

ECE 581: Random Processes

Henry D. Pfister
Duke University

December 5, 2025

Random Processes

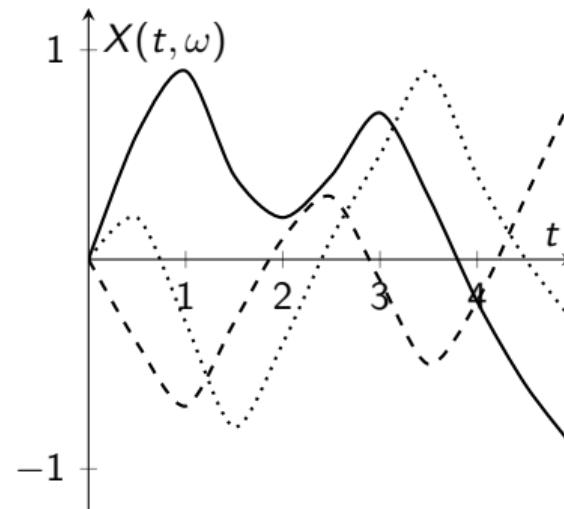
- A **random process** is a set of RVs on $(\Omega, \mathcal{F}, \mathbb{P})$,

$$\{X(t) : t \in \mathcal{T}\} \quad \text{or} \quad \{X_t : t \in \mathcal{T}\},$$

where the index t usually denotes time.

- Both notations common for continuous but discrete tends to use subscripts
- For each fixed t , $X(t)$ is a random variable.

$$\text{—— } X(t, \omega_1) \text{ --- } X(t, \omega_2) \cdots \cdots X(t, \omega_3)$$



Several sample paths $X(t, \omega_i)$.

Random Processes

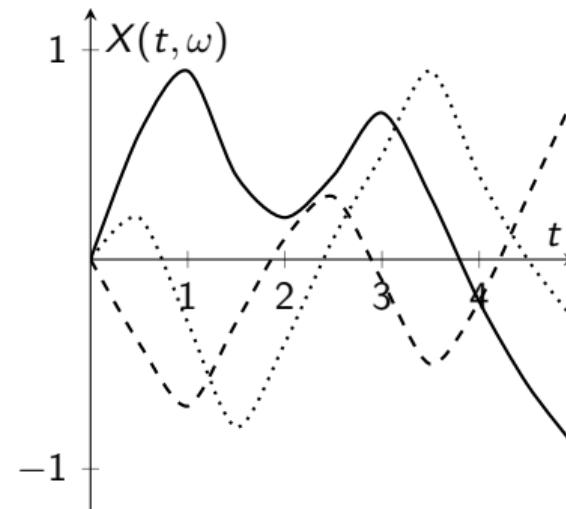
- A **random process** is a set of RVs on $(\Omega, \mathcal{F}, \mathbb{P})$,

$$\{X(t) : t \in \mathcal{T}\} \quad \text{or} \quad \{X_t : t \in \mathcal{T}\},$$

where the index t usually denotes time.

- Both notations common for continuous but discrete tends to use subscripts
- For each fixed t , $X(t)$ is a **random variable**.
- Experimental outcomes depending on time:
 - measured output of a communication channel,
 - packet arrival times in network,
 - thermal noise in conductors,
 - scores of a sports in a sequence games,
 - daily price of a stock,
 - wealth of a gambler playing over time.

$$\text{—— } X(t, \omega_1) \text{ --- } X(t, \omega_2) \cdots \cdots X(t, \omega_3)$$



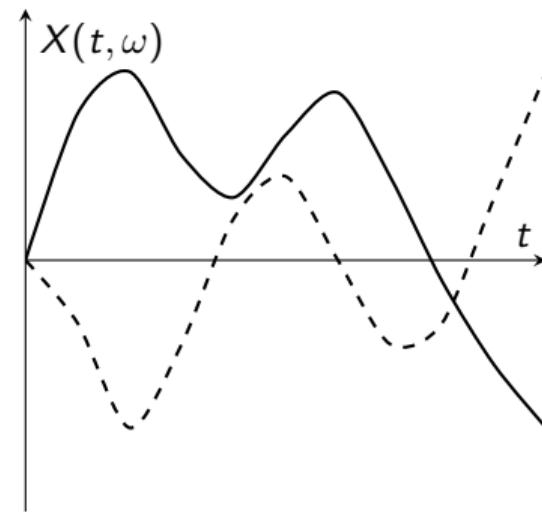
Several sample paths $X(t, \omega_i)$.

