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Administration / Staff

Instructor: Henry Pfister

Email: henry.pfister@duke.edu

Office: Room 305, Gross Hall

Class: Monday & Wednesday, 1:25-2:40PM, Wilkinson 132

Office hours:  TBA
Zoom access possible at request:
https://duke.zoom.us/my/henry.pfister

ROYD.YATES + DAVIDJ. GOODMAN

WILEY
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Course Description and Reading Materials

Class Website: https://canvas.duke.edu/login/saml

Course Description:

o Graduate level introduction to probability, statistics, and stochastic processes.
@ Goal is to develop mathematical methods for describing and analyzing engineering
systems including electrical signals and systems corrupted by noise.

Required Textbook: Course and slides based on PSP (available online):
Yates and Goodman, Probability and Stochastic Processes, Third Edition, Wiley, 2014.

Useful References:
O. C. Ibe, Fundamentals of Applied Probability and Random Processes, 2014.

Prerequisites: (STA 130L/240L or Math 230/340 or ECE 380/555 or EGR 238L) or grad
standing. By topic: (i) Calculus, (ii) linear algebra, (iii) linear systems, (iv) basic
probability; Some basic familiarity with Python or Matlab.
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ECE 581 Overview / Outlook

@ Review of basic undergraduate probability (first ~4-5 weeks)
@ Introduction, probability basics: experiments, models, probabilities

Sequential experiments and counting

Discrete (univariate) / Continuous (univariate)

Bivariate random variables, correlation, and conditional probability

Derived random variables and Jacobians

[Some videos assigned / suggested)]

[Advanced optional HW assignments made available]

Random vectors (multivariate) / Gaussians and Properties

@ Sums of random variables and Central Limit Theorem

Inequalities, convergence, and Law of Large Numbers

@ Stochastic processes and Power Spectra

Markov discrete stochastic process
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Deterministic versus Random Systems

@ Many science and engineering principles have specific deterministic relationships.
@ A deterministic system is a system that evolves without any randomness
@ a deterministic model produces same output from a given initial state and input [Wikipedia]
o For example,
@ object moving with speed v over time duration t traverses distance s = v - t

@ voltage V created by current | through load of resistance Ris V =1-R

@ ECE 581 explores systems with some uncertainty / randomness / unpredictability.
o For example, when measured by an observer we might say

o distance s for moving object
s=v-t+es

@ voltage V due to current / through resistance load R is
V=I-R+ey

where € in both cases is some random measurement error.
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Probability Theory: Frequentist vs Bayesian View

@ Many examples of experiments whose outcomes cannot be predicted perfectly in advance.

o For example, lottery numbers, hand dealt in card game, final score of sports event, value of a stock
next week, daily weather, etc. Can you think of other examples?

@ Probability theory is a formal way of analzying random (uncertain or unpredictable) events by
assigning events a number between 0 and 1 which has has two predominant interpretations:

© (Frequentist View) Probability is seen as a measure of the relative frequency (or fraction) of an event.

o For example, if a coin flip results in “heads” with a probability of %, and “tails” with a probability of

%, then if flipped 100 times, we would expect that approximately a quarter of those flips, i.e. 25 would
result in heads, and 3 quarters, i.e. 75, in tails.

@ (Bayesian View) Probability is interpreted as a measure of confidence regarding one’s knowledge or
belief about something.
@ For example, weather forcast may say: Low 51° F with a 70% chance of precipitation / 0.14 inches.
Showers early with winds south at 20-30 mph.

@ Here 70 percent is measure of confidence associated with prediction; we may interpret this as
meaning there’s a probability of 0.7 that it will rain. Would you bring your umbrella?
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Some Remarks!

@ The Frequentist and Bayesian views of probability have both proven to be useful in practice.

@ The mathematics of probability theory uses set theory to provide a flexible framework for
describing and organizing a wide host of nondeterministic processes.

@ The sample space for a random process/phenomena provides a global picture of the
“experiment” and all its possible outcomes.
o This picture is vital to understanding probability theory.
@ The sooner one learns to form such a picture, the quicker one will grasp the concepts of probability
theory needed to solve problems.
@ Drake [5] “...stresses the sample space of representation of probabilistic processes and ... the need for
explicit modeling of nondeterministic processes.”

