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Remarks

Remarks

@ Last chapter we discussed sequential events and the value of using a probability tree diagram
to represent the sample space. Recall that:
o Tree diagrams capture sequential nature.
o Probabilities for first branch are prior probabilities.
@ Probabilities of all other subsequent branches are conditional probabilities.
o Probability of an outcome is obtained by product of all tree probabilities leading to it.
@ The probabilities on the branches leaving any node must sum to 1.

@ The probabilities of all the terminal leaves of the tree must sum to 1.

Examples 2.3 and 2.4 Yates/Goodman

@ To be discussed in class
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Example 2.3 Problem

Suppose you have two coins, one biased, one fair, but you don’t know
which coin is which. Coin 1 is biased. It comes up heads with probability
3/4, while coin 2 comes up heads with probability 1/2. Suppose you pick
a coin at random and flip it. Let C; denote the event that coin i is picked.
Let H and T denote the possible outcomes of the flip. Given that the
outcome of the flip is a head, what is P[C1|H], the probability that you
picked the biased coin? Given that the outcome is a tail, what is the
probability P[C1|T] that you picked the biased coin?



Example 2.4 Problem

In the Monty Hall game, a new car is hidden behind one of three closed doors while a
goat is hidden behind each of the other two doors. Your goal is to select the door that
hides the car. You make a preliminary selection and then a final selection. The game
proceeds as follows:

You select a door.

The host, Monty Hall (who knows where the car is hidden), opens one of the two
doors you didn’t select to reveal a goat.

Monty then asks you if you would like to switch your selection to the other unopened
door.

After you make your choice (either staying with your original door, or switching
doors), Monty reveals the prize behind your chosen door.

To maximize your probability P[C] of winning the car, is switching to the other door
either (a) a good idea, (b) a bad idea or (c) makes no difference?



Counting: Permutations and Combinations

@ An exhaustive list of mutually exclusive events is called the sample space.

Counting possibilities is an important exercise for various processes.
Consider choosing a subset of k items from a total list of n distinct items.

OO0

How many possible k-length sequences are there? The answer is that it depends:

o If each item is replaced after choosing it from the total list of n possible items, then each selection will
have n possibilities. Thus, the total number of k-length sequences is
k

nxnx---xn(ie ktimes)=n

@ If, however, each item can only be chosen once without replacement, then the first item will have n
possibilities; the second will have n — 1 possibilities; the third will have n — 2 possibilities, etc.; and the
k-th item will be chosen from the remaining n — (k — 1) items. Thus, the total number of possible
k-length sequences is

n! A

n><(n—l)><(n—2)><-~><(n—(k—2))><(n—(k—1)):m

where ! =nx(n—1)x(n—2) x---x3x2x1.
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Counting: Permutations and Combinations

Counting: Permutations and Combinations

@ How many ways are their to select k distinguishable items in order from n?

@ This is an interpretation of the n! divided by (n — k)!
@ n! is the total number of possible arrangements for an n-length sequence.
e For any fixed set of values for the first k items in the n-length sequence, note that the last (n — k)

items can be in (n — k)! different orders.
@ Thus, by taking the ratio n!/(n — k)! we obtain simply the total number of possible k-length sequences

Lecture 2
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Counting: Permutations and Combinations

Example: Counting of Permutations and Combinations

@ How many ways can k =2 of n =4 items A, B, C, D be chosen with replacement?
o The answer is nk = 42 = 16.

@ A tree diagram can be used to keep track as in figure: the first item has four choices indicated
by the first four branches emerging from the initial node. The second item only has 3 choices.
Thus, the total number of k = 2 length sequences is 4 X 3 = 12; namely,
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Counting: Permutations and Combinations

Example: Counting of Permutations and Combinations

Continuing discussion of example: n =4 items A, B, C and D
@ Regarding interpretation of the n! divided by (n — k)!, note that the total number
of n = 4 length sequencesis n! =4/ =4.3.2.1=24,

@ Can you see how to modify the tree diagram to show all 24 sequences?

