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1 Introduction

In many areas of Electrical and Computer Engineering (ECE), including signal processing, com-
munications, and control, we work with vector spaces equipped with additional structure. An
inner-product space allows us to define angles, lengths, and orthogonality, extending the familiar
geometry of Rn to more abstract settings.

2 Background: Fields, Vectors, and Probability

Definition 2.1 (Field). A field F is a set equipped with two binary operations, addition (+) and
multiplication (·), satisfying the following axioms. There exist distinct elements 0, 1 ∈ F such that:

(F1) (F,+) forms an abelian group: for all a, b, c ∈ F, we have a + (b + c) = (a + b) + c, and
a + b = b + a; there is an additive identity 0 ∈ F such that a + 0 = a and, for each a ∈ F,
there exists −a ∈ F with a+ (−a) = 0.

(F2) (F\{0}, ·) forms an abelian group: for all a, b, c ∈ F with a, b, c ̸= 0, we have a·(b·c) = (a·b)·c,
a ·b = b ·a; there is a multiplicative identity 1 ∈ F such that 1 ·a = a and, for each a ∈ F\{0},
there exists a−1 ∈ F with a · a−1 = 1.

(F3) Multiplication distributes over addition: for all a, b, c ∈ F, a · (b + c) = a · b + a · c and
(a+ b) · c = a · c+ b · c.
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Example 2.1 (Field Examples). The following standard examples satisfy the field axioms:

• The real numbers R with standard addition and multiplication.

• The complex numbers C with standard addition and multiplication.

• The set of integers {0, 1, . . . , p− 1} for prime p with addition and multiplication modulo p.

Definition 2.2 (Vector Space). A vector space V over a field F (e.g., F = R or C) is a set equipped
with two operations:

(i) Vector addition: u+ v ∈ V for all u, v ∈ V .

(ii) Scalar multiplication: αv ∈ V for all α ∈ F, v ∈ V .

These satisfy the following axioms for all u, v, w ∈ V and α, β ∈ F:

(V1) Vectors with addition (V,+) form an abelian group: for all u, v, w ∈ V , u+(v+w) = (u+v)+w,
and u+ v = v+ u; there exists an additive identity vector 0 ∈ V such that u+0 = u and, for
each u ∈ V , there exists −u ∈ V with u+ (−u) = 0.

(V2) 1 · u = u (scalar identity)

(V3) α(βu) = (αβ)u (scalar associativity)

(V4) (α+ β)u = αu+ βu (scalar distributivity)

(V5) α(u+ v) = αu+ αv (vector distributivity)

Example 2.2 (Vector Space Examples). The following familiar spaces satisfy the vector space
axioms:

• The Euclidean spaces Rn and Cn: Closure and all axioms follow component wise from the
field laws of R or C. For instance, vector addition is defined by (u+ v)i = ui + vi and scalar
multiplication by (αu)i = αui. So, the axioms reduce to the corresponding scalar identities.

• The set F of functions mapping a set X to Rn (or Cn): For f, g ∈ F and α ∈ F, vector
addition and scalar multiplication are defined by (αf + g)(x) = αf(x) + g(x) ∈ F . Again,
the axioms follow from the corresponding scalar identities.

• Real random variables R: If X,Y ∈ R and α ∈ R, then αX + Y ∈ R and the axioms
follow from the corresponding scalar identities. Since random variables are formally defined
as functions from Ω → R, this follows from the previous item.

• Random vectors in Rn: Similar to random variables, if X and Y are in this set and α ∈ R,
then αX + Y is in this set. This also follows from the fact that functions from Ω → Rn form
a vector space.

Definition 2.3 (Probability space). A probability space is defined by a tuple (Ω,F ,P) where Ω is
the sample space, a subset E ⊆ Ω is an event, F is a special collection of events, and P : F → [0, 1]
is the probability function. The collection F of events, known as a σ-algebra, must satisfy Ω ∈ F ,
Ac ∈ F if A ∈ F , and ∪i∈IAi ∈ F if Ai ∈ F for all i ∈ I. The probability function must satisfy:

(P1) Nonnegativity: P(A) ≥ 0.
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(P2) Normalization: P(Ω) = 1.

(P3) Additivity: for disjoint Ai, P(
⋃

iAi) =
∑

i P(Ai).

Definition 2.4 (Random variable). A real random variable X on a probability space (Ω,F ,P) is
defined by a mapping X : Ω → R where X(ω) gives the value of X for the outcome ω ∈ Ω.

3 Inner Products, Norms, and Metrics

Definition 3.1 (Inner Product). An inner product on V is a map ⟨·, ·⟩ : V × V → F satisfying for
all u, v, w ∈ V and α ∈ F:

(IP1) ⟨u+ w, v⟩ = ⟨u, v⟩+ ⟨w, v⟩ (linearity in first argument)

(IP2) ⟨αu, v⟩ = α⟨u, v⟩

(IP3) ⟨v, u⟩ = ⟨u, v⟩ (conjugate symmetry)

(IP4) ⟨v, v⟩ ≥ 0 with equality iff v = 0 (positive-definite)

For complex spaces, we use the above conjugate-symmetry convention. For random variables,
we assume the field is R so conjugation is irrelevant.

Definition 3.2 (Norm). A norm on V is a map ∥ · ∥ : V → [0,∞) satisfying for all u, v ∈ V and
α ∈ F:

(N1) ∥v∥ ≥ 0 and ∥v∥ = 0 iff v = 0 (positive-definite)

(N2) ∥αv∥ = |α| ∥v∥ (homogeneity)

(N3) ∥u+ v∥ ≤ ∥u∥+ ∥v∥ (triangle inequality)

The standard induced distance metric between vectors is given by d(u, v) = ∥u− v∥.

4 Cauchy–Schwarz and Induced Norms

Theorem 4.1 (Cauchy–Schwarz Inequality). For any u, v ∈ V , we have

|⟨u, v⟩|2 ≤ ⟨u, u⟩ ⟨v, v⟩.

Proof. If v = 0, inequality holds trivially. Otherwise, for any scalar α, positivity gives

0 ≤ ⟨u− αv, u− αv⟩ = ⟨u, u⟩ − α⟨v, u⟩ − α⟨u, v⟩+ |α|2⟨v, v⟩.

Completing the square, we rewrite the right-hand side as

⟨v, v⟩
∣∣∣∣α− ⟨v, u⟩

⟨v, v⟩

∣∣∣∣2 + ⟨u, u⟩ − |⟨u, v⟩|2

⟨v, v⟩
.

