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1 What is a Markov chain?

1.1 Introduction

Definition 1 (Finite-state Markov chain). A finite-state Markov chain (FSMC) with n states is a
sequence of random variables Xy, X1, Xo, ... where each X; € [n] .= {1,2,...,n} and the following
Markov condition holds,

Pr(Xip1 =7 Xe =4, X0, X1,..., X4 1) =Pr(Xep1 = 7| Xe =14).

If Pr(X¢41 = j| Xy = i) does not depend on ¢, then the Markov chain is called time invariant (or
homogeneous).



In the remainder of this note, we assume the FSMC is time invariant and we let P € R"*"
denote the transition-probability matriz with entries [P], ; == P; j = Pr(Xy41 = j| Xy = i). Since
the i-th row of P represents the probability distribution of the next state when the current state is
i, we see that P; ; > 0 and E?:l P; ; = 1. The Markov property also implies that

n
Pr(Xepa=j| X =i) =) Pr(Xpo=j|Xp1 =k)Pr(Xpp1 = k| X; = 1)
k=1

n n
= Zpk,jpi,k = Z P kP = [PQ] i
k=1 k=1

Arguing by induction, one also finds that Pr(Xyy,, = j| Xy = i) = [P™], ;. Thus, given a fixed

i’j :
starting state, one can calculate the probability of being in state j after m steps by computing the
m-th power of a matrix. Using the notation 7(*) = (wgt), . ,m(f)) with 771@ = Pr(X; = 1), we also
see that

n
7l = 5" Pr(Xig = 4, Xe = 0)
=1

= ZPr(Xt+1 = j|Xi = i) Pr(X; =)
i=1

=3 P = [z0p]
=1

J
Z-(O) is the probability that the process starts in state .
Two-state weather model. Let n = 2 with states

0.1
{R,S} (rain/sun), and P = [82 8;] From any initial ° G 05
0) 0.5

distribution 7(?), we can compute 7(*) = 7(9) Pt or simulate
by repeated sampling from P’s rows. Figure 1: Two-state weather chain.

where 7

1.2 Sampling From a Markov Chain

Let the random variable U be uniformly distributed on the interval [0, 1) and let u be a realization of
U. For a discrete random variable X € [n], one can use U to simulate X by assigning subintervals
of [0,1) to each of the n possibilities for X. Let Fx(z) = >.; , Pr(X = i) for € [n] be the
cumulative distribution function of X. Then, we can set X = z if u € [Fx(z — 1), Fx(x)) (with
Fx(0) = 0 by convention). This works because

Pr(U € [Fx(z—1),Fx(x))) = Fx(x) — Fx(x — 1) = Pr(X = x).

For built-in sampling functions in Matlab and Python, see randsrc and np.random.choice, re-
spectively.

Similarly, one can simulate a Markov chain by using pseudo-random numbers to generate real-
izations of the process. Let u1,us, ... be a realization of a sequence of independent and identically
distributed (i.i.d.) copies of U. Then, a realization x1, x9, ... of X1, Xo, ... is generated by choosing
x; to be the unique value satisfying

xe—1 Tt
Z PI‘(Xt = i|Xt_1 = ﬂft_l) <u < ZPI‘(Xt = ’i|Xt_1 = .’L’t_l).
i=1 =1



1.3 A Few Simple Examples
1.3.1 What is the chance that a game of Candyland will last m moves?

Candyland is an American boardgame where players draw cards to move and the goal is to reach
the candy castle first. It can be played by very young children because it requires neither reading
nor counting. Players draw cards randomly and, if a colored card is drawn, they move their piece
to the next position of that color. If the card has a picture, they move to the position with that
picture. There are also spaces that allow shortcuts or cause delays. A picture of board can be
found at:

https://kim.scarborough.chicago.il.us/images/c1-2010

1.3.2 What is the chance that a game of Chutes and Ladders lasts m moves?

Chutes and Ladders (aka Snakes and Ladders outside of the US) is a boardgame where a single
die is rolled to determine how far you move on a gameboard defined by a grid. Some locations
contain ladders that let you skip ahead while others contains chutes (aka snakes) that you move
you backwards. Historically, it is based on an ancient game from India that teaches morality by
associating ladders with virtues and snakes with vices. For more information, see:
https://en.wikipedia.org/wiki/Snakes_and_Ladders

1.3.3 What are the best properties to buy in Monopoly?

Monopoly is an American boardgame where players move around the gameboard buying, selling,
and developing properties. Rent is collected from other players who land on your properties.
Properties differ both in their expense (e.g., Park Place is valued much more highly than Baltic
Avenue) and the chance that players will land on them. Markov chains can be used to estimate
how often players will land on each property, which can be used to estimate their value. For way
too much information, see:

http://pfister.ee.duke.edu/courses/ece586/monopoly.pdf

1.4 Directed Graph Perspective

We can associate a Markov chain defined by P with a directed graph comprised of n vertices labeled
by [n] with an edge i — j whenever P;; > 0.

