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Random Processes

A random process is a set of RVs on (Ω,F ,P),

{X (t) : t ∈ T } or {Xt : t ∈ T },

where the index t usually denotes time.

Both notations common for continuous but
discrete tends to use subscripts

For each fixed t, X (t) is a random variable.

Experimental outcomes depending on time:

measured output of a communication channel,
packet arrival times in network,
thermal noise in conductors,
scores of a sports in a sequence games,
daily price of a stock,
wealth of a gambler playing over time.
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Definition of Random Processes

Formally, a real random process is

X : T × Ω → R.

For fixed t: X (t, ·) is a random variable.

Fixed outcome ω: X (·, ω) is a function.

Sample paths can be continuous, piecewise
constant, discrete-time sequences, . . .

One can describe a process in terms of all
finite-dimensional distributions of
(X (t1), . . . ,X (tn)).
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Same process, different outcomes ω.
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Discrete-Time Examples

Example 1: Xn = Z n

Z ∼ Unif[0, 1].

Xn = Z n, n = 1, 2, . . . .

Each outcome Z gives a decaying
sequence.

First-order cdf: P(Xn ≤ x) = x1/n.

1 2 3 4 5 6 7

n

Xn

Example 2: Symmetric random walk

IID steps Zn ∈ {−1,+1},
P(Zn = 1) = P(Zn = −1) = 1

2 .

X0 = 0, Xn =
∑n

i=1 Zi .

Sample path moves up/down by 1 each step

P(Xn = k) =
(

n
(n+k)/2

)
2−n (parity match).
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Discrete-Time Markov Processes

Markov property (discrete time)

Process {Xn} is Markov if

P(Xn+1 = xn+1 | X1, . . . ,Xn)

= P(Xn+1 = xn+1 | Xn).

Future depends on past only through Xn.

IID processes are Markov.

Random walk {Xn} is Markov.

Independent increments

{Xn} has independent increments if

Xn1 , Xn2 − Xn1 , . . . ,Xnk − Xnk−1

are independent for all n1 < · · · < nk .

Such processes are Markov.

Random walk: Xn − Xn−1 = Zn are IID
⇒ independent increments.

Converse: Markov ̸⇒ independent
increments (e.g. AR(1)).
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Continuous-Time Examples

Independent increments

{X (t)}t≥0 has independent increments if
for t1 < · · · < tk ,

X (t1), X (t2)−X (t1), . . . ,X (tk)−X (tk−1)

are independent.

Generalizes the discrete-time notion.

Key class: counting processes and
Brownian motion.

Poisson process (rate λ)

N(0) = 0, N(t) ∈ {0, 1, 2, . . . }.

Independent increments.

N(t)− N(s) ∼ Poisson(λ(t − s)).

Interarrival times are IID Exp(λ).
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Continuous-Time Markov Processes

Markov in continuous time

{X (t)} is Markov if for s < t

P(X (t) ∈ A | {X (u), u ≤ s})
= P(X (t) ∈ A | X (s)).

Future depends on past only through
current state.

Defined via transition probabilities
Ps,t(x ,A) = P(X (t) ∈ A | X (s)).

Independent increments ⇒ Markov

If increments are independent,
conditioning on X (s) shields off the past.

Brownian motion (Wiener process)

W (0) = 0.

Independent increments.

W (t)−W (s) ∼ N (0, t − s), t > s.

Sample paths continuous a.s.

Classic continuous-time Markov process.
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Mean and Autocorrelation functions

Definitions: For a process {X (t)}:

Mean function

µX (t) = E[X (t)].

Autocorrelation

RX (t1, t2) = E[X (t1)X (t2)].

Autocovariance

kX (t1, t2) = RX (t1, t2)− µX (t1)µX (t2).

Example: random walk

Zi IID with E[Zi ] = 0 and E[Z 2
i ] = 1

Xn =
∑n

i=1 Zi

Mean:
µX (n) = 0.

For n1 ≤ n2,

RX (n1, n2) = E[Xn1Xn2 ] = n1.

In general:

RX (m, n) = min{m, n}.
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Gaussian processes and AR(1) example

Gaussian process

X (t) is a Gaussian Process if,
for any t1 < · · · < tk ,

(X (t1), . . . ,X (tk))

is a multivariate Gaussian vector.

Fully specified by mean µX (t) and
autocorrelation RX (t1, t2).

Examples: white Gaussian noise,
Brownian motion, Gauss–Markov
processes.

AR(1) Gauss–Markov process

X1 = Z1, |α| < 1|

Xn = αXn−1 +
√
1− α2Zn

Zn IID N (0, 1).

Linear transform of Gaussian vector ⇒
process is Gaussian.

Mean: µX (n) = 0.

Autocorrelation:

RX (n1, n2) = α|n2−n1|.
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Stationary Processes

Setup

Assume index set T is an additive
abelian group (e.g. Z or R).

Time shifts: t 7→ t + τ .

Stationarity = invariance under shifts.

Strict-sense stationarity (SSS)

For any t1, . . . , tn and τ ,

(X (t1), . . . ,X (tn))
d
= (X (t1+τ), . . . ,X (tn+τ)).

All finite-dimensional distributions
invariant under shifts.

Wide-sense stationarity (WSS)

Weaker, second-order notion.

Mean is constant:

µX (t) ≡ µ.

Autocorrelation depends only on time diff:

RX (t1, t2) = RX (t1 − t2) = RX (τ).

For Gaussian processes: SSS ⇐⇒ WSS.

Many models in communications assume
WSS + Gaussian.
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