Definition of Random Processes

- Formally, a real random process is

$$X : \mathcal{T} \times \Omega \rightarrow \mathbb{R}.$$

- For fixed t : $X(t, \cdot)$ is a random variable.
- Fixed outcome ω : $X(\cdot, \omega)$ is a function.



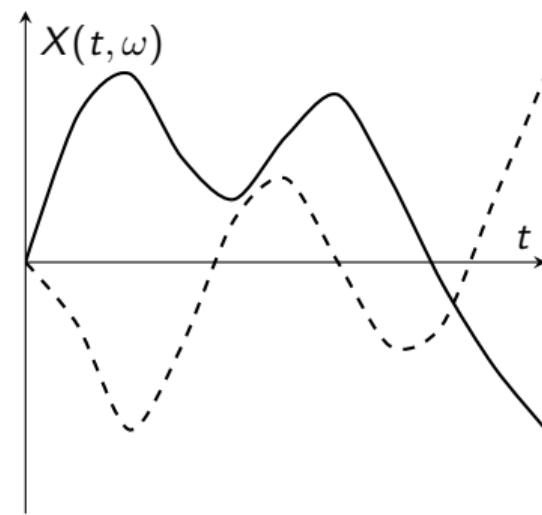
Same process, different outcomes ω .

Definition of Random Processes

- Formally, a real random process is

$$X : \mathcal{T} \times \Omega \rightarrow \mathbb{R}.$$

- For fixed t : $X(t, \cdot)$ is a random variable.
- Fixed outcome ω : $X(\cdot, \omega)$ is a function.
- Sample paths can be continuous, piecewise constant, discrete-time sequences, ...
- One can describe a process in terms of all finite-dimensional distributions of $(X(t_1), \dots, X(t_n))$.

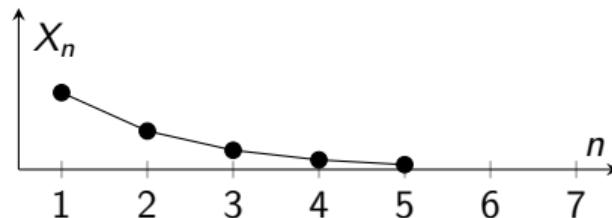


Same process, different outcomes ω .

Discrete-Time Examples

Example 1: $X_n = Z^n$

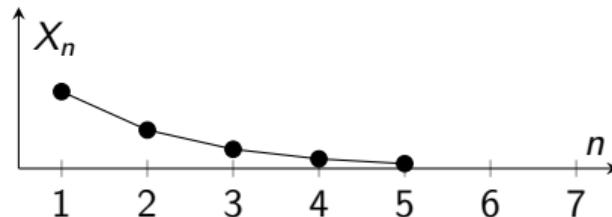
- $Z \sim \text{Unif}[0, 1]$.
- $X_n = Z^n, n = 1, 2, \dots$
- Each outcome Z gives a decaying sequence.
- First-order cdf: $\mathbb{P}(X_n \leq x) = x^{1/n}$.



Discrete-Time Examples

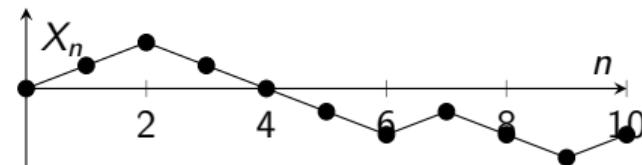
Example 1: $X_n = Z^n$

- $Z \sim \text{Unif}[0, 1]$.
- $X_n = Z^n, n = 1, 2, \dots$
- Each outcome Z gives a decaying sequence.
- First-order cdf: $\mathbb{P}(X_n \leq x) = x^{1/n}$.



Example 2: Symmetric random walk

- IID steps $Z_n \in \{-1, +1\}$, $\mathbb{P}(Z_n = 1) = \mathbb{P}(Z_n = -1) = \frac{1}{2}$.
- $X_0 = 0, X_n = \sum_{i=1}^n Z_i$.
- Sample path moves up/down by 1 each step
- $\mathbb{P}(X_n = k) = \binom{n}{(n+k)/2} 2^{-n}$ (parity match).



