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1 Introduction

This document provides a proof of the well-known identity that relates the cumulative distribution
function (CDF) of a Poisson random variable to the regularized upper incomplete gamma function. For
a Poisson random variable X with rate parameter A > 0, the CDF is given by
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where k is a non-negative integer. We will show that this is equivalent to the regularized upper incomplete
gamma function, defined as
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Specifically, we will prove the following theorem.

Theorem 1. For a non-negative integer k and a positive real number X\, the cumulative distribution
function of a Poisson random variable X with parameter X is given by

P(X <k)=Q(k+1,\).

2 Proof via Integration by Parts

Proof. We begin with regularized upper incomplete gamma function Q(k + 1, A) which is defined by
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Since k is a non-negative integer, we have I'(k 4+ 1) = k!, so we can write this as

Qk+1,)) = %/ the=t dt.
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We will evaluate the integral using integration by parts. Let u = t* and dv = e~ dt. Then du = kt*~1dt
and v = —e~ ‘. The formula for integration by parts is [udv = uv — [vdu. Applying this to our

integral, we find that
/ the tdt = [—tFe "] —/ (—e V) (kt*—1) dt.
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First, let’s evaluate the bracketed term given by
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The limit is zero because the exponential function grows faster than any polynomial. Now substitute
this back into our equation to get
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Divide both sides by k!:
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The left side is Q(k + 1, A). For the right side, we can simplify the fraction and rewrite the integral in
terms of the regularized gamma function,
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The integral term is Q(k, \), so we have the recurrence relation given by
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We can apply this relationship repeatedly, starting from k and going down to 0 to get
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To complete the series, we need to evaluate Q(1, ) with
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Substituting this back into our expanded series gives
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This can be expressed concisely as the sum
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By definition, this sum is the CDF of a Poisson random variable with parameter A\ at integer k and
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Therefore, we have shown that P(X < k) = Q(k + 1, ). O