The first term is nonnegative and is zero exactly when α = ⟨v, u⟩/⟨v, v⟩, so this choice minimizes
the expression. Substituting that value yields

0 ≤ ⟨u, u⟩ − |⟨u, v⟩|2

⟨v, v⟩
,

which rearranges to |⟨u, v⟩|2 ≤ ⟨u, u⟩ ⟨v, v⟩.
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Theorem 4.2 (Induced Norm). ∥v∥ =
√
⟨v, v⟩ satisfies all norm axioms.

Proof. Positivity and homogeneity are immediate. Triangle inequality follows from Cauchy–Schwarz:

∥u+ v∥2 = ⟨u+ v, u+ v⟩ = ∥u∥2 + ∥v∥2 + 2ℜ⟨u, v⟩ ≤ ∥u∥2 + ∥v∥2 + 2∥u∥∥v∥ = (∥u∥+ ∥v∥)2.

5 Examples of Inner-Product Spaces

Example 5.1 (Real Euclidean Space). On Rn, the standard inner product is ⟨x, y⟩ = x⊤y =∑
i xiyi, where x⊤ denotes the transpose of the column vector x. It is linear in the first argument,

symmetric since x⊤y = y⊤x, and positive-definite because x⊤x =
∑

i x
2
i ≥ 0 with equality iff x = 0.

Example 5.2 (Complex Euclidean Space). On Cn, the standard inner product is ⟨x, y⟩ = y∗x =∑
i yixi, where y∗ denotes the conjugate (or Hermitian) transpose of y. It is linear in x, conjugate

symmetric in y (because y∗x = x∗y), and positive-definite since x∗x =
∑

|xi|2 ≥ 0 with equality iff
x = 0.

Example 5.3 (Weighted Complex Inner Product). On Cn, for W that is Hermitian and positive
definite (i.e., W = W ∗ and x∗Wx > 0 for x ̸= 0), define ⟨x, y⟩W = y∗Wx. This is linear in x,
conjugate symmetric because ⟨y, x⟩W = x∗Wy = y∗Wx, and positive-definite because x∗Wx > 0.

Example 5.4 (Random Variables). For the vector space of real random variables, define the inner
product ⟨X,Y ⟩ = E[Y X]. By convention, the inner product space only includes vectors with finite
induced norm (i.e., real random variables with finite second moment). Since X,Y are real random
variables and the scalar field is R, linearity in the both arguments follows from the linearity of
expectation. In addition, symmetry follows from the commutativity of multiplication and positive-
definiteness holds because E[X2] ≥ 0 with equality iff X = 0 almost surely (note: probability only
distinguishes random variables up to the condition of almost sure equality given by P(X ̸= Y ) = 0).

Since real random variables form a vector space, the key condition to check is that the subspace
with finite-second moment is closed (i.e., that, αX + Y has a finite second moment if X and Y
have finite second moments). For this, we can use Cauchy-Schwarz to write

E[(αX + Y )2] = α2E[X2] + 2αE[XY ] + E[Y 2] ≤ α2E[X2] + 2α
√

E[X2]E[Y 2] + E[Y 2] < ∞.

Example 5.5 (Random Vectors). For real random vectors X,Y with finite covariance matrices1,
define

⟨X,Y⟩ = E[Y⊤X] =

n∑
i=1

E[YiXi].

Linearity in both arguments and symmetry follow from the real scalar field, linearity of expectation,
and commutativity of multiplication. Positive-definiteness holds because

⟨X,X⟩ = E[X⊤X] = E
[
∥X∥2

]
≥ 0,

with equality iff X = 0 almost surely; thus we identify random vectors that are equal almost surely.
The induced norm equals the expected squared length

∥X∥2 = E
[
∥X∥2

]
.

Since the space of random vectors forms a vector space, one can similarly verify that the subspace
with finite covariance matrices is closed using the Cauchy-Schwarz inequality.

1We denote the covariance of a real random vector by Cov(X) := E
[
(X− E[X])(X− E[X])⊤

]
.
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Summary Table:

Space Inner Product Norm

Rn x⊤y
√
x⊤x

Cn x∗y
√
x∗x

Weighted x∗Wy
√
x∗Wx

Random Variables E[Y X]
√
E[X2]

Random Vectors E[Y⊤X]
√
E[X⊤X]

6 Orthogonality, Projections, and Gram-Schmidt

6.1 Orthogonality and Projection

Definition 6.1 (Orthogonality and Orthogonal Complement). In an inner-product space, vectors
u and w are orthogonal, written u ⊥ w, if ⟨u,w⟩ = 0. For a subspace W ⊆ V , the orthogonal
complement is

W⊥ = { v ∈ V : ⟨v, w⟩ = 0 for all w ∈ W }.

Definition 6.2 (Orthonormal Set and Basis). A collection {w1, . . . , wk} ⊆ V is orthonormal if
⟨wi, wj⟩ = δij . If additionally span{w1, . . . , wk} = W , then it is an orthonormal basis of the
subspace W .

Definition 6.3 (Standard Basis). For V = Rn and V = Cn, the standard orthonormal basis is
given by the set of vectors, {e1, e2, . . . , en}, where ei is all zero except for 1 in the i-th position.

Definition 6.4 (Orthogonal Projection). Let W ⊆ V be a subspace. The (orthogonal) projection
of v ∈ V onto W is defined by

PW (v) ∈ arg min
w∈W

∥v − w∥.

If V is finite dimensional, the minimum is achieved uniquely and called the best approximation of
v by vectors in W . Equivalently, r = v − PW (v) is characterized by r ⊥ W .

Theorem 6.1 (Projection Theorem). Let V be a finite-dimensional inner-product space and W ⊆
V a subspace. For every v ∈ V there exists a unique decomposition

v = w + r, w ∈ W, r ∈ W⊥.

Thus, PW (v) = w is the unique minimizer of ∥v − w∥ over W . If {wi}ki=1 is an orthonormal basis
of W , then

PW (v) =
k∑

i=1

⟨v, wi⟩wi, ∥v − PW (v)∥2 = ∥v∥2 −
k∑

i=1

|⟨v, wi⟩|2.

Proof. Let w =
∑k

i=1⟨v, wi⟩wi and set r = v − w. For each j,

⟨r, wj⟩ = ⟨v, wj⟩ −
k∑

i=1

⟨v, wi⟩⟨wi, wj⟩ = ⟨v, wj⟩ − ⟨v, wj⟩ = 0,
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so r ∈ W⊥, yielding a decomposition v = w + r. For any w̃ =
∑

i ciwi ∈ W ,

∥v − w̃∥2 =
∥∥∥r +∑

i

(⟨v, wi⟩ − ci)wi

∥∥∥2 = ∥r∥2 +
∑
i

|ci − ⟨v, wi⟩|2 ≥ ∥r∥2,

with equality iff ci = ⟨v, wi⟩ for all i, i.e., w̃ = w. Hence w = PW (v) is the unique minimizer. The
length of the sum of orthogonal vectors is given by the Pythagorean theorem: ∥v∥2 = ∥w∥2 + ∥r∥2
and ∥w∥2 =

∑
i |⟨v, wi⟩|2.