Definition 2. State j is called reachable from state ¢ if [P™]; ; > 0 for some m € N. States
1,7 communicate if they are reachable from the other. This notion of communicating defines an
equivalence relation that partitions [n] into communicating classes. The chain is irreducible if there
is only one class and aperiodic if max;c(y) ged{m > 1| [P"];; > 0} = 1.

Definition 3. If the process can become stuck in a single state (e.g., say j is the state at the end
of a game), then P;; = 1 and that state is called absorbing. A Markov chain is called absorbing
if an absorbing state is reachable from every state. A set A C [n] of states is called absorbing if
> jeaij=1forallie A In this case, the Markov chain will never leave the set A after entering
any state in that set. State i is called transient if the expected number of times it will return to
itself is finite (e.g., if there is an absorbing set A \ {i} is reachable from it).


https://kim.scarborough.chicago.il.us/images/cl-2010
https://en.wikipedia.org/wiki/Snakes_and_Ladders
http://pfister.ee.duke.edu/courses/ece586/monopoly.pdf

Example 4 (Reducible chain with absorbing set). Consider the n = 5 case with transition matrix

05 05 0 0 O
04 05 01 0 O
P=]10 0 05 05 0
0 0 05 05 0
1 0 0 0 O

The states in this chain can be classified as follows: States 1 and 2 communicate with each other
(paths 1 <> 2), but can enter {3,4} (via 2 — 3). They are transient. - States 3 and 4 communicate
with each other and form a closed (absorbing) class {3,4} since no probability leaves this set. -
State 5 is transient and deterministically moves to 1.

0.5

Example 5 (Multiple closed classes, one a singleton absorbing state). Let n = 5 with

06 04 0 0 O
03 06 01 0 O
P=]10 0 05 05 0
0 0 05 05 0
0 0 0 o0 1

The states in this chain can be classified as follows: {3,4} is a closed communicating class (non-
trivial absorbing set) and {5} is a singleton absorbing state. States {1,2} are transient and even-
tually reach the set {3,4}.

0.5

1.5 Hitting Times

Definition 6. For a Markov chain Xy, the hitting time (or first hit time) of a set A C [n] is the
random variable
Hj(w) =inf{t € Ny | X;(w) € A},



which equals the first time at which X; is in the set A. Similarly, the expected time to hit the set
A, when starting from Xg = 4, is denoted by

nia=E[Hy | Xo=1].

For a Markov chain with starting state X = 7, these notes abuse notation and use 7; ; to denote
the random variable H; on the conditional probability space formed by conditioning on Xg = .
Thus, we can write

Pr(TZJ:m):Pr(HJ:m|X0:Z):Pr(Xm:]’Xm*1 7&]7Xm727é]7aX1 #]‘XOZZ)7

where, by convention, Pr (T} ; = 0) = §; ; with &; ; denoting the Kronecker delta function

1 ifi=y,
0ij = .
0 otherwise.

If state j is not reachable from state i, then T; ; = oo (i.e., Pr(7}; = oo) = 1) by convention.

Remark 7. By constructing chains where the probability of reaching state j from state ¢ is less than
1, it is also possible to construct examples where 0 < Pr(7T;; = 00) < 1.

1.5.1 Special Case of Absorbing States

If state j is absorbing, then the distribution of the hitting time 7; ; satisfies the following simple
formula,
Pr(Ti; <m)=Pr(X,, =j| Xo=1) = [Pm]m-.

