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Random Processes

@ A random process is a set of RVs on (R, F,P),

{X(t):teT} or {Xe:teT},

where the index t usually denotes time.

@ Both notations common for continuous but
discrete tends to use subscripts

@ For each fixed t, X(t) is a random variable.

Several sample paths X(t,w;).



Random Processes

@ A random process is a set of RVs on (R, F,P),

{X(t):teT} or {Xe:teT},

where the index t usually denotes time.

@ Both notations common for continuous but
discrete tends to use subscripts

@ For each fixed t, X(t) is a random variable.

@ Experimental outcomes depending on time:
e measured output of a communication channel,
packet arrival times in network,
thermal noise in conductors,
scores of a sports in a sequence games,
daily price of a stock,
wealth of a gambler playing over time.

Several sample paths X(t,w;).



Definition of Random Processes

o Formally, a real random process is
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Same process, different outcomes w.



Definition of Random Processes

Formally, a real random process is
X:TxQ—=R.

For fixed t: X(t,-) is a random variable.
Fixed outcome w: X(-,w) is a function.

Sample paths can be continuous, piecewise
constant, discrete-time sequences, ...

One can describe a process in terms of all
finite-dimensional distributions of
(X(t), ..., X(tn)).

X(t,w)

Same process, different outcomes w.



Discrete-Time Examples

Example 1: X, = 2"
e Z ~ Unif0, 1].
e X, =2"n=1,2,....

o Each outcome Z gives a decaying
sequence.

o First-order cdf: P(X, < x) = x/".




Discrete-Time Examples

Example 1: X, = 2" Example 2: Symmetric random walk
e Z ~ Unif[0, 1]. o IID steps Z, € {—1,+1},
o X,=Z" n=1.2,.... B(Zy=1)=P(Z,=-1) =5
i J— n .
@ Each outcome Z gives a decaying ° Xo =0, Xy =211 2
sequence. @ Sample path moves up/down by 1 each step
o First-order cdf: P(X, < x) = x/". o P(Xy = k) = ((,4)/2)2 " (parity match).
Xn




Discrete-Time Markov Processes

Markov property (discrete time)
@ Process {X,} is Markov if
P(Xn11 = Xag1 | X1,..., X5)
= ]P)(Xn+1 = Xn41 | Xn)

@ Future depends on past only through X,,.
@ |ID processes are Markov.
e Random walk {X,} is Markov.



Discrete-Time Markov Processes

Markov property (discrete time) Independent increments
@ Process {X,} is Markov if o {X,} has independent increments if
]P(Xn+1 = Xn+1 | DT 7Xn) Xy Xy = Xogs ooy X — Xy

=P(Xp+1 = x Xn). .
(Xnta 1 | Xn) are independent for all ny < --- < ng.

@ Future depends on past only through X,,. @ Such processes are Markov.
@ |ID processes are Markov. @ Random walk: X, — X,_1 = Z, are lID
e Random walk {X,} is Markov. = independent increments.

@ Converse: Markov # independent
increments (e.g. AR(1)).



Continuous-Time Examples

Independent increments

o {X(t)}+>0 has independent increments if
for t; < -+ < ty,

X(tl), X(tz)—X(tl), .. .,X(fk)—X(tkfl)
are independent.

@ Generalizes the discrete-time notion.

@ Key class: counting processes and
Brownian motion.



Continuous-Time Examples

Independent increments Poisson process (rate \)

o {X(t)}+>0 has independent increments if e N(0)=0, N(t) € {0,1,2,...}.

for t et .
1< < e @ Independent increments.

X(t1), X(t2)=X(t1), .-, X(tx)—=X(tx—1) e N(t) — N(s) ~ Poisson(\(t — s)).

are independent. o Interarrival times are [ID Exp(\).
@ Generalizes the discrete-time notion.
N(t) ——o

@ Key class: counting processes and
Brownian motion. —o




Continuous-Time Markov Processes

Markov in continuous time Brownian motion (Wiener process)

e {X(t)} is Markov if for s < t W(0) = 0.
Independent increments.
W(t) — W(s) ~N(0,t —s), t >s.

Sample paths continuous a.s.

P(X(t) € A[{X(u),u < s})
= P(X(t) € A| X(s)).

@ Future depends on past only through
current state.

Classic continuous-time Markov process.

@ Defined via transition probabilities
Pst(x,A) =P(X(t) € A| X(s)).
Independent increments = Markov

@ If increments are independent,
conditioning on X(s) shields off the past.




Mean and Autocorrelation functions

Definitions: For a process {X(t)}:

@ Mean function
px(t) = EX(2)].
@ Autocorrelation
Rx(t1, t2) = E[X(t1)X(t2)].
@ Autocovariance

kx(t1, t2) = Rx(t1, t2) — pux(t1) px(t2)-



Mean and Autocorrelation functions

Definitions: For a process {X(t)}: Example: random walk
e Mean function e Z IID with E[Z] =0 and E[Z?] =1
ux(t) = EIX(2)]. °Xn=2iadi
o Mean:
@ Autocorrelation px(n) = 0.
Rx(t1, t2) = E[X(t1)X(t2)]. e For n; < ny,
@ Autocovariance Rx(ny, n2) = E[Xp, Xn,] = n1.
kx(t1, t2) = Rx(t1, t2) — px(t1)px(t2). o In general:

Rx(m, n) = min{m, n}.



Gaussian processes and AR(1) example

Gaussian process

e X(t) is a Gaussian Process if,
forany t; < -+ < ty,

(X(t1), -, X(t)
is a multivariate Gaussian vector.

o Fully specified by mean ux(t) and
autocorrelation Rx(t1, t2).

@ Examples: white Gaussian noise,
Brownian motion, Gauss—Markov
processes.



Gaussian processes and AR(1) example

Gaussian process AR(1) Gauss—Markov process
e X(t) is a Gaussian Process if, o Xy =2, |al <1
forany t; < -+ < tk, OXn:aXn_lerZn
(X(t1), ..., X(t)) e Z,1ID NV(0,1).
is 2 multivariate Gaussian vector. @ Linear transform of Gaussian vector =

. process is Gaussian.
o Fully specified by mean ux(t) and

autocorrelation Rx(t1, t2).

Mean: px(n) = 0.

Autocorrelation:

@ Examples: white Gaussian noise,
Brownian motion, Gauss—Markov

Rx(n1, no) = alm™=ml,
processes. x (1, n2)



Stationary Processes

Setup

@ Assume index set 7 is an additive
abelian group (e.g. Z or R).

@ Time shifts: t — t+ 7.

@ Stationarity = invariance under shifts.

Strict-sense stationarity (SSS)

e Forany ty,...,t, and T,

(X(t1), ..., X(t)) Z (X(t1+47), ..., X(tnt+7)).

@ All finite-dimensional distributions
invariant under shifts.



Stationary Processes

Setup Wide-sense stationarity (WSS)

@ Assume index set 7 is an additive @ Weaker, second-order notion.

abelian group (e.g. Z or R). o Mean is constant:

@ Time shifts: t — t+ 7.

t) = p.
@ Stationarity = invariance under shifts. px(t) = p

. Lo Aut lation depends onl time diff:
Strict-sense stationarity (SSS) ¢ Autocorrelation depends only on time d

e Forany t;,...,t, and T, Rx(t1, ) = Rx(t1 — t2) = Rx(7).

(X(t1),...,X(tn)) 4 (X(ty+7),...,X(ty+7)). @ For Gaussian processes: SSS <= WSS.

@ Many models in communications assume

@ All finite-dimensional distributions WSS -+ Gaussian.

invariant under shifts.