Corollary 6.1 (Projection onto nested subspaces). Let V be a finite-dimensional inner-product
space and let U ⊆ W ⊆ V be subspaces. Then, for every v ∈ V , we have

PU

(
PW (v)

)
= PU (v).

Proof. By Theorem 6.1, write v = w + r with w ∈ W and r ∈ W⊥. Because U ⊆ W , we have
r ⊥ U , so PU (r) = 0. Hence, we find that

PU (v) = PU (w + r) = PU (w) = PU

(
PW (v)

)
.

6.2 Gram–Schmidt Orthogonalization

Given linearly independent vectors v1, . . . , vk in an inner-product space V , define

u1 = v1, w1 =
u1

∥u1∥
,

and for j = 2, . . . , k set

uj = vj −
j−1∑
i=1

⟨vj , wi⟩wi, wj =
uj
∥uj∥

whenever uj ̸= 0.

If some uj = 0 for j ≤ k, then vj ∈ span{v1, . . . , vj−1} and the set is not linearly independent (i.e.,
the assumed starting condition has been violated).

To handle sets of possibly linearly dependent vectors, one can instead move linearly dependent
vectors to the end of the list and renumber. When all linearly independent vectors have been
processed, one has found an orthonormal spanning set. To complete the process, one can simply
project the remaining vectors onto this orthonormal set.

Theorem 6.2 (Properties of Gram–Schmidt). If v1, . . . , vk are linearly independent, then {w1, . . . , wk}
is orthonormal and span{w1, . . . , wk} = span{v1, . . . , vk}. For each j, uj ⊥ span{w1, . . . , wj−1} and

vj =

j∑
i=1

⟨vj , wi⟩wi.

Proof sketch. By construction, uj is obtained by subtracting from vj its projection onto span{w1, . . . , wj−1},
so uj ⊥ wi for i < j. Normalizing gives ⟨wi, wj⟩ = δij . Inductively, we have span{w1, . . . , wj} =
span{v1, . . . , vj}, which yields the stated decomposition of vj .

Example 6.1 (Projection in R3). Let

W = span{a, b}, a = (1, 1, 0)⊤, b = (1, 0, 0)⊤.
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First, apply Gram–Schmidt to obtain an orthonormal basis for W :

w1 =
a

∥a∥
=

1√
2
(1, 1, 0)⊤, u2 = b− ⟨b, w1⟩w1 = b− 1√

2
w1 = (12 ,−

1
2 , 0)

⊤,

w2 =
u2
∥u2∥

=
(12 ,−

1
2 , 0)√
1
2

=
(√2

2
,−

√
2

2
, 0
)⊤

.

Given v = (2,−1, 3)⊤, the projection onto W is

PW (v) = ⟨v, w1⟩w1 + ⟨v, w2⟩w2.

Next, compute the coefficients:

⟨v, w1⟩ =
1√
2
(2 + (−1) + 0) =

1√
2
, ⟨v, w2⟩ =

√
2

2
(2) +

(
−

√
2

2

)
(−1) =

3
√
2

2
.

This gives

PW (v) =
1√
2

1√
2
(1, 1, 0) +

3
√
2

2

(√2

2
,−

√
2

2
, 0
)
=

(1
2
,
1

2
, 0
)
+
(3
2
,−3

2
, 0
)
= (2,−1, 0)T

and the residual r = v − PW (v) = (0, 0, 3)T is orthogonal to W since ⟨r, wi⟩ = 0 for i = 1, 2.

6.3 Normal Equations

Suppose V is an inner-product space and the subspace W is spanned by w1, . . . , wk ∈ V . Consider
the situation where the sequence w1, . . . , wk is linearly independent, but not orthogonal. In this
case, it is not possible to apply Theorem 6.1 directly. It is nevertheless possible to obtain a similar
expression for the best approximation of v by vectors in W . Theorem 6.1 shows that w ∈ W is a
best approximation of v ∈ V by vectors in W if and only if v − w is orthogonal to every vector in
W . This implies that

⟨v − w, wj⟩ =

〈
v −

k∑
i=1

siwi, wj

〉
= 0

or, equivalently,
k∑

i=1

si ⟨wi, wj⟩ = ⟨v, wj⟩

for j = 1, . . . , k. These conditions yield a system of k linear equations in k unknowns, which can
be written in the matrix form

⟨w1, w1⟩ ⟨w2, w1⟩ · · · ⟨wk, w1⟩
⟨w1, w2⟩ ⟨w2, w2⟩ · · · ⟨wk, w2⟩

...
...

. . .
...

⟨w1, wk⟩ ⟨w2, wk⟩ · · · ⟨wk, wk⟩


︸ ︷︷ ︸

G


s1
s2
...
sk


︸ ︷︷ ︸

s

=


⟨v, w1⟩
⟨v, w2⟩

...
⟨v, wk⟩


︸ ︷︷ ︸

t

.

We can rewrite this matrix equation as
Gs = t,

where G is called a Gramian matrix, t is called a cross-correlation vector, and sT = (s1, s2, . . . , sk)
is the vector of coefficients. Equations of this form are collectively known as normal equations.
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Definition 6.5. A matrix M ∈ Ck×k is positive-semidefinite if M∗ =M and v∗Mv ≥ 0 for all
v ∈ Ck − {0}. If the inequality is strict, M is positive-definite.

An important aspect of positive-definite matrices is that they are always invertible. This follows
from noting that Mv = 0 for v ̸= 0 implies that v∗Mv = 0 and contradicts the definition of positive
definite.

Theorem 6.3. A Gramian matrix G is always positive-semidefinite. It is positive-definite if and
only if the vectors w1, . . . , wk are linearly independent.

Proof. Since gij = ⟨wj , wi⟩, the conjugation property of the inner product implies G∗ = G. For
any v = (v1, . . . , vk) ∈ Ck, we can write

v∗Gv =
k∑

i=1

k∑
j=1

v̄igijvj =
k∑

i=1

k∑
j=1

v̄i ⟨wj , wi⟩ vj

=
k∑

i=1

k∑
j=1

⟨vjwj , viwi⟩ =

〈
k∑

j=1

vjwj ,
k∑

i=1

viwi

〉

=

∥∥∥∥∥
k∑

i=1

viwi

∥∥∥∥∥
2

≥ 0,

(1)

with equality if and only if
∑k

i=1 viwi = 0. Since v is arbitrary, equality may occur iff v = 0 or
w1, . . . , wk are linearly dependent.