This follows from initializing Xy = 7 and observing the equality of the two events “I; ; < m” and
“Xm = 37. Since Xy = 1, if X,,, = j, then we clearly have T; ; < m. On the other hand, if T; ; < m,
then X; = j for some ¢t < m and, thus, X,, = j because state j is absorbing. Hence, for m > 1, we
find that

Pr(T;j =m) =Pr(T;; <m) - Pr(T;; <m —1)=[P" - P"1] .
1.5.2 General Case

Lemma 8 (Expected hitting-time recursion). For a finite Markov chain with transition matriz P,
let n; ; be the expected hitting time (or time to hit) state j when starting in state i. By convention,
the i = j case is defined by n;; = 0 for all i € [n|. Fori # j, the expected hitting times satisfy the
linear equations defined by

n
Nij =1+ Z P g5
k=1

Proof. This follows from
mij = E[Ti; [ Xo =]

= Pr(Xy =k | Xo=14)E[T;; | Xo =i, X, = k]
k=1

n
= Z Py (1+ k)

k=1

n
=1+ Z Py e 5-
k=1



where the second step uses the total probability law, the Markov property, and time invariance. [

Remark 9. Since n; ; = oo whenever j is not reachable from 4, one must be somewhat careful when
solving these equations but they can be used to solve 7; ; whenever it is finite. In Section this
issue is avoided by focusing on the number of visits to transient states before absorption.

Example 10. What is the distribution of the number of fair coin tosses before one observes 3
heads in a row? To solve this, consider a 4-state Markov chain with transition probability matrix

05 05 0 O

05 0 05 0
P= 05 0 0 05(°

0 0 0 1

where X; = 7 if the last 7 — 1 tosses were heads. Then, X; = 4 is an absorbing state that is reached
when the last three tosses are heads.

Solution. For the above Markov chain starting in state 1, the hitting time to observe 3 heads is
given by Hy. Then, we have n; 4 = E[Hy | X = ] for ¢ € [4] and recall that where 144 = 0. Using
Lemma |8 we can relate these expectations to each other. Dropping the subscript 4, we use the
shorthand 7; = 7; 4 to write

m = 1405 m + 0.57]2,

N2 = 1405 m + 057]3,

n3 = 1405 m + 0.5774.
Solving these equations, we find that no =1+ 0.57n; + 0.5n3 = 1.5 + 0.75n; and substituting into
m=14+05m+0.5n givesn; =2+ 2 =24 1.5+ 0.757;. Hence, 0.257 = 3.5 and n; = 14.
Thus, the expected number of tosses to see three heads in a row is 14.
Lemma 11 (Hitting-time CDF recursion). For a finite Markov chain with transition matriz P,
let T; ; be the first hitting time of state j starting from i. Define gbg]n) =Pr(H; <m| Xy=1) =
Pr(T;; < m). Then, for all m > 0, we have

17 ,L:Ja

¢(m+1) o n m)
kzlpi,k ¢k73 ) { 7& jv

.3 -
with initialization gbg(? = 0;,j. The probability of eventually reaching state j from state i is given by
o . — ) — T (m)
¢ij =Pr(Hj <oo| Xo=1)= n"%g)nooqﬁi’j ,

which is also a fized point of the recursion.

Proof. Consider any 4,j € [n]. If i = j, then T; ; = 0 almost surely, so gbg?) =1 for all m > 0. If
1 # j, then we can condition on the first step to see that

oY = Pr(H; <m+1] Xo = i)

= Pr(Xi1=k|Xo=1i) Pr(Tp; <m| Xo=k)

k=1

n
=3 P,
k=1



Figure 2: Miniature chutes and ladders game

where the second step uses the total probability law, the Markov property, and time invariance.
Since qbg;) is non-decreasing in m, its limit as m — oo exists and equals ¢; ; = Pr(H; < oo | Xo = ).
Moreover, taking the limit of the recursion shows that ¢; ; is a fixed point of the recursion. O

Exercise 1. Write a computer program (e.g., in Python, Matlab, ...) to compute Pr(7} 4 = m) for
m =1,2,...,100 and use this to compute and print an estimate of the expected number of tosses
[E [T7,4]. Write a computer program that generates 500 realizations from this Markov chain. Then,
use them to plot a histogram of 77 4 and compute/print an estimate of the expected number of
tosses E [T 4].