@ Probability measure is the relevant metric defined on this sample space that we care about.
@ Three axioms (described in following sections) establish the nature and uniqueness of this measure.

1Some remarks from [5].
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Some Basic Definitions

It is now useful to provide some formal definitions [with analogues from set theory].

@ Experiment: a procedure yielding an observation
@ e.g. any nondeterministic process.
@ Observer cannot anticipate/predict outcome because of intrinsic randomness

@ Outcome [Element]: any possible observation of an experiment

@ Event [Set]: any collection of outcomes of an experiment

@ Sample space [Universal Set]: “finest-grain” complete listing of all possible
experiment outcomes

@ Probability of an event: relative frequency of occurence that performance of

the experiment will result in;

@ Model: a specific assignment of probabilities for all events in sample space.
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Notion of Probability

Coin Flip Experiment: Heads or Tails ?

@ Single coin flip

@ Two coin flips
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Notion of Probability

4-Sided Die Roll Experiment: Feeling Lucky ?

@ Single die roll

@ Two die rolls
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Game Spinner: Which Direction ?

@ Single spin

@ Two spins
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Set Theory: An Algebra of Events

@ A set is a collection of things. The things in the set are called elements.
@ There are many ways to define a set; often brackets {-} are used. For example, the following
are sets: A = {a,c,d}, B={red, green, blue}, or F = {4, &, 0,
@ notation x € X means element x belongs to set X’
@ notation x ¢ X’ means x is not a member of set X’
@ Other example sets include C = {x?|x = 1,2,3,4,5} = {1,4,9,16,25}, or
D = {x?|x = 1,2,3,...} that has an infinite number of elements.
@ Size of a set is sometimes called its cardinality, and denoted | - |.
@ e.g. regarding above defined sets |C| =5 and |D| = oo.
@ Set A is said to be a subset of B if every element of A also belongs to set BB; denoted

A C B. For example, C C D for sets defined above.

- . .. S A C B
* Venn Diagrams (VD) are useful for visualizing sets. B

x If set A can be created using only
elements belonging to set 3, then A C B.
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Applying Set Theory to Probability: Main Axioms

Axioms of Probability:
@ For any event A, Pr(A) > 0 (i.e. probability is non-negative).

@ Pr(S) =1 (normalizes all probabilities to be in [0,1]).
Q If ANB =g, then Pr(AU B) = Pr(A) + Pr(B)

@ Axiom 3 is motivated by behavior of relative frequencies for disjoint events

o Consider experiment performed N times. Let the number of occurrences of disjoint events A, B be
k(A), k(B) respectively. Note the following relative frequencies v:
LKA KB KA KB)
A = N ’ B = N ) AUB = N =
@ These relative frequencies are expected to approach the true probabilities as N — oo, i.e.
va — Pr(A), vg — Pr(B), and vaup — Pr(AU B) = Pr(A) + Pr(B).
o Clearly, axiom 3 is motivated by the behavior of these relative frequencies.

VA + VB

@ All of conventional probability follows from these three axioms.
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Some Relations of Probability

@ Note by second and third axioms that
Pr(S) =Pr(AUA°) =Pr(A)+ Pr(A°) =1 =
Pr(A) =1—Pr(A°) and Pr(A°)=1-Pr(A)
@ By first axiom we have that Pr(A) > 0 and Pr(.A) > 0. Thus, it follows that
Pr(A°) =1—Pr(A) >0, or simply Pr(A) < 1.
@ Hence, for any set A we have that 0 < Pr(A) < 1.
o Consider three sets A, B and C that are pairwise disjoint. Note that
Pr(AUBUC) = Pr[(AuB)UC] = Pr(AUB) + Pr(C) = Pr(A) + Pr(B) + Pr(C)

where last two equalities follow from third axiom.
@ Clearly, this argument can be extended to n pairwise disjoint sets A;, i =1,2,...,nto
obtain

Pr(A; UA, U---UA,) = Pr(Ay) + Pr(A4) + - - + Pr(A,)