Proposition 6.1 (Normal equations for projection onto column space). Consider A ∈ Rn×k with
column space W = range(A) and let b ∈ Rn. Then, the orthogonal projection of b onto W is
PW (b) = Ax̂ where x̂ satisfies the normal equations

A⊤A x̂ = A⊤b.

If n ≥ k and A has full rank, then solution is unique and satisfies x̂ = (A⊤A)−1A⊤b.

Proof. By the Projection Theorem, r = b−Ax̂ is orthogonal toW , so A⊤r = 0. Thus, A⊤(b−Ax̂) =
0, which yields the stated form of the normal equations. If n ≥ k and A is full rank, then Ax = 0
iff x = 0. Thus, ∥Ax∥2 = (Ax)⊤Ax = x⊤(A⊤A)x ≥ 0 with equality iff x = 0. This implies that
A⊤A is positive definite and hence invertible.

Remark 6.1 (QR decomposition via Gram–Schmidt). For the standard spaces V = Rn and V =
Cn, we can define the matrix A = [ v1 · · · vk ] ∈ Fn×k, where each column is an input vector.
Applying Gram–Schmidt to this set of vectors naturally produces Q = [w1 · · · wk ] with Q∗Q = I
and an upper-triangular R ∈ Fk×k with entries rij = ⟨vj , wi⟩ for i ≤ j (and rij = 0 for i > j).
This is the classical QR factorization of the matrix A. From a numerical perspective, one can also
reorder the computations to get what is known as the modified Gram–Schmidt procedure. This is
algebraically equivalent but can reduce the loss in precision due to round-off error.

7 Projection and Orthogonality for Random Variables

The procedures described above can be applied directly to inner-product spaces of random variables.
In this section, we provide probabilistic interpretations of these operations.
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7.1 Linear Combinations of Random Variables

Proposition 7.1 (Orthonormal sets are uncorrelated with unit energy). Let X1, . . . , Xk be random
variables in the standard inner-product space of real random variables. We can apply Gram–Schmidt
to obtain the orthonormal set Yi =

∑k
j=1 aijXj. Then, by orthonormality, for all i, j,

E[YiYj ] = ⟨Yi, Yj⟩ = δij .

Thus, the Yi are pairwise uncorrelated and unit energy. In vector form, Y = AX for an invert-
ible upper-triangular matrix A determined by the procedure, so the orthonormal set of variables is
obtained by a linear transform of the original set.

Proposition 7.2 (The constant random variable). If we prepend the constant random variable 1
to the list, i.e., start with X0 = 1, then Y0 = 1

∥1∥ = 1√
E[1]

= 1. For any subsequent variable X, the

first step in Gram-Schmidt outputs

Z = X − ⟨X,Y0⟩Y0 = X − E[X],

so Z has zero mean and is orthogonal to Y0. Continuing Gram–Schmidt with these centered variables
yields an orthonormal set 1, Y1, Y2, . . . in which every Yi for i ≥ 1 has mean zero and the Yi are
pairwise uncorrelated.

Example 7.1. Consider the space of real random variables with finite second moment and suppose
that E[X1] = 2, E[X2] = −1, Var(X1) = 4, Var(X2) = 9, and Cov(X1, X2) = 3. We will include
the constant 1 and perform Gram–Schmidt as follows:

Y0 = 1, Y1 =
X1 − E[X1]√

Var(X1)
=

X1 − 2

2
.

Next, project X2 onto span{Y0, Y1} and subtract:

⟨X2, Y0⟩ = E[X2] = −1, ⟨X2, Y1⟩ = E
[
X2

X1 − 2

2

]
=

Cov(X1, X2)

2
=

3

2
,

Y ′
2 = X2 − ⟨X2, Y0⟩Y0 − ⟨X2, Y1⟩Y1 = X2 + 1− 3

2
· X1 − 2

2
= X2 −

3

4
X1 +

5

2
.

The random variable Y ′
2 has zero mean and is orthogonal to Y1 by construction. Thus, its norm is

∥Y ′
2∥2 = Var

(
X2 − 3

4X1

)
= Var(X2) +

(
3
4

)2
Var(X1)− 2 · 3

4 Cov(X1, X2) = 9 + 9
4 − 9

2 = 27
4 .

Hence, we find that

Y2 =
Y ′
2

∥Y ′
2∥

=
2

3
√
3

(
X2 −

3

4
X1 +

5

2

)
.

From E[Y1] = E[Y2] = 0 and E[Y1Y2] = 0, it follows that {1, Y1, Y2} is an orthonormal set and Y1, Y2
are uncorrelated zero-mean random variables.

In the inner-product space of real random variables, the Gramian matrix for a set of random
variables X1, . . . , Xk is given by

G =


⟨X1, X1⟩ ⟨X2, X1⟩ · · · ⟨Xk, X1⟩
⟨X1, X2⟩ ⟨X2, X2⟩ · · · ⟨Xk, X2⟩

...
...

. . .
...

⟨X1, Xk⟩ ⟨X2, Xk⟩ · · · ⟨Xk, Xk⟩

 =


E[X1X1] E[X1X2] · · · E[X1Xk]
E[X2X1] E[X2X2] · · · E[X2Xk]

...
...

. . .
...

E[XkX1] E[XkX2] · · · E[XkXk]

 .

Since E[XiXj ] = Cov(Xi, Xj) + E[Xi]E[Xj ], we see that G = Cov(X) + µµ⊤.
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Proposition 7.3 (Normal equations for best affine approximation of a random variable). Let
X = (X1, . . . , Xk) and Y be real random variables with finite second moments. We define

X = (X1, . . . , Xk)
⊤,

µ = (µ1, . . . , µk)
⊤ = E[X], µi = E[Xi],

Σ = Cov(X) = E
[
(X− µ)(X− µ)⊤

]
, Σi,j = Cov(Xi, Xj),

p = (p1, . . . , pk)
⊤ = E

[
(X− µ) (Y − E[Y ])

]
, pi = Cov(Xi, Y ).

Then, the orthogonal projection of Y onto span{1, X1, . . . , Xk} has the form

Ŷ = c+ w⊤X,

where vectors w and c satisfy the normal equations

Σw = p, c = E[Y ]− w⊤µ.

If Σ is invertible, then w = Σ−1p. Otherwise, all solutions are optimal but the minimum-norm
solution is typically preferred.