Exercise 2. Consider the miniature chutes and ladders game shown in Figure 2] Assume a player
starts on the space labeled 1 and plays by rolling a fair four-sided die and then moves that number
of spaces. If a player lands on the bottom of a ladder, then they automatically climb to the top. If a
player lands at the top of a slide, then they automatically slide to the bottom. This process can be
modeled by a Markov chain with n = 16 states where each state is associated with a square where
players can start their turn (i.e., players never start at the bottom of a ladder or the top of a slide).
To finish the game, players must land exactly on space 20 (i.e., if your roll would take you beyond
20, then no move is made). Compute the transition probability matrix P of the implied Markov
chain. For this Markov chain, use the program from Exercise 1 to compute and plot the cumulative
distribution of the number turns a player takes to finish (i.e., the probability Pr (7120 < m) where
T 20 is the hitting time from state 1 to state 20). Compute and print the mean E[T} 50]. Use the
program from Exercise 1 to generate 500 realizations from this Markov chain. Then, use them to
plot a histogram of 77 29 and compute/print an estimate of the expected number of tosses E [T7 20]

1.6 Canonical Form and the Fundamental Matrix

One property of a transient state is that, starting from it, the expected number of return visits
is finite (equivalently, it does not belong to any closed communicating class). In an absorbing
chain there is at least one absorbing state and every nonabsorbing state is transient. For a target
absorbing state j and initial state ¢, the absorption probability is defined to be

PI‘(Hj < 00 ‘ Xo = Z) = ¢i,j,

where ¢; ; is defined in Lemma



After relabeling states so that all r transient states come first and the s absorbing states last,
the transition matrix has the canonical block form
Q R
P =
[0 I\’
where (Q € R"™" gives transient-to-transient transitions and R € R"*¢ gives transient-to-absorbing
transitions. This defines a kind of generalized geometric distribution where all transitions from

transient states to absorbing states in k steps are defined by Pr(Xy, = j | Xo =) = [Q* ' R]; j-
To understand this better, we note that

Pr(Ha>m | Xo=1) =Pr(X,m ¢ A| Xo=1) = [Q"],
j=1

because [Q™]; ; is probability of going from i to j in exactly m steps without being absorbed into
A. Computing the mean by summing the complementary CDPﬂ shows that

o0
ni,a=E[Ha | Xo = 1] :ZPY(HAZk!Xo:i)

k=1
= YRy => !Z Qk_ll :
k=1 j=1 7j=1 Lk=1 ij

For an absorbing chain, all eigenvalues of Q satisfy |\| < 1, so (I, — Q)~! is well-defined. For this
reason, we can define the fundamental matriz

Ne (1 -Q T =Y Qb
k=0

and observe that the expected time to hit A starting from ¢ (i.e., the expected time to absorption
starting from state ¢ € [r]) is equal to the sum

,
ni,A = Z Nij.
j=1

Similarly, the probability of being absorbed by state j € {r + 1,...,n} when starting from state

i € [r] equals
oo

¢ij=> [Q"Rlijr=[NRlij r.

k=0

Example 12 (Gambler’s ruin). Consider states 1,2,...,n with absorbing set A = {1,n} and,
for 2 < 7 < n — 1, transitions P;;41 = pand P;1 = ¢ =1—-p. For 2 <i < n—1,let
h; = Pr(hit n before 1 | Xo = i) and let d; := E[time to hit A | Xo = i]. A gambler betting 1
dollar per game starts with ¢ — 1 dollars, and decides to leave if they reach n — 1 dollars, is ruined
if they reach 0 dollars before reaching the n — 1 dollars.

The following lemma gives closed-form expressions for the probability of ruin using the funda-
mental matrix method.

'For a non-negative integer-valued random variable with cdf Fix(z), we have E[X] = > (1 — Fx (i)).



Lemma 13 (Gambler’s ruin solution via the fundamental matrix). For the gambler’s ruin chain
above, the absorption probabilities and expected durations are

1—1

, pP=q=73, (i = 1)(n —1i), P=q=73,
T 1-(a/p)"! Pt R A A N ek 77 K
1—(g/p)" ’ q—p q—p 1—(g/p)"!

Proof. For i ¢ A, it is easy to verify that h; = ph;y1 + qhij—q for 2 < i < n — 1 with boundary
conditions hy = 0, h, = 1. For the symmetric case (p = ¢ = %), the relation becomes h;+1 — h; =
h; — h;—1 and the solutions are affine h; = at + b. Using hy = 0 and h,, = 1 gives a = L

n—1
=1

“—. For the biased case (p # ¢), we can solve the homogeneous

and b = ——L_ hence h; =
n—1’
second-order linear recurrence
hi =phit1+qhi—

that is satisfied when i € {2,...,n — 1}. We seek solutions of the form h; = 2%, which leads to the
characteristic equation

2i=p2zTt g2t = p—z4g=0.