@ For any fixed set of values for the first k = 2 items in a n = 4 length sequence, the
last (n — k) = (4 — 2) = 2 items have (n — k)! = 2| = 2 possibilities.
o For example, all 4-length sequences starting with AB are given by {ABCD, ABDC};
o All 4-length sequences starting with CB are given by { CBAD, CBDA}; etc.

o By taking the ratio n!/(n — k)! = 24/2 = 12 we obtain the precise number of n = 4-length
sequences whose beginning k = 2 letters yield the set of all k = 2-length sequences once.
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Example: Counting of Permutations and Combinations

@ Continuing the discussion of n =4 items A, B, C and D:

@ Our sequence list counts all arrangements (or permutations), i.e. we're treating sequence AB as
different from BA, and sequence AC as different from CA, and so on; i.e.
. . n!
# k-length permutations of n items = ——.
(n— k)!
@ Suppose we don't care about the order, but only the combination (or set) of items, where sequences
such as AB and BA are treated as the same outcome?

@ Given k items there are k! such possible arrangements. Thus, a count of the total number of k-length
combinations is obtained by dividing the total number of k-length permutations, i.e. n!/(n — k)!, by
the number of possible ways to arrange k items, i.e. k!:

|
# k-length combinations of n items = m = (:)

For n = 4 andk = 2, (g) = 6. A set determines its complement and this implies (Z) = (nﬁk)'
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Example 2.5 Problem

Choose 7 cards at random from a deck of 52 different cards. Display
the cards in the order in which you choose them. How many different
sequences of cards are possible?



Example 2.10 Problem

There are four queens in a deck of 52 cards. You are given seven cards at
random from the deck. What is the probability that you have no queens?



Example 2.11 Problem

There are four queens in a deck of 52 cards. You are given seven cards
at random from the deck. After receiving each card you return it to the
deck and receive another card at random. Observe whether you have not
received any queens among the seven cards you were given. What is the
probability that you have received no queens?



Binary Sequences

@ An n-length binary sequence is a sequence of binary digits b; € {0,1}, i =1,2,...,n,
sometimes written as a string by by - -+ b, or as (by, by, - -+ , by,).
@ Binary digits are sometimes referred to as "bits” for short.

@ Binary sequences are used often to model various types of sequential experiments where
each subexperiment outcome is one of only two possibilities. For example,

o Series of repeated coin flips, each flip yielding a heads or tails outcome.

o Series of repeated tests, each test resulting in a pass or fail.

@ Series of repeated attempts, each attempt classified as a success or failure.

@ Series of signal transmissions, each either a +A amplitude signal or —A amplitude.

@ etc.
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Binary Sequences: Example 2.17

e Example 2.17: For five subexperiments each producing a binary output b; € Sy, = {0,1},
i=1,2,...,5 what is the number of observation sequences (b1, ba, b3, b, bs) in which 0
appears twice and 1 appears three times?

o Trying to list all possibilities and counting will work in this case, but is tedious and not scalable. Let's
see if we can reach a solution using what we've learned about counting.

o Consider one such binary sequence, say 10110. Let's label each digit in the sequence using letters
A, B, C,D and E as pointers to keep track:

10110

o First we identify the number of ways these 5 bits can be shuffled around, i.e. determine the number of
possible permutations.

o Clearly, there are 5! =5-4-.3.2.1 = 120 possible arrangements.
o Next we determine how many arrangements point to exactly the same sequence.

@ The three ones have pointers A, C and D. These can be rearranged 3! =3-2-1 = 6 ways, yet
yielding the same sequence 10110; namely, ACD, ADC, DAC, DCA, CDA and CAD.
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Binary Sequences: Example 2.17 Cont.