Proof sketch. Let R = Y − c− w⊤X be the residual random variable. Orthogonality of R to each
basis element 1, X1, . . . , Xk yields E[R] = 0 and E[R(X − µ)] = 0. After removing the means, the
augmented form is the usual least-squares normal equations Σw = p. Thus, the solution follow
from solving the normal equations for the centered random variables.

Example 7.2 (Approximation of eX for X ∼ N (0, 1)). Find the best mean-square approximation
of Y = eX by span{1, X,X2} for X ∼ N (0, 1):

Ŷ = a0 + a1X + a2X
2.

The normal equations enforce orthogonality of the residual to 1, X,X2:

E[Y ] = a0 + a2 E[X2], E[XY ] = a1 E[X2] + a2 E[X3], E[X2Y ] = a0 E[X2] + a2 E[X4].

Using E[X] = 0, E[X2] = 1, E[X3] = 0, E[X4] = 3 and the MGF MX(t) = E[etX ] = exp(t2/2),

E[Y ] = e1/2, E[XY ] =
d

dt
MX(t)

∣∣∣∣
t=1

= e1/2, E[X2Y ] =
d2

dt2
MX(t)

∣∣∣∣
t=1

= 2e1/2.

Hence,
e1/2 = a0 + a2, e1/2 = a1, 2e1/2 = a0 + 3a2,

which yields
a0 =

1
2e

1/2, a1 = e1/2, a2 =
1
2e

1/2.

Therefore,

Ŷ = e1/2

2

(
1 + 2X +X2

)
= e1/2

(
1
2 +X + 1

2X
2
)
,

and Y − Ŷ is orthogonal to 1, X, and X2, so Ŷ is the best quadratic mean-square approximation
to eX .
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7.2 Functions of Random Variables

Now, we introduce the conditional expectation and the law of nested conditional expectation. These
play a key role in the estimation of one random variable by functions of another random variable.

Definition 7.1 (Indicator random variable). For a probability space (Ω,F ,P) and an event A ∈ F ,
the indicator random variable 1A is defined by

1A(ω) =

{
1 if ω ∈ A

0 otherwise.

It follows that 1A1B = 1A∩B, E[1A] = P(A), E[1A1B] = P(A ∩B), and E[X 1A] = E[X | A]P(A).

Definition 7.2 (Standard basis). For a probability space with countably many outcomes, the
standard orthonormal basis is given by the set of normalized indicator random variables {Eα}α∈Ω,
where

Eα =
1{α}√
P({α})

.

They are orthonormal because

E [EαEβ] =

{
1 if α = β

0 otherwise.

Thus, any random variable X can be written uniquely as

X =
∑
ω∈Ω

X(ω)1{ω} =
∑
ω∈Ω

(√
P(ω)X(ω)

)
Eω.

Definition 7.3 (Conditional expectation). Let X and Y be real random variables with E[X2] < ∞.
Recall that, when Y is discrete and P(Y = y) > 0, we can define

g(y) = E[X | Y = y] =
∑
x∈SX

xP(X = x | Y = y).

Similarly, when (X,Y ) admits a joint density fX,Y and fY (y) > 0, we can define

g(y) = E[X | Y = y] =

∫ ∞

−∞
x fX|Y (x | y) dx =

∫
x fX,Y (x, y) dx

fY (y)
.

The conditional expectation of X given Y is the random variable g(Y) and is denoted by E[X | Y ].

Theorem 7.1 (Law of nested conditional expectation). For real random variables X,Y, Z with
E[X2] < ∞, we have

E
[
E[X | Y ]

]
= E[X],

E
[
E[X | Y,Z]

∣∣Y ]
= E[X | Y ].

Proof. We only prove the case of discrete random variables. For the first expression, we see that

E
[
E[X | Y ]

]
=

∑
y∈SY

E[X | Y = y]P(Y = y)

=
∑
y∈SY

∑
x∈SX

xP(X = x | Y = y)P(Y = y)

=
∑
x∈SX

xP(X = x)

= E[X].
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For the second expression, consider any y with P(Y = y) > 0 and observe that

E
[
E[X | Y,Z]

∣∣Y = y
]
=

∑
z∈SZ

E[X | Y = y, Z = z]P(Z = z | Y = y)

=
∑
z∈SZ

∑
x∈SX

xP(X = x | Y = y, Z = z)P(Z = z | Y = y)

=
∑
x∈SX

x
∑
z∈SZ

P(X = x, Z = z | Y = y)

=
∑
x∈SX

xP(X = x | Y = y)

= E[X | Y = y].

Since this holds for all y with P(Y = y) > 0, the implied random variables are also equivalent.

Definition 7.4 (Conditional variance). Let X and Y be real random variables with E[X2] < ∞.
The variance of X conditioned on an event A is the deterministic quantity denoted by

Var(X | A) = E
[
(X − E[X | A])2 | A

]
= E[X2 | A]− E[X | A]2.

Choosing the event A = {Y = y}, we define

h(y) = Var(X | Y = y) = E[X2 | Y = y]− E[X | Y = y]2.

The conditional variance of X given Y is the random variable h(Y ) also defined by

Var(X | Y ) := E[X2 | Y ]− E[X | Y ]2.

Definition 7.5 (Minimum mean-squared error). Given real random variables X and Y with
Var(X) < ∞, an estimator of X given Y is a function g : R → R. The mean-squared error
(MSE) of the estimator g is defined to be

MSE(g) = E
[
(X − g(Y ))2

]
.

The minimum mean-squared error (MMSE) over all estimators is

mmse(X | Y ) = inf
g : R→R

MSE(g),

where the infimum is over all functions g : R → R. Any g achieving the minimum is called an
MMSE estimator of X given Y .

Theorem 7.2 (MMSE estimate is conditional expectation). Given real random variables X and
Y with Var(X) < ∞, an MMSE estimator for X given Y exists and is given by

g(y) = E[X | Y = y],

Moreover, the minimum value satisfies

mmse(X | Y ) = E
[
(X − E[X | Y ])2

]
= E

[
Var(X | Y )

]
.
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Proof. We only prove the case of discrete random variables. For any y with P(Y = y) > 0 and any
estimator g, we have

E
[
(X − g(Y ))2

]
=

∑
y∈SY

E
[
(X − g(Y ))2 | Y = y

]
P(Y = y)

=
∑
y∈SY

E
[
X2 − 2Xg(y) + g(y)2 | Y = y

]
P(Y = y).

One can optimize separately over g(y) for each y ∈ SY and this gives the condition

0 =
d

d g(y)
E
[
X2 − 2Xg(y) + g(y)2 | Y = y

]
= −2E[X | Y = y] + 2g(y).