Discrete-Time Markov Processes

Markov property (discrete time)

- Process $\{X_n\}$ is **Markov** if

$$\begin{aligned}\mathbb{P}(X_{n+1} = x_{n+1} \mid X_1, \dots, X_n) \\ = \mathbb{P}(X_{n+1} = x_{n+1} \mid X_n).\end{aligned}$$

- Future depends on past only through X_n .
- IID processes are Markov.
- Random walk $\{X_n\}$ is Markov.

Discrete-Time Markov Processes

Markov property (discrete time)

- Process $\{X_n\}$ is **Markov** if

$$\begin{aligned}\mathbb{P}(X_{n+1} = x_{n+1} \mid X_1, \dots, X_n) \\ = \mathbb{P}(X_{n+1} = x_{n+1} \mid X_n).\end{aligned}$$

- Future depends on past only through X_n .
- IID processes are Markov.
- Random walk $\{X_n\}$ is Markov.

Independent increments

- $\{X_n\}$ has **independent increments** if

$$X_{n_1}, X_{n_2} - X_{n_1}, \dots, X_{n_k} - X_{n_{k-1}}$$

are independent for all $n_1 < \dots < n_k$.

- Such processes are Markov.
- Random walk: $X_n - X_{n-1} = Z_n$ are IID
 \Rightarrow independent increments.
- Converse: Markov $\not\Rightarrow$ independent increments (e.g. AR(1)).

Continuous-Time Examples

Independent increments

- $\{X(t)\}_{t \geq 0}$ has **independent increments** if for $t_1 < \dots < t_k$,

$$X(t_1), X(t_2) - X(t_1), \dots, X(t_k) - X(t_{k-1})$$

are independent.

- Generalizes the discrete-time notion.
- Key class: counting processes and Brownian motion.

Continuous-Time Examples

Independent increments

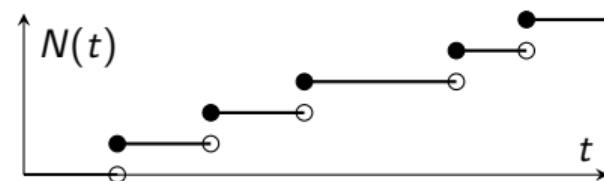
- $\{X(t)\}_{t \geq 0}$ has **independent increments** if for $t_1 < \dots < t_k$,

$X(t_1), X(t_2) - X(t_1), \dots, X(t_k) - X(t_{k-1})$
are independent.

- Generalizes the discrete-time notion.
- Key class: counting processes and Brownian motion.

Poisson process (rate λ)

- $N(0) = 0, N(t) \in \{0, 1, 2, \dots\}$.
- Independent increments.
- $N(t) - N(s) \sim \text{Poisson}(\lambda(t-s))$.
- Interarrival times are IID $\text{Exp}(\lambda)$.



Continuous-Time Markov Processes

Markov in continuous time

- $\{X(t)\}$ is Markov if for $s < t$

$$\begin{aligned}\mathbb{P}(X(t) \in A \mid \{X(u), u \leq s\}) \\ = \mathbb{P}(X(t) \in A \mid X(s)).\end{aligned}$$

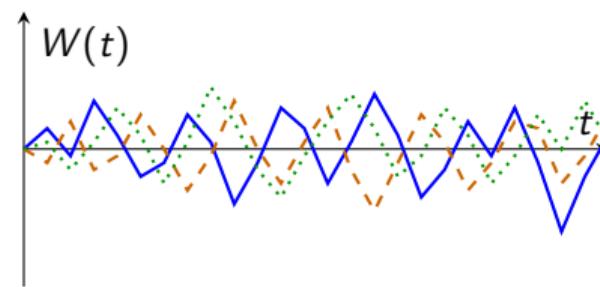
- Future depends on past only through current state.
- Defined via transition probabilities $P_{s,t}(x, A) = \mathbb{P}(X(t) \in A \mid X(s))$.

Independent increments \Rightarrow Markov

- If increments are independent, conditioning on $X(s)$ shields off the past.

Brownian motion (Wiener process)

- $W(0) = 0$.
- Independent increments.
- $W(t) - W(s) \sim \mathcal{N}(0, t - s)$, $t > s$.
- Sample paths continuous a.s.
- Classic continuous-time Markov process.