@ Although this assumed n was finite, it is noteworthy that such also holds for an infinite set of mutually
exclusive sets, i.e. as n — oco.
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More Relations of Probability

@ Now consider two sets A and B not necessarily disjoint, i.e. ANB # &.
e What is Pr(AUB) =?
o Note that their union can be expressed as
AUB=AU(A“NB), i.e. the union of two disjoint sets.
@ Thus, by third axiom we know that
Pr(AUB) = PrlAU (A° N B)] = Pr(A) + Pr(A° N B). (1)

@ Note that set B can be written as the union of two disjoint sets, i.e.
B=SNB=(AUA)NB = (ANB)U (AN B) where (AN B)N (AN B) = . Thus, by third
axiom we have

Pr(B) = Pr(AN B) + Pr(A° N B) = Pr(A° N B) = Pr(B) — Pr(AN B).
e Finally, combining this with (1) we obtain the general relation
Pr(AU B) = Pr(A) 4+ Pr(B) — Pr(AN B). (2)

o Note that (2) is a generalization of the third axiom that holds whether or not the two sets
are disjoint.

e We've also shown that (2) is a direct consequence of the axioms of probability.
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More Set Theory: An Algebra of Events
@ Sets A and B are said to be equal if and only if A C B and B C A; denoted A = B.

o Recall the statement “if and only if” means both...
Q@ A=B=— ACBand BC A.
Q@ ACcBand BC A= A=B8.

@ Also, note no regard is given to “order of elements,” i.e. if A = {a,c,d}, B={d,a,c}, then A and B
represent the same set, i.e. A =DB.

@ The set of all possible outcomes is referred to as the universal set; denoted by S.

@ Universal set is defined by the experiment or context.
@ It represents the “universe” of all possible events.

@ Union of sets A and B is set of all elements either in A, or in B or in both A & B.
@ union of sets is denoted by AU B3, and sometimes as A + 5.

S AUB

*x € AUB if and only if x € A or x € B;
i.e. U corresponds to logical “or”
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Set Theory Applied to Probability

More Set Theory: An Algebra of Events

@ Intersection of sets A and B is set of all elements contained in both A and B.
@ intersection of sets is denoted by A N B, and we will use the shorthand AB.

S

xx € ANBif and only if x € A and x € B;
i.e. N corresponds to logical “and”

o If sets A and B have no elements in common, then how do we represent this?
@ The null set is defined as the set having no elements, i.e. {};
@ also called the empty set and denoted @. S

*If A and B have no elements in common,
then we say AN B = 2.

ANB=g

@ The null set is unique among sets and necessary for completeness.
Henry Pfister (Duke)
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Set Theory Applied to Probability

More Set Theory: An Algebra of Events

@ The null set is a subset of every set, i.e. @ C A for any set A.
@ The null set & has no elements and thus any element in @ must in A

@ Similarly, for any set A we have AN @ =&, and AUZ = A.
o Set difference A — B is set of all elements in A that are not in B.

SAB

o Complement of set A, denoted A€, is set of all elements in S that are not in A.

S
*x x € A° if and only if x ¢ A; thus, AN A =g.

x Clearly A° =S — A, thus, S = AU AS; A
* If we let A =S, then we see that S° =5 —-S = @;
also, ¢ =S -0 =_8.
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Set Theory Applied to Probability

More Set Theory: An Algebra of Events

@ Collection of sets Aj, Ay, ..., A, is mutuallay exclusive if and only if A4; N A; = & for i # j.
Such sets are said to be pairwise disjoint.

S
‘ Ay Ay

wn

A1NA; = A NA =2
@ Collection of sets Az, As, ..., A, is collectively exhaustive if and only if
AiUAU---UA, =S, S >

* Which example above is also e
collectively exhaustive?

@ Some useful shorthand notation for set unions and intersections:

JAi=AauA4U--UA, A =ANnAn- N4,

i=1 i=1

Henry Pfister (Duke) Introduction: Probability and Stochastic Processes Lecture 1



More Set Theory: An Algebra of Events

A collection of sets A;, Ay, ..., A, thatis
° both mutually exclusive and collectively exhaustive A A A A
is said to be a partition of the universal set.