Since the stationary condition uniquely defines g(y) and the second derivative is positive, the
minimizer is given by

g(y) = E[X | Y = y].

It follows that the MMSE is given by stated expression.

Theorem 7.3. In the inner-product space of variables with finite second moment, E[X | Y ] is the
orthogonal projection of X onto the subspace of random variables that are functions of Y .

Example 7.3 (Conditional Expectation as Projection). LetX,Y, Z be real random variables taking
values in {0, 1, 2} with P(X = x, Y = y) = 1/9 for all pairs and, for each (x, y),

P(Z = z | X = x, Y = y) =


0.5, z = x,

0.3, z = y,

0.2, z = 2,

0, otherwise.

Then, we have
E[Z | X = x, Y = y] = 0.5x+ 0.3 y + 0.4,

and this need not lie in {0, 1, 2}; for example, E[Z | X = 2, Y = 1] = 1.7.
Let V be the space of real random variables with inner product ⟨X,Y ⟩ = E[XY ] for allX,Y ∈ V .

One can view W = {g(X,Y ) : g :{0, 1, 2}2 → R} ⊆ V as the subspace of V containing all random
variables that are deterministic functions of X,Y . An orthonormal basis for W is given by

Ea,b =
1{X=a,Y=b}√

P(X = a, Y = b)
=

√
91{X=a,Y=b}, (a, b) ∈ {0, 1, 2}2,
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since the indicators are disjoint. The orthogonal projection of Z onto W is

PW (Z) =
∑
a,b

⟨Z,Ea,b⟩Ea,b

=
∑
a,b

E[Z Ea,b]Ea,b

=
∑
a,b

1

P(X = a, Y = b)
E[Z 1{X=a,Y=b}]1{X=a,Y=b}

=
∑
a,b

1

P(X = a, Y = b)

(
E[Z |X = a, Y = b]P(X = a, Y = b)

)
1{X=a,Y=b}

=
∑
a,b

E[Z | X = a, Y = b] 1{X=a,Y=b}

= E[Z | X,Y ].

By definition, this orthogonal projection is the element of W closest to Z in the sense that

E[(Z − g(X,Y ))2] ≥ E[(Z − E[Z | X,Y ])2],

for all g : R × R → R. Thus, E[Z | X,Y ] is the best mean-square approximation of Z among all
functions of (X,Y ).

For random variables taking uncountably many different values, same result holds but more
advanced math is needed to make the derivation rigorous. The standard approach is introduce
measure theory and associate random variables with measurable functions. While this additional
effort is useful for proofs, it does not provide much help in practice. One alternative in engineering is
to generate an orthonormal basis for the space of polynomial functions (e.g., of X,Y ) by applying
Gram-Schmidt to a countable spanning set of polynomials (e.g., 1, X, Y,XY,X2, Y 2, . . .). Since
such polynomials span the space of L2 functions, this is formally correct and practically useful (see
Example 7.2).

Proposition 7.4 (Nested conditional expectations and projections). Consider the standard inner-
product space of real random variables with elements X,Y, Z and the subspaces

U = { g(Y ) : g :R → R }, W = {h(Y,Z) : h :R2 → R }.

Then, U ⊆ W and orthogonal projections onto U and W define the conditional expectations:

PU (X) = E[X | Y ], PW (X) = E[X | Y, Z].

By Corollary 6.1, projecting onto nested subspaces gives PU (PW (X)) = PU (X). In terms of random
variables this implies that

E
[
E[X | Y, Z]

∣∣Y ]
= E[X | Y ].

For the case where Y is almost surely constant, we have U = span{1} and E[E[X | Z]] = E[X].

Theorem 7.4 (Law of total variance). Let X and Y be real random variables with E[X2] < ∞.
Then, we have

Var(X) = E
[
Var(X | Y )

]
+ Var

(
E[X | Y ]

)
.
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Proof. For x in a Euclidean space with subspace W , the Pythagorean Theorem naturally implies
∥x∥2 = ∥x−PW (x)∥2+∥PW (x)∥2 because x−PW (x) and PW (x) are orthogonal. If we let W be the
space of random variables determined by Y , then the law of total variance is given by projecting
the random variable X onto W (which gives PW (X) = E[X |Y ]) in the standard inner-product
space of random variables. Using the properties of nested conditional expectation, this can be seen
explicitly with

Var(X) = E[X2]− E[X]2

= E
[
E[X2 | Y ]

]
− E

[
E[X | Y ]

]2
= E

[
Var(X | Y ) + E[X | Y ]2

]
− E

[
E[X | Y ]

]2
= E

[
Var(X | Y )

]
+Var

(
E[X | Y ]

)
.

Conditional expectation and Gram-Schmidt. There is subtle and often confusing relation-
ship between Gram-Schmidt in the space of random variables and conditional expectation. For a
set of random variables, the key difference is that Gram-Schmidt generates an uncorrelated basis
that spans any linear function of the set of random variables. In contrast, conditional expectation
(say E[X | Y,Z]) gives the minimum variance estimate of X as an arbitrary function of Y and Z
(e.g., a non-linear function). To highlight this, we note that Example 7.2 could be extended to
include all integer powers of X. In contrast, Example 7.3 discusses an orthonormal basis not for
Y,Z but for the indicator random variables of all outcomes for Y,Z.

8 Conclusion

We have reviewed vector space axioms, norms, inner products, the Cauchy–Schwarz inequality,
and projections in Rn. Then we discussed how these concepts connect to inner product spaces
of random variables. Using this framework, one can unify projection and conditional expectation
in probability spaces. This provides a solid foundation for further studies in estimation, signal
processing, and machine learning.

Exercises

(1) Weighted inner product: projection and Gram–Schmidt in C3. Consider the weighted inner
product on C3 defined by ⟨x, y⟩W = x∗Wy with W = diag(2, 1, 3). Let a = (1, i, 0)⊤,
b = (1, 1, 1)⊤, and v = (2, 1, 0)⊤.

(a) Compute the orthogonal projection of v onto span{a} with respect to ⟨·, ·⟩W .

(b) Apply Gram–Schmidt (with respect to ⟨·, ·⟩W ) to the ordered set (a, b) to produce an
orthonormal set (w1, w2).

Solution: (a) With the linear in the first argument convention, the projection coefficient is

c = ⟨v,a⟩W
⟨a,a⟩W and P (v) = c a. Compute ⟨a, a⟩W = a∗Wa = (1,−i, 0) · (2, i, 0) = 2 + 1 = 3 and

⟨v, a⟩W = v∗Wa = (2, 1, 0) · (2, i, 0) = 4 + i. Hence P (v) = 4+i
3 a.

