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1 Introduction

This document provides a proof of the well-known identity that relates the cumulative distribution
function (CDF) of a Poisson random variable to the regularized upper incomplete gamma function. For
a Poisson random variable X with rate parameter λ > 0, the CDF is given by

P (X ≤ k) =

k∑
i=0

λie−λ

i!
,

where k is a non-negative integer. We will show that this is equivalent to the regularized upper incomplete
gamma function, defined as

Q(s, x) =
Γ(s, x)

Γ(s)
=

1

Γ(s)

∫ ∞

x

ts−1e−t dt︸ ︷︷ ︸
:=Γ(s,x)

.

Specifically, we will prove the following theorem.

Theorem 1. For a non-negative integer k and a positive real number λ, the cumulative distribution
function of a Poisson random variable X with parameter λ is given by

P (X ≤ k) = Q(k + 1, λ).

2 Proof via Integration by Parts

Proof. We begin with regularized upper incomplete gamma function Q(k + 1, λ) which is defined by

Q(k + 1, λ) =
1

Γ(k + 1)

∫ ∞

λ

tke−t dt.

Since k is a non-negative integer, we have Γ(k + 1) = k!, so we can write this as

Q(k + 1, λ) =
1

k!

∫ ∞

λ

tke−t dt.

We will evaluate the integral using integration by parts. Let u = tk and dv = e−t dt. Then du = ktk−1 dt
and v = −e−t. The formula for integration by parts is

∫
u dv = uv −

∫
v du. Applying this to our

integral, we find that ∫ ∞

λ

tke−t dt =
[
−tke−t

]∞
λ

−
∫ ∞

λ

(−e−t)(ktk−1) dt.

First, let’s evaluate the bracketed term given by

lim
t→∞

(−tke−t)− (−λke−λ) = 0− (−λke−λ) = λke−λ.
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The limit is zero because the exponential function grows faster than any polynomial. Now substitute
this back into our equation to get∫ ∞

λ

tke−t dt = λke−λ + k

∫ ∞

λ

tk−1e−t dt.

Divide both sides by k!:
1

k!

∫ ∞

λ

tke−t dt =
λke−λ

k!
+

k

k!

∫ ∞

λ

tk−1e−t dt.

The left side is Q(k + 1, λ). For the right side, we can simplify the fraction and rewrite the integral in
terms of the regularized gamma function,

Q(k + 1, λ) =
λke−λ

k!
+

1

(k − 1)!

∫ ∞

λ

tk−1e−t dt.

The integral term is Q(k, λ), so we have the recurrence relation given by

Q(k + 1, λ) =
λke−λ

k!
+Q(k, λ).

We can apply this relationship repeatedly, starting from k and going down to 0 to get

Q(k + 1, λ) =
λke−λ

k!
+Q(k, λ)

=
λke−λ

k!
+

λk−1e−λ

(k − 1)!
+Q(k − 1, λ)

= . . .

=
λke−λ

k!
+

λk−1e−λ

(k − 1)!
+ · · ·+ λ1e−λ

1!
+Q(1, λ).

To complete the series, we need to evaluate Q(1, λ) with

Q(1, λ) =
1

0!

∫ ∞

λ

t0e−t dt =

∫ ∞

λ

e−t dt =
[
−e−t

]∞
λ

= (0)− (−e−λ) = e−λ.

Substituting this back into our expanded series gives

Q(k + 1, λ) =
λke−λ

k!
+

λk−1e−λ

(k − 1)!
+ · · ·+ λ1e−λ

1!
+

λ0e−λ

0!
.

This can be expressed concisely as the sum

Q(k + 1, λ) =

k∑
i=0

λie−λ

i!
.

By definition, this sum is the CDF of a Poisson random variable with parameter λ at integer k and

P (X ≤ k) =

k∑
i=0

λie−λ

i!
.

Therefore, we have shown that P (X ≤ k) = Q(k + 1, λ).
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