@ Recall, set unions are analogous to a logical “or” operation, and set intersection are
analogous to a logical “and” operation.
@ Logic and reasoning have long history of formalism
o Represents the basis for boolean algebra or binary arithmetic
@ Indeed, unions and intersections can define a type of “algebra” for sets
@ There are several axioms/laws for this algebra. Six are listed below:

AuB=BUA Commutative
ANB=BnNA

AU(BUC)=(AUB)UC Associative
AN(BNC)=(AnB)NC
AN(BUC)=(ANB)U(ANC) Distributive
AUuBNC)=(AUuB)N(AUC)

(A) = A

ANAc =g Compliment
ANS=A Identity

@ Most axioms can be established graphically via a Venn Diagram.
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More Set Theory: De Morgan's Law

o De Morgan’s Law: Given sets A and B, the following equality holds
(AUB)t = A°NnB". (3)
Proof: See Venn Diagram.

Suppose x € (AU B)¢; then x ¢ AUB, i.e. x¢ Aand x ¢ B=— x € A° and x € B°.
Thus, x € A N Be.

Now suppose x € A° N BS; then x € A€ and x € B¢, ie. x¢ Aand x¢ B=—= x ¢ AUB.
Thus, xe (AUB). N

@ Since (3) is true for any sets A, BB, replace each set with its compliment, i.e.
(AUB )Y =ANB= A°UB = (ANDB)°

thus, we have an alternative yet equivalent form of De Morgan's law.
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Set Theory Applied to Probability

More Relations of Probability

S AcCB

@ Now consider two sets such that A C B. Clearly, A = AN B. Note that
B=(ANB)U(A N B) = Pr(B) =Pr(ANB) +Pr(A°NB) =
Pr(B) = Pr(A) + Pr(A° N B) > Pr(A) = Pr(B) > Pr(A).

@ Hence, if A C B, then Pr(A) < Pr(B).
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Event Probabilities and the Sample Space

@ Recall the sample space is an exhaustive list of all possible experimental outcomes.

o Note each element can be interpreted as a set containing only one element.
@ These single element sets are collectively exhaustive and pairwise disjoint.

o Let the sample space be given by a finite list of elements, i.e. S = {s1,%,...,5,} where s;
represents individual elements (outcomes).
o If an event is given by any subset of these elements, e.g. B = {s;,s),,...,sj, } where
Jk€{1,2,...,n}, k=1,2,...,m, then by the third axiom the probability of event B is
Pr(B) = Pr({s;}) + Pr({sp}) + -+ Pr({s, }) (4)

where we noted that B = {s; } U{s,} U---U{s;,} and s;, N's;, = & for k # [.

@ Thus, the probability of any event is obtained by summing the individual probabilities of
each element of the sample space making up the event.

Henry Pfister (Duke) Introduction: Probability and Stochastic Processes Lecture 1



Examples for Event Probabilities and the Sample Space

Revisit sample space examples:

@ Examples discussed in class:
@ Two coin flips
o Single 4-sided die roll
@ Two 4-sided die rolls

@ Single game spin
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Fixed Volume of Unity Probability

@ Consider a universal set S = {s1,s,,...,5,} made up of a finite set of equally likely (fair)
outcomes s;, i.e. such that Pr(s;) =p, i=1,2,...,n.
@ By second axiom of probability and arguments justifying (4), we note that

Pr(S) =Pr(s1) + Pr(s2) +---+Pr(sn) =np=1=—=p = 1
n

@ Note as number of possible outcomes n increases (i.e. size of universal set) the probability of any
particular/specific outcome decreases;
@ Indeed, p — 0 as n — co.
@ There's a total fixed “volume” of unity probability that gets distributed among all outcomes of the
sample space.
@ As the total number of possible outcomes increases, the total probability remains fixed at unity but it
gets spread among more elements.
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Quiz 1.3

A student’s test score T is an integer between 0 and 100 corresponding
to the experimental outcomes sq,...,s1009. A score of 90 to 100 is an A,
80 to 89 isa B, 70 to 79 is a C, 60 to 69 is a D, and below 60 is a
failing grade of F'. If all scores between 51 and 100 are equally likely and
a score of 50 or less never occurs, find the following probabilities:

(@) P[{s100}]

(b) P[A]

(c) PLF]

(d) P[T < 90]

(e) P[a C grade or better]

(f) P[student passes]



Conditional Probability

@ When one first observes an experiment/process there may be very little known about
the potential chances of outcomes; thus, it is reasonable to adopt a probability model
that reflects this uncertainty.