(b) Set w1 = a/∥a∥W with ∥a∥W =
√
3, so w1 = a/

√
3. Compute ⟨b, a⟩W = b∗Wa =

(1, 1, 1)·(2, i, 0) = 2+i. Then u2 = b−⟨b, w1⟩Ww1 = b− 2+i√
3
· a√

3
= b− 2+i

3 a =
(
1−i
3 , 4−2i

3 , 1
)⊤

.

Its squared norm is ∥u2∥2W = u∗2Wu2 = 4
9 + 20

9 + 3 = 17
3 . Thus ∥u2∥W =

√
17/3 and

w2 = u2/∥u2∥W . The orthonormal set is w1 =
1√
3
(1, i, 0)⊤ and w2 =

√
3
17

(
1−i
3 , 4−2i

3 , 1
)⊤

.
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(2) Correlation bound and equality condition. Let X,Y be real random variables with finite

second moments and Var(X),Var(Y ) > 0. Define the correlation ρ = Cov(X,Y )√
Var(X)Var(Y )

. Show

that |ρ| ≤ 1 and determine when equality holds.

Solution: In the inner-product space with ⟨U, V ⟩ = E[UV ], apply Cauchy–Schwarz to the
centered variables: |Cov(X,Y )| = |⟨X − E[X], Y − E[Y ]⟩| ≤ ∥X − E[X]∥ ∥Y − E[Y ]∥ =√
Var(X)Var(Y ). Dividing yields |ρ| ≤ 1. Equality in Cauchy–Schwarz holds iff Y − E[Y ] =

c (X − E[X]) almost surely for some real c, i.e., iff Y is an affine function of X a.s.

(3) Two ways to project in R3. Let a1 = (1, 2, 2)⊤, a2 = (0, 1, 1)⊤, W = span{a1, a2}, and
v = (1, 0, 2)⊤.

(a) Use Gram–Schmidt to find an orthonormal basis of W and then compute PW (v).

(b) Use the normal equations with A = [ a1 a2 ] to compute PW (v) = Ax̂, where x̂ solves
A⊤Ax̂ = A⊤v. Verify both answers agree and find the residual.

Solution: (a) ∥a1∥ = 3, so w1 = a1/3. Then ⟨a2, w1⟩ = 4
3 and u2 = a2 − 4

3w1 = a2 − 4
9a1 =

(−4
9 ,

1
9 ,

1
9)

⊤. Its norm is ∥u2∥ =
√
2/3, hence w2 = u2/∥u2∥ = 1

3
√
2
(−4, 1, 1)⊤. Now ⟨v, w1⟩ =

5
3 and ⟨v, w2⟩ = − 2

3
√
2
, so PW (v) = ⟨v, w1⟩w1 + ⟨v, w2⟩w2 =

5
9a1 −

1
9(−4, 1, 1)⊤ = (1, 1, 1)⊤.

(b) A⊤A =

[
9 4
4 2

]
and A⊤v = (5, 2)⊤. Solving gives x̂ = (1,−1)⊤. Then PW (v) = Ax̂ =

a1 − a2 = (1, 1, 1)⊤, matching (a). Residual r = v − PW (v) = (0,−1, 1)⊤ satisfies A⊤r = 0.

(4) Least-squares fit of a line (normal equations). Let A =


1 0
1 1
1 2
1 3

 and b =


1
2
2
4

. Find x̂ = (c,m)

that minimizes ∥Ax−b∥2 and compute Prange(A)(b) = Ax̂. Verify orthogonality of the residual
to the columns of A.

Solution: A⊤A =

[
4 6
6 14

]
and A⊤b = (9, 18)⊤. Solve

[
4 6
6 14

] [
c
m

]
=

[
9
18

]
: from 4c+6m =

9, 6c+14m = 18 we obtainm = 0.9, c = 0.9. Thus x̂ = (0.9, 0.9) and Ax̂ = (0.9, 1.8, 2.7, 3.6)⊤.
Residual r = b − Ax̂ = (0.1, 0.2,−0.7, 0.4)⊤ satisfies A⊤r = (

∑
ri,

∑
i ri) = (0, 0), hence

r ⊥ range(A).

(5) Gramian, PSD, and linear dependence. Let w1 = (1, 1, 0)⊤, w2 = (1,−1, 0)⊤, w3 = (2, 0, 0)⊤

in R3. Form the Gramian G = [gij ] with gij = ⟨wj , wi⟩ under the standard inner product.
Show G ⪰ 0 and that G is not positive definite. Identify a nonzero v with v⊤Gv = 0.

Solution: Compute inner products: ⟨w1, w1⟩ = 2, ⟨w2, w2⟩ = 2, ⟨w3, w3⟩ = 4, ⟨w2, w1⟩ = 0,

⟨w3, w1⟩ = 2, ⟨w3, w2⟩ = 2. Thus G =

2 0 2
0 2 2
2 2 4

. For any v = (v1, v2, v3)
⊤, v⊤Gv =

∥∥∑3
i=1 viwi

∥∥2 ≥ 0, so G ⪰ 0. Since w3 = w1 + w2, choose v = (1, 1,−1)⊤ to get
∑

viwi = 0,
hence v⊤Gv = 0 and G is not positive definite.

(6) Best affine estimator of a random variable. Let (X1, X2, Y ) be real random variables with µ =

E[(X1, X2)
⊤] = (1,−1)⊤, Σ = Cov((X1, X2)

⊤) =

[
4 1
1 4

]
, p = Cov((X1, X2)

⊤, Y ) = (2,−1)⊤,
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and Var(Y ) = 5. Find the coefficients (c, w) of the best affine estimator Ŷ = c+w⊤(X1, X2)
⊤

and the minimum MSE.

Solution: Normal equations give Σw = p and c = E[Y ] − w⊤µ with E[Y ] = 0 (by assump-

tion). Compute Σ−1 = 1
15

[
4 −1
−1 4

]
, hence w = Σ−1p = 1

15(9,−6)⊤ = (0.6,−0.4)⊤. Then

c = −w⊤µ = −(0.6 · 1 + (−0.4) · (−1)) = −1. Thus Ŷ = −1 + 0.6X1 − 0.4X2. The minimum
MSE equals Var(Y )− p⊤Σ−1p = 5− [2,−1] · (0.6,−0.4)⊤ = 5− 1.6 = 3.4.

(7) Law of total variance (numerical verification). Let Y ∈ {0, 1} with P(Y = 0) = P(Y = 1) = 1
2 .

Let X | Y = 0 take values 0 and 2 with equal probabilities, and X | Y = 1 ≡ 1 almost surely.
Compute Var(X), E[Var(X | Y )], and Var(E[X | Y ]) and verify the law of total variance.