This quadratic has distinct roots z; = 1 and zo = z% since p # ¢ implies p # ¢ and hence z1 # zo.

Therefore, the general solution of the recurrence has the form

—1
hi=A+B<q> .
D

Imposing the boundary condition h; = 0 gives

From h,, =1, we get

n—1
hn:A+B(q> —1.
D

Substituting A = —B shows

—B+B<;>n_1:1 — B(<;>n_1—1>:1 — B:(q)"l_l_i

The stated general solution follows from simplifying.
The formulas for the expected duration d; = E[time to hit {1,n} | X¢ = 4] follow from an
analogous recurrence
di=1+pdiy1 +qdi-1, 2<i<n-—1,

with di = d,, = 0 and are obtained in the same way, so we omit the algebraic details. O

Remark 14 (Connection to the fundamental matrix method). The recurrence solution above is
the explicit form of the general fundamental matriz approach for absorbing Markov chains. If we
label the transient states {2,...,n — 1} consecutively, the transition matrix takes the canonical

R o .
form P = [%2 I] , where @ records transitions among transient states and the two columns of



R = [r1 m,] € R"2%2 give transition probabilities into the absorbing states 1 and n. Then, the
probabilities of hitting n before 1 when starting from each transient state are given by

ha
: = Nry, N:(I_Q)il
hn—1
using the fundamental matrix formula. This is equivalent to the linear system

(I —Q)h =ry.

Written entrywise, this system is exactly the second-order recurrence h; = ph;i1 + qh;—1 with
boundary conditions h; = 0 and h,, = 1. Thus, solving the characteristic equation simply gives a
closed-form solution of the linear system underlying the fundamental matrix formula.

2 Recurrent Markov Chains

2.1 Recurrence and Stationary Distributions

From Definition [2| we know that communicating states are reachable from each other and that, if
all pairs of states are communicating, then the chain is called irreducible.

Definition 15 (Recurrent). A state is recurrent if it is expected to return to itself infinitely many
times. All states in an irreducible finite-state Markov chain are recurrent. A state is transient if
this expectation is finite (i.e, > ;o Pr(X; =i | Xo = 1) < 00).

Definition 16 (Stationary distribution). A probability vector 7 is stationary if 7P = w. Equiva-
lently, 7 is a left eigenvector for eigenvalue 1 normalized by > ; m; = 1.

Theorem 17 (Existence and uniqueness). For a finite-state irreducible Markov chain, there exists
a unique stationary distribution © with m; > 0 for all i € [n].

Sketch of Proof. Applying the Perron—Frobenius Theorem to an irreducible nonnegative matrix
shows that all eigenvalues have modulus at most 1 and there is a unique simple eigenvalue of
1. This eigenvalue is associated with a unique positive left eigenvector. Normalizing this left
eigenvector the unique stationary distribution. O

If the transition-probability matrix is positive (i.e., the process can transition to any state in one
step), then the Markov chain is obviously irreducible and it has a unique stationary distribution.
If the n-step transition-probability matrix P™ is positive, then the stationary distribution 7 also
satisfies the steady-state limit

m; = lim Pr(X; =1),

t—o0

which equals the expected fraction of time that the process spends in state 3.
One can find the stationary distribution by first rewriting 7P = 7 as

(I - Pzl =o.

Then, one can solve for 77 (up to normalization) by applying row reduction to (I — P)T and

computing the one-dimensional basis of the null space. This can be computed in Matlab and
Python using the functions null and scipy.linalg.null space. Lastly, one must normalize the
resulting basis vector by enforcing the condition Z?Zl mj =1 (e.g., by dividing by the sum of its
entries).

10



Example 18. In a certain city, it is said that the weather is rainy with a 90% probability if it was
rainy the previous day and with a 50% probability if it not rainy the previous day. If we assume
that only the previous day’s weather matters, then we can model the weather of this city by a
Markov chain with n = 2 states whose transitions are governed by

0.9 0.1
P= [0.5 0.5}

Under this model, what is the steady-state probability of rainy weather?
To find this, we solve for the stationary distribution. As described above, we write

(I-P) = [_O(fl _()(_)55] [(1) _05] ’

where = denotes row reduction. Thus, 71 —5me = 0 and 71+ = 1 imply that 71 = 1—m9 = 5/6
is the steady state-probability of rainy weather.