@ As one continues to observe the process, however, additional information may become
available that changes the likelihood of certain outcomes.

o For example, assume yesterday the weatherman said that there's a 50% chance of rain today,
i.e. he had no idea whether or not it will rain today. Early this morning, however, after
observing cloud cover, temperature, humidity, windspeed, and other meteorological data the
weatherman proclaimed that there's a 75% chance of rain today.

@ Additional information from a side event lead to a change in his model.

@ The notion of conditional probability addresses the adjustment of probabilities based
on additional information.
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Conditional Probability

Conditional Probability

@ Consider the [original] universal set S shown in figure that includes events A and 5:

New Conditional Universal Set,
Original Universal Set Given event B Occurred

o Clearly, ANB # @, i.e. observing an outcome belonging to both sets is possible.

@ Assume that the probabilities assigned to events A, B are given by Pr(A), Pr(B) # 0, and
Pr(AnN B).

@ Now assume we were unable to directly observe the experiment, but we are informed that
event B has occurred. How should we adjust our model to reflect this new information?

o Specifically, what can we say about the probability of event A, given this additional information about
the occurrence of B?
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Conditional Probability

e Conditional probability characterizes our knowledge (i.e. updates the model) of A when we
know that B has occurred, and is denoted Pr(A|B).
@ As illustrated in figure, once informed that event B has occurred, then effectively set B is

treated as the new universal set.

@ Note we have received no information, however, leading us to alter the relative probabilities within B,
but we can renormalize the probabilities for all elements in B to obtain an updated model for this new
conditional universal set.

@ Conditional probability of event A given that B has occurred is defined as

Original probability
of Awithinset B Pr(ANB)
Total probability ~ Pr(B)
of set B

Pr(AlB) =

o Definition makes sense only if Pr(B) # 0: if Pr(8) = 0, then event B is an impossible event, and the
conditional probability becomes nonsensical and undefined.

@ Note, it follows that:
Pr(ANB) = Pr(B) Pr(A|B) (5)
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Conditional Probability

Conditional Probability

@ Note from figure that B= (AN B)U (B — A), i.e. set B is decomposable as the union of
two disjoint sets:

Thus, by third axiom and then renormalizing:

S B— A\

‘ Pr(B) = Pr(AnB)+Pr(B—-A) = (6)
Pr(B)  Pr(AnB)  Pr(B—-A)
P(B) ~ PiB) | PuB)

1= Pr(B|B) = Pr(AB)+Pr(B- AB).

~——

~

@ The new conditional universal set likewise obeys the three axioms of probability:

S
1. Pr(A|B) > 0. B

2. Pr(B|IB) = 1.
3. For A,C C B where ANC =@,

then Pr(AUC|B) = Pr(A|B) + Pr(C|B).
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Law of Total Probability

@ Given a partition B = {By,B5,...,B,}, any event A can be written as the union of a set of
mutually exclusive events, ie. A= ANS=AN(BLUBU---UDB,) implies

A=(ANB)UANB)U---U(ANBy).

S
By the third axiom, By | B, B3 By
—
Pr(A) =Pr(ANBy)+Pr(ANBy) +---
+Pr(AN Bn). D —

@ This is called law of total probability since Z Pr(B;) = 1.
i=1
@ Assuming Pr(B;) >0, i =1,2,...,m, the relation (5) can also be written as
Pr(A) = Pr(B1) Pr(A|By) + Pr(B2) Pr(A|By) + - - - + Pr(Bn,) Pr(A|Bm) (7)

e If only conditional probabilities are available, then (7) gives unconditional probabilities.
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Bayes Theorem

@ Some applications naturally conditional probability Pr(.A|B) when one wants Pr(B|.A).

