

In Class Problem Set 2

Problems:

1. **Using a biased coin to make an unbiased decision.** Alice and Bob want to choose between the opera and the movies by tossing a fair coin. Unfortunately, the only available coin is biased and lands heads with probability p . Since they both know p , whomever calls the toss in the air can bias the decision towards their preference. Design a coin-toss experiment, which does not depend on p , so that they can use the biased coin to make a decision so that either option (opera or movies) is equally likely?
2. From a group of n people, suppose that we want to choose a committee of k , $k \leq n$, one of whom is to be designated as chairperson.
 - (a) By focusing first on the choice of the committee and then on the choice of the chair, argue that there are $\binom{n}{k}$ possible choices.
 - (b) By focusing first on the choice of the non chair committee members and then on the choice of the chair, argue that there are $\binom{n}{k-1}(n-k+1)$ possible choices.
 - (c) By focusing first on the choice of the chair and then on the choice of the other committee members, argue that there are $n\binom{n-1}{k-1}$ possible choices.
 - (d) Conclude from parts (a), (b), and (c) that
$$k\binom{n}{k} = (n-k+1)\binom{n}{k-1} = n\binom{n-1}{k-1}.$$
 - (e) Use the factorial definition of $\binom{m}{k}$ to verify the identity in part (d).
3. Two balls are chosen randomly from an urn containing 8 white, 4 black, and 2 orange balls. Suppose that we win \$2 for each black ball selected and we lose \$1 for each white ball selected. Let X denote our winnings. What are the possible values of X , and what are the probabilities associated with each value?
4. Let X represent the difference between the number of heads and the number of tails obtained when a coin is tossed n times. What are the possible values of X ?
5. Suppose the arrival of telephone calls at a switch can be modeled with a Poisson distribution. That is, if X is the number of calls that arrives in t minutes then

$$\Pr(X = k) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}, \quad k = 0, 1, 2, \dots$$

where λ is the average arrival rate in calls/minute. Suppose that the average rate of calls is 10 per minute.

- (a) What is the probability that fewer than three calls will be received in the first 6 seconds?
- (b) What is the probability that fewer than three calls will be received in the first 6 minutes?

6. An internet service provider uses 50 dial-up modems to serve the needs of 1000 customers. It is estimated that at a given time, each customer will need a connection with probability 0.01, independently of the other customers.

- (a) What is the PMF of the number of modems in use at a given time?
- (b) Repeat part (a) by approximating the PMF of the number of customers that need a connection with a Poisson PMF.
- (c) What is the probability that there are more customers needing a connection than there are modems? Provide an exact, as well as an approximate formula based on the Poisson approximation of part (b).