Mean and Autocorrelation functions

Definitions: For a process $\{X(t)\}$:

- Mean function

$$\mu_X(t) = \mathbb{E}[X(t)].$$

- Autocorrelation

$$R_X(t_1, t_2) = \mathbb{E}[X(t_1)X(t_2)].$$

- Autocovariance

$$k_X(t_1, t_2) = R_X(t_1, t_2) - \mu_X(t_1)\mu_X(t_2).$$

Mean and Autocorrelation functions

Definitions: For a process $\{X(t)\}$:

- Mean function

$$\mu_X(t) = \mathbb{E}[X(t)].$$

- Autocorrelation

$$R_X(t_1, t_2) = \mathbb{E}[X(t_1)X(t_2)].$$

- Autocovariance

$$k_X(t_1, t_2) = R_X(t_1, t_2) - \mu_X(t_1)\mu_X(t_2).$$

Example: random walk

- Z_i IID with $\mathbb{E}[Z_i] = 0$ and $\mathbb{E}[Z_i^2] = 1$

- $X_n = \sum_{i=1}^n Z_i$

- Mean:

$$\mu_X(n) = 0.$$

- For $n_1 \leq n_2$,

$$R_X(n_1, n_2) = \mathbb{E}[X_{n_1}X_{n_2}] = n_1.$$

- In general:

$$R_X(m, n) = \min\{m, n\}.$$

Gaussian process

- $X(t)$ is a Gaussian Process if,
for any $t_1 < \dots < t_k$,

$$(X(t_1), \dots, X(t_k))$$

is a multivariate Gaussian vector.

- Fully specified by mean $\mu_X(t)$ and autocorrelation $R_X(t_1, t_2)$.
- Examples: white Gaussian noise, Brownian motion, Gauss–Markov processes.

Gaussian processes and AR(1) example

Gaussian process

- $X(t)$ is a Gaussian Process if, for any $t_1 < \dots < t_k$,
$$(X(t_1), \dots, X(t_k))$$
 is a multivariate Gaussian vector.
- Fully specified by mean $\mu_X(t)$ and autocorrelation $R_X(t_1, t_2)$.
- Examples: white Gaussian noise, Brownian motion, Gauss–Markov processes.

AR(1) Gauss–Markov process

- $X_1 = Z_1$, $|\alpha| < 1$
- $X_n = \alpha X_{n-1} + \sqrt{1 - \alpha^2} Z_n$
- Z_n IID $\mathcal{N}(0, 1)$.
- Linear transform of Gaussian vector \Rightarrow process is Gaussian.
- Mean: $\mu_X(n) = 0$.
- Autocorrelation:

$$R_X(n_1, n_2) = \alpha^{|n_2 - n_1|}.$$

Stationary Processes

Setup

- Assume index set \mathcal{T} is an additive abelian group (e.g. \mathbb{Z} or \mathbb{R}).
- Time shifts: $t \mapsto t + \tau$.
- Stationarity = invariance under shifts.

Strict-sense stationarity (SSS)

- For any t_1, \dots, t_n and τ ,

$$(X(t_1), \dots, X(t_n)) \stackrel{d}{=} (X(t_1 + \tau), \dots, X(t_n + \tau)).$$

- All finite-dimensional distributions invariant under shifts.

Stationary Processes

Setup

- Assume index set \mathcal{T} is an additive abelian group (e.g. \mathbb{Z} or \mathbb{R}).
- Time shifts: $t \mapsto t + \tau$.
- Stationarity = invariance under shifts.

Strict-sense stationarity (SSS)

- For any t_1, \dots, t_n and τ ,

$$(X(t_1), \dots, X(t_n)) \stackrel{d}{=} (X(t_1 + \tau), \dots, X(t_n + \tau)).$$

- All finite-dimensional distributions invariant under shifts.

Wide-sense stationarity (WSS)

- Weaker, second-order notion.
- Mean is constant:

$$\mu_X(t) \equiv \mu.$$

- Autocorrelation depends only on time diff:

$$R_X(t_1, t_2) = R_X(t_1 - t_2) = R_X(\tau).$$

- For Gaussian processes: SSS \iff WSS.
- Many models in communications assume WSS + Gaussian.