@ As long as Pr(.A) # 0 and Pr(B) # 0, Bayes theorem provides a relation between the two:

Pr(AnB)  Pr(B)-Pr(AlB)

A= T P
Pr(B.A) = Pr(B,'I)D'rELI;()ABi) Pr( ;) - Pr(A|B)) (8)

ZPr ) Pr(A|B;)

where the first equality follows from
Pr(AB) = Pr(B) - Pr(A|B) = Pr(A) - Pr(B|.A) 9)

and last equality uses (7) to express the prior for A in terms of conditional probabilities.
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Sample Space for Sequential Experiments

@ Probability tree diagrams capture sequential nature (causality) of experiments.
o Figure illustrates such a tree diagram of the sample space

Outcome:
\) By--eeeeieeemeeeeeeeee--c- 0 A B
A\\ P(C\\Axnz) Cy------e A B,C,
(5] // epey e
214 8 Sum of branch probabilities
P(CJ4, B y~—C,------# A,B,C, .
? emerging from any node
Ao ___eA, must sum to unity!
B ST L PR -A3
First “' 2nd L 3rd sub

@ Probabilities for first branches are prior probabilities.
e i.e. Pr(A1),Pr(Az), and Pr(A3) where Pr(A1) + Pr(Az) + Pr(As) =1

@ Probabilities of all other subsequent branches are conditional probabilities
@ Pr(Bi|A1), Pr(Bz|A1), Pr(Ci|A1B2) and Pr(C|A1Be)

@ Probability of an outcome (element) given by all product of tree probabilities, e.g.
Pr(A1B2C,) = Pr(A1) Pr(Bz|A1) Pr(C|A1By) = Pr(A1B2) Pr( G A1 By).
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Quiz 1.5

Monitor customer behavior in the Phonesmart store. Classify the behavior
as buying (B) if a customer purchases a smartphone. Otherwise the
behavior is no purchase (N). Classify the time a customer is in the store
as long (L) if the customer stays more than three minutes; otherwise
classify the amount of time as rapid (R). Based on experience with
many customers, we use the probability model P[N] = 0.7, P[L] = 0.6,
P[NL] = 0.35. Find the following probabilities:

(a) P[BUL]

(b) P[NUL]

(¢) PINUB]

(d) P[LR]



Independence

Independence

@ Events A and B are said to be independent if and only if
Pr(AB) = Pr(A) - Pr(B). (10)

o Recalling that Pr(AB) = Pr(A) Pr(B|.A) = Pr(B) Pr(A|B), if events A, B are independent, then
Pr(B|.A) = Pr(B) and Pr(A|B) = Pr(.A).
@ It is intuitive that if events A and B are independent then knowledge of B does not change my initial

model for A, i.e. Pr(A|B) = Pr(.A); and likewise knowledge of A does not change my initial model for
B, i.e. Pr(BA) = Pr(B).

o Independence means events A, B do not influence each other, i.e. no cause and effect happening;
knowledge of one does not inform of the other.

@ Sets A, B cannot be independent if they are mutually exclusive. Why is this?

@ |t is seldom obvious that two events are independent; in most cases one must compute the
required probabilities and test for the validity of relation (10).
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More on Independence

@ Three events A, B,C are said to be mutually independent if and only if

Pr(AB) = Pr(A) Pr(B)
Pr(AC) = Pr(A) Pr(C)
Pr(BC) = Pr(B) Pr(C

Pr(ABC) = Pr(A) Pr(B) Pr(C).

@ nevents A;, A, ..., A, are said to be mutually independent if and only if for any
k =2,3,...,n the following relation holds:

Pr(AilAiz e Afk) = Pr(Aﬁ) Pr(Aiz) e Pr(Aik)

for any combination (i1, ip, ..., ix) of k objects chosen from set {2,..., n}.
o Pairwise independence is weaker condition than this mutual independence.

@ Two events A, B are said to be conditionally independent given C if it is true that
Pr(AB|C) = Pr(A|C) Pr(B|C)

assuming Pr(C) > 0.
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