Exercise 3. Write a program to compute the stationary distribution of a Markov chain when it is
unique. Consider a game where the gameboard has 8 different spaces arranged in a circle. During
each turn, a player rolls two 4-sided dice and moves clockwise by a number of spaces equal to
their sum. Define the transition matrix for this 8-state Markov chain and compute its stationary
distribution.

Next, suppose that one space is special (e.g., state-1 of the Markov chain) and a player can only
leave this space by rolling doubles (i.e., when both dice show the same value). Again, the player
moves clockwise by a number of spaces equal to their sum. Define the transition matrix for this
8-state Markov chain and compute its stationary probability distribution.

2.2 Convergence to equilibrium

Theorem 19 (Convergence via spectral decomposition). If a finite Markov chain is irreducible
and aperiodic with stationary distribution m, then for any initial distribution u,

lim uP' =7

t—o00 —

componentwise. Moreover, there exist constants C < oo and p € (0,1) such that [|pP" — x[js <
C’ptHH — 7|2 for all t > 0.

Sketch via Jordan form. Since the chain is aperiodic and irreducible, 1 is a simple eigenvalue of
P with right eigenvector 1 and left eigenvector m, and all other eigenvalues satisfy |A| < 1. Let
P = SJS~! be the Jordan decomposition where J1,1 = 1, the first column of S is 1 and the first

row of S~1is . Then P! = SJ!S~! and J? converges to the projector elTel onto the eigenspace of

eigenvalue 1 while the other Jordan blocks decay geometrically (i.e., [|S(J¢ — ef e;)S7 |2 < Cpb).

Hence HPt — 7w and the bound follows from

|uP" = mP)y = [|( — m) (SIS~ 1)l
= |[(n—m)S(efe; + J' — el )52

=(p—m)(L 7+ S(J" —ef e1)S™)|2

= [l(x—m)S(J" — el 1) 2

<l —xll2 1S(T* — el e)S™l2

< Cplllp— . -

=

11



Example 20 (Cycle Z/N7 with lazy walk). For P = 31+ 35T + 157 (right/left circular shifts),
eigenvalues are \p = % + %cos(Zwk/N ). Hence the second-largest eigenvalue satisfies 1 — A\, =
O(1/N?) and deviations from stationarity decay like A! = exp(—©(t/N?)). Equivalently, the time
to get within an e-neighborhood of equilibrium in || - [|2 scales as ©(N?1log(1/e)).

2.3 Detailed Balance and Reversibility

Definition 21 (Time reversal). For a Markov chain Xg, X1, ..., its time reversal Yy, Y7, ... satisfies
Pr(X; =i, X441 = j) = Pr(Yy = 4,Y41 = i) for all 4,5 € [n] and t € Ny. If the original chain
has transition probability matrix P and positive stationary distribution m, then Bayes’ rule implies
that the reversed chain has transition probability matrix Q;; = m; P ;/7;.

Definition 22 (Detailed balance). For a Markov chain with transition probability matrix P, a
probability vector m satisfies the detailed balance condition if m; Pj; = m;Pj; for all i,j € [n].

Lemma 23. If a Markov chain satisfies the detailed balance condition with a strictly positive
distribution vector w, then it is reversible and w is stationary. Moreover, if the underlying graph
is connected (i.e., the state space cannot be partitioned into two nonempty sets), then the chain is
wrreducible with © as the unique stationary distribution.

Proof. Reversibility follows because the reversed transition matrix satisfies Q; ; = mP; j/mj = P, ;
by detailed balance. Note that this definition uses ) to define a forward time Markov chain which
is equivalent to running the P chain in reverse. Summing m; F; ; = m;P;; over i yields 7P = m, so &
is stationary. If the chain is not disconnected, then either state 7 is reachable from j or vice-versa
for all 4, j € [n]. By reversibility, if one direction holds, then the other direction holds and all states
are communicating. Hence, the chain is irreducible. Uniqueness under irreducibility then follows
from Theorem This condition is required though because, if the chain is composed of two
disconnected sets of states each defining irreducible reversible chains and 7 is a convex combination
of their stationary distributions, then the detailed balance condition will hold but the chain is not
irreducible. O

Example 24 (Random walk on an undirected graph). Let G = (V, E) be a connected simple
undirected graph with n vertices and degrees d;. The Markov chain formed by walking the graph
on uniform random edges has P;; = 1/d; if (i,j) € E and 0 otherwise. Then, m; o d; satisfies
detailed balance, so normalizing gives a stationary distribution m; = d;/ > p_; dp.

