

In Class Problem Set 4

Problems:

1. Choose a number U from the unit interval $[0, 1]$ with uniform distribution. Find the cumulative distribution and density for the random variables
 - (a) $Y = U + 2$,
 - (b) $Y = U^3$.
2. Alvin throws darts at a circular target of radius r and is equally likely to hit any point in the target. Let X be the distance of Alvin's hit from the center.
 - (a) Find the PDF, the mean, and the variance of X .
 - (b) The target has an inner circle of radius t . If $X \leq t$, Alvin gets a score of $S = 1/X$. Otherwise his score is $S = 0$. Find the CDF of S . Is S a continuous random variable?
3. (a) A fire station is to be located along a road of length A , $A < \infty$. If fires will occur at points uniformly chosen on $(0, A)$, where should the station be located so as to minimize the expected distance from the fire? That is, choose a so as to
$$\min E[|X - a|]$$
when X is uniformly distributed over $(0, A)$.
(b) Now suppose that the road is infinite length – stretching from point 0 outward to ∞ . If the distance of a fire from point 0 is exponentially distributed with rate λ , where should the fire station now be located? That is, we want to minimize $E[|X - a|]$, where x is now exponential with rate λ .

4. Consider a triangle and a point chosen within the triangle according to the uniform probability law. Let X be the distance from the point to the base of the triangle. Given the height of the triangle, find the CDF and the PDF of X .