Example 2.17 (Cont.):

@ More of determining # arrangements pointing to exactly the same sequence:

@ The two zeros have pointers B and E that can be rearranged in 2! =2 -1 = 2 ways, yet yielding the
same sequence 10110; namely, BE and EB.

@ Thus, there are 3! x 2! = 12 replicas of sequence 10110 among the 5! = 120 total arrangements.

o In fact, there are 12 replicas of every sequence containing three 1's and two 0's among the 120
arrangements for exactly the same reason.

e Dividing by the number of permutations that leave the binary sequence unchanged gives the count of
only the distinguishable arrangements or combinations.

@ Let the number subexperiments be denoted n = 5, the number of ones be denoted k = 3, and then the
number of zerosis n — k=5 —3 = 2.

@ The number of unique sequences with three 1's and two 0's is obtained by
# permutations for

# unique sequences _ n-length sequence 51120 10
with three I's & two 0's = # permutations resulting ~ 3! x 2!~ 12 =
in same sequence
. #£ unique sequences _ n! _ (n)
in general, ( with k ones & (n— k) zeros ) = kI x (n—k)! ~ \k

@ The binomial coefficient counts the unique n-length binary sequences with k ones (or n — k zeros).
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Binary Sequences: Example 2.17 Cont.

Example 2.17 (Cont.):
@ The 10 unique sequences are

10110 11100 10011 11001 00111
01101 01011 11010 01110 10101.

@ Since binary sequences can represent many types of n repeated subexperiments, each having
one of two possible outcomes, it is useful to be able to count the number of ways these
trials can lead to k ones (or heads, or passes, or successes, etc.).
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Bernoulli Process

@ Any experiment with two possible outcomes is known as a Bernoulli process. Examples seen
already include: coin flip (heads/tails), pass/fail testing, etc.

Outcome 1
1—p (0, tails, failure, etc.)

Outcome 2
(1, heads, success, etc.)

@ Clearly, n repetitions of a Bernoulli process yields an actual or effective binary sequence.
o Recall that probability is interpreted as a measure of relative frequency (or fraction)

@ Thus, if k is the number of 1's (or heads, successes, etc.) from n independent repetitions of a Bernoulli
experiment then as n — oo we expect that

- = p.
n
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Bernoulli Process

@ More on n repetitions of a Bernoulli process yielding binary sequence:

o It is reasonable, therefore, if n is large enough to use relative frequency as an estimate of p, i.e. if p is
unknown then it can be estimated via
# of Outcome 2 k

p(b1,ba, ..., by) = e = —.
p(b1, b2 ") # Repetitions n

@ The probability of a specific binary sequence with k ones is p* - (1 — p)" k.
@ (see a probability tree diagram)
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Binomial Process

@ Consider an n = 3-length binary sequence by b, b3 resulting from repeated independent
Bernoulli subexperiments.
@ Let k be the # of ones in this sequence. Clearly, k € K ={0,1,2,3}.
@ What is the Pr(k =0), Pr(k = 1), Pr(k = 2), and Pr(k = 3)?
o (see probability tree for sample space)

@ The sample space is given in the table below.

Outcome Pr(-) k = #ones
000 (1-p)° 0 Clearly, for this example we have
001 (1-p)%p 1
010 (1-p)°p 1 Eventk=(-) | Pr()
011 (1 - p)p? 2 = 0 (1-p)3
100 | (1-p)p 1 1 3(1-p)°p
101 | (1-p)p? 2 2 3(1-p)p°
110 (1-p)p? 2 3 p3
111 p3 3
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Binomial Process

@ Since Pr(k € K€) =0, and k € K for every sequence by bybs, it follows that

Pr(k =0) + Pr(k = 1) + Pr(k = 2) + Pr(k = 3) (1)
=(1-p)’+3(1-pyp+3(1—-p)p°+p° =1

@ Setting zy = p, z2 =1 — p, and n = 3 in binomial formula we also obtain