Example 25 (Birth-death chains). Consider a birth-death chain on {1,2,...,n} with transition
probabilities Pj ;11 = N, Pii—1 = pi, and Py = 1 — X\ — p; for 1 < i < n, with boundary
modifications g1 = 0 and A\, = 0 (so Py = 1— A, P = 1 — py). Assume A\, p; > 0 and
Ai +pi < 1

Lemma 26 (Stationary distribution of a birth—death chain). If the chain is irreducible (i.e., \; >0
and piv1 >0 for all 1 <i <mn—1), then it has a unique stationary distribution = given by

i—1 A\ n i—1 A\
k _ k

T = T _— 71'11:1—{—5 H—

el HE+1 =2 el ME+1

Moreover, w satisfies detailed balance m;P; ;11 = mit1Pit1,-

Proof. Detailed balance implies 7,11 = m; A;/pi41 for 1 < i < n — 1. Tterating yields the product
form. Normalizing gives Y ;" m; = 1 and the stated expression for 7. Irreducibility ensures
positivity and, by Theorem uniqueness. O
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Reversibility simplifies spectral analysis because P is self-adjoint with respect to the weighted
inner product (f,g)r = > i, mif(i)g(i). Consequently, there exists an orthonormal eigenbasis
{Yr}}_, in £o(m) with real eigenvalues 1 =Xy > Xg > --- >\, > —1 and ¢1(3) = 1

Theorem 27 (L2 contraction for reversible chains). Let P be reversible with stationary distribution
7w and let A, = max{|A2|, | \n|} < 1. Then, for any f with mean (f, 1), =0,

[P fllze < ALl fllax (¢ >0).

Proof sketch. Expand f = > j_, ag,. Then, orthonormality gives
n n
1P FII3R =D af A < XY af = A f 134 O
k=2 k=2

Test functions. A convenient way to detect convergence is via test functions: for any f : [n] — R
and initial state i, track E[f(X;) | Xo = i] = ¢/ P'f and compare it to the stationary value
E.[f] = a'f. I E[f(X;) | Xo = i] — E;[f] for a family of test functions that separates points
(e.g., the indicators {1;;}7_;), then the entire distribution Pr(X; € - | Xo = i) converges to 7.

2.4 Ergodic theorem (LLN for Markov chains)

Averaging and covariance. Given f : [n] — R, the sample average Sp = # Z;*F:_Ol (X31)
estimates the stationary mean Er[f] = ). m; f(i) when the chain is ergodic. If the chain is started
in stationarity (i.e, Xo ~ 7), then for 7 > 0, we have

Exlf(Xo)f(X-)] = > f@OFG) mlP)ij = (f, PTf)x
S
and the covariance obeys

Covx (f(Xo), (X)) = (f, P f)x — (£, 1)2.

For the rainy—sunny example with P = [ g
one finds Cov,(f(Xo), f(X;)) = m (1 —7m1) -

1], let f = Il{ram} Since m = (5/6, 1/6) and A\ = 0.4,
0.4 -0.47.

Theorem 28 (Ergodic theorem). Let f : [n] — R and X; be irreducible and aperiodic with station-
ary w. Then, for any Xo, we have

T-1 2
1 L
%:fZﬂ&ﬁﬁmme Ex[f(X)). (1)
t=0 i=1
Proof for Stationary Initialization. Assume stationarity (the nonstationary case contributes a neg-
ligible term by convergence by exponential convergence to equilibrium). Then, we have

1 =,
Vaf<T 27 <Xt>> - B Y Con (RS =y S (@),
t=0 5,t=0 T=—(T-1)

where (1) = Cova(f(Xo), f(X|r)). Since the chain is aperiodic, () decays geometrically (e.g.,
by the spectral bounds above), hence > - |v(7)| < oo and Var(St) = O(1/T) — 0. Chebyshev’s
inequality yields Sz — E[f] in L? and in probability. O
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3 Practical Questions

In practice, the most common questions for Markov chains are:
e How does one draw sample paths from the chain?
e How long will it take for the chain to approach equilibrium?
e What is the correlation between a function of the chain at two points separated by time 77

e How can one estimate the parameters of a Markov chain from data?

Drawing sample paths. Given a current state x;, sample x;1 from the categorical distribution
given by the x;-th row of P (e.g., via cumulative sums or np.random.choice). Repeating generates
a trajectory; to compute functionals, accumulate f(z;) along the path.