Solution: X | Y = 0: E[X | Y = 0] = 1, Var(X | Y = 0) = 1. X | Y = 1: E[X | Y = 1] = 1,
Var(X | Y = 1) = 0. Hence E[Var(X | Y )] = 1

2(1) +
1
2(0) =

1
2 and E[X] = E[E[X | Y ]] = 1,

so Var(E[X | Y ]) = 0. Therefore Var(X) = 1
2 + 0 = 1

2 , which also follows directly from the
unconditional pmf.

(8) Gaussian MMSE for an additive noise channel. Let X ∼ N (0, σ2
X), N ∼ N (0, σ2

N ) indepen-
dent, and observe Y = X +N . Find the MMSE estimator g(Y ) = E[X | Y ] and the MMSE
value.

Solution: (X,Y ) is jointly Gaussian with Cov(X,Y ) = σ2
X and Var(Y ) = σ2

X + σ2
N . For

jointly Gaussian variables, E[X | Y ] is linear: g(Y ) = Cov(X,Y )
Var(Y ) Y =

σ2
X

σ2
X+σ2

N
Y . The MMSE

equals E[(X − g(Y ))2] = σ2
X − Cov(X,Y )2

Var(Y ) = σ2
X − σ4

X

σ2
X+σ2

N
=

σ2
X σ2

N

σ2
X+σ2

N
.

(9) Conditional expectation and MMSE for a discrete pair. Let Y ∈ {0, 1} with P(Y = 0) = 0.6,
P(Y = 1) = 0.4. Conditional on Y , X | Y = 0 equals 0 with prob. 0.75 and 2 with prob. 0.25;
X | Y = 1 equals 0 with prob. 0.25 and 2 with prob. 0.75. Compute E[X | Y ], Var(X | Y ),
mmse(X | Y ), and verify the law of total variance.

Solution: E[X | Y = 0] = 0 · 0.75 + 2 · 0.25 = 0.5, E[X2 | Y = 0] = 4 · 0.25 = 1, so
Var(X | Y = 0) = 1 − 0.25 = 0.75. E[X | Y = 1] = 2 · 0.75 = 1.5, E[X2 | Y = 1] =
4 · 0.75 = 3, so Var(X | Y = 1) = 3 − 2.25 = 0.75. Thus mmse(X | Y ) = E[Var(X |
Y )] = 0.6 · 0.75 + 0.4 · 0.75 = 0.75. Furthermore, E[X] = 0.6 · 0.5 + 0.4 · 1.5 = 0.9 and
Var(E[X | Y ]) = Var({0.5, 1.5}) = 1.05 − 0.92 = 0.24. Therefore, by the law of total
variance, Var(X) = 0.75 + 0.24 = 0.99, which agrees with the unconditional calculation
E[X2] = 4 · 0.45 = 1.8, so Var(X) = 1.8− 0.92 = 0.99.

(10) Orthogonal complement and projection matrix in R4. Let w1 = (1, 1, 0, 0)⊤, w2 = (0, 1, 1, 0)⊤,
W = span{w1, w2}.

(a) Find a basis for W⊥.

(b) Compute the orthogonal projector PW via PW = A(A⊤A)−1A⊤, where A = [w1 w2 ].

(c) Compute PW (v) for v = (1, 2, 3, 4)⊤ and verify v − PW (v) ∈ W⊥.

Solution: (a) Solve x · w1 = 0 and x · w2 = 0: x1 + x2 = 0, x2 + x3 = 0. A basis is
{(1,−1, 1, 0)⊤, (0, 0, 0, 1)⊤}.

(b) A =


1 0
1 1
0 1
0 0

, A⊤A =

[
2 1
1 2

]
, (A⊤A)−1 = 1

3

[
2 −1
−1 2

]
. Hence PW = 1

3


2 1 −1 0
1 2 1 0
−1 1 2 0
0 0 0 0

.
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(c) PW (1, 2, 3, 4)⊤ = 1
3(1, 8, 7, 0)

⊤. Residual r = (1, 2, 3, 4)⊤ − 1
3(1, 8, 7, 0)

⊤ = (23 ,−
2
3 ,

2
3 , 4)

⊤

satisfies r · w1 = 0 and r · w2 = 0, so r ∈ W⊥.

(11) Characterizing equality in Cauchy–Schwarz via projections. Let u, v be nonzero vectors in
an inner-product space. Show that |⟨u, v⟩| = ∥u∥∥v∥ iff Pspan{u}(v) = αu for some α with
v − αu = 0 (i.e., v lies in the span of u). Interpret this in the space of random variables.

Solution: By the Projection Theorem, v = Pspan{u}(v) + r with r ⊥ u. By the Pythagorean

Theorem, ∥v∥2 = ∥Pspan{u}(v)∥2 + ∥r∥2. Also, Pspan{u}(v) =
⟨v,u⟩
⟨u,u⟩u. Then |⟨u, v⟩| = ∥u∥∥v∥

iff ∥r∥ = 0 iff v is a scalar multiple of u. In the random-variable space with ⟨X,Y ⟩ = E[XY ],
equality holds iff Y = cX almost surely for some c.

(12) Gram–Schmidt on a finite probability space. Let X take values in {−1, 0, 1} with P(X =
−1) = P(X = 1) = p and P(X = 0) = 1 − 2p for p ∈ (0, 12 ]. Apply Gram–Schmidt in the
inner-product space of real random variables (with ⟨U, V ⟩ = E[UV ]) to the list (1, X,X2) to
produce an orthonormal set (Y0, Y1, Y2).

Solution: First Y0 = 1 since ∥1∥2 = E[1] = 1. CenterX: E[X] = (−1)p+0·(1−2p)+1·p = 0,
so X already has zero mean. Its norm is ∥X∥2 = E[X2] = (−1)2p + 0 + 12p = 2p. Thus
Y1 = X/

√
2p.

Next orthogonalize X2 against {1, Y1}. Compute E[X2] = 2p and E[X3] = (−1)3p+13p = 0,
so ⟨X2, Y1⟩ = E[X2 · X]/

√
2p = E[X3]/

√
2p = 0. Hence U2 = X2 − ⟨X2, 1⟩ · 1 = X2 − 2p

and ∥U2∥2 = E[(X2 − 2p)2] = E[X4] − 4pE[X2] + 4p2 = (p + p) − 8p2 + 4p2 = 2p − 4p2 =

2p(1 − 2p), using X4 = X2 on {−1, 0, 1}. Therefore Y2 =
X2 − 2p√
2p(1− 2p)

. The set (Y0, Y1, Y2)

is orthonormal by construction.
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