det(I +AB) = det

([
I A
0 I

] [
I −A
B I

])
= det

([
I −A
B I

] [
I A
0 I

])
= det(I +BA).

With this, we find that

det
(
I +A−1UCV

)
= det

(
I + CV A−1U

)
= det

(
C(C−1 + V A−1U)

)
= det(C) det

(
C−1 + V A−1U

)
.

Hence, we have det(A+ UCV ) = det(C−1 + V A−1U) det(C) det(A).

B Ancillary Results from Probability

Theorem B.1 (Uniqueness of the mgf/Laplace transform). If two real-valued random variables have
mgfs that agree on an open interval around 0, then their distributions are identical. Equivalently,
for integrable densities f, g with Laplace transforms L{f} and L{g} equal on an interval, one has
f = g almost everywhere.
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