Time to approach equilibrium. For irreducible aperiodic chains, uP?! — 7 for any initial
distribution u. Quantitatively, the deviation typically decays geometrically at a rate governed by
the subdominant eigenvalue modulus A, < 1 (or spectral gap 1—\,). Power iteration pltth) = O p
provides a practical procedure; stop when ||p+D — p®|| is small.

Autocorrelation of f(X;). If the chain is started in stationarity,

Cova(f(Xo), f(X7)) =z "diag(f) P"f — (z" f)*.

The normalized autocorrelation p¢(7) = Covx(f(Xo), f(X;))/ Varz(f) often decays like \], and
can be estimated empirically from a long run.

Estimating parameters from data. From a trajectory (Xt)tT:o, the maximume-likelihood es-
timator of P is P;; = N;;/N;, where N;; = #{t € Ny | X; = ¢, X441 = j} and N; = Zj Ni ;.
For robustness, one can apply Laplace smoothing: P; ; = (N;; + o)/(N; + an). The stationary
distribution can be estimated by 7 solving 7P = 7 (or directly via empirical frequencies if the chain
is ergodic).

4 Worked Examples

Example 29 (Absorption by linear equations). States {1,2,3} with target A = {3}. Let P =
04 06 0
0.2 0.6 0.2|. For hitting probabilities, solve ¢33 = 1 and ¢13 = 0.4¢13 + 0.6¢23, P23 =
0 0 1
02013+ 0.6¢23 + 0.2¢33, to get ¢13 = 3/4, ¢23 = 5/6. For expected time, use the recursion
of Lemma, n33 = 0, m,3 = 1+04 m,3 + 0.6 12,3, 12,3 = 1+0.2 m,3 + 0.6 72,3 + 0.2 13,35 yielding
M3 =15/4, na3 =9/2.

5 Modeling tips and pitfalls

o State design matters. The Markov property must hold at the chosen granularity. If it does not,
enlarge the state space (e.g., include memory of the last outcome).

14



o Absorption vs. reflection. At boundaries, be explicit: absorb (set P,, = 1) or reflect (add mass

to P”)

e Periodicity. Periodic chains may fail to converge from certain starts. Use a lazy step (]5 =

(I + P)) if needed.

e Numerics. For large n, avoid forming powers P?. Use iterative methods and exploit sparsity.

Exercises

1. (Classification) Consider the 6-state chain with transition matrix

[=lel el elall
(=l el elal

0
0
1
0
0
2

0

5

0 0
0 0
0 0
0.5 0.5
0.2 0.8
0.35 04

0]
0
0
0
0

0

Partition the states into communicating classes and compute the period of each closed class.
Identify any transient states and justify your answer.

2. (Absorption by linear equations) Consider a 6-state Markov chain with absorbing states 5

and 6 and transition matrix

[0.4 04 O
02 0 05
0 03 0
0 0 06
0 0 O
0 0 O

0 0.2
0 O
0.5 0.2
0 O
0 1
0 0

Let A ={5,6}. (a) Form the canonical decomposition with transient block @ (states 1-4) and
absorbing block R (transitions from {1,2,3,4} into {5,6}). Compute the fundamental matrix
N = (I—Q)~! and then the absorption-probability matrix B = NR. (b) Compute the expected
time to absorption ¢ = N1 from each transient start. (c) Verify that, for each transient start

i €{1,2,3,4}, the two absorption probabilities ¢; 5 and ¢;¢ sum to 1.

3. (Stationarity) Compute the stationary distribution for the 8-state “circle” chain where each

step moves clockwise by the sum of two independent {1,2,3,4} dice.

4. (Detailed balance) Show that the random walk on an undirected graph (Example i

reversible and find .

5. (Hitting probability) Solve the gambler’s ruin hitting probability ¢;, = Pr(H, < Hy | X
i) and expected hitting time 7, 4 to A = {1,n} via linear equations; verify the closed forms.

6. (Fundamental matrix) For an absorbing chain with transient block @, prove N = (I—-Q)~!

Ekzo QF and interpret N;j probabilistically.

7. (Absorption probabilities) Build an absorbing chain for a simple board game with ladders
and chutes. Compute B = NR and t = N1.
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8. (Time reversal) For a birth-death chain, compute the time-reversed transition probabilities

and verify reversibility.

9. (Ergodic averages) Simulate a small irreducible aperiodic chain and empirically verify the
ergodic theorem for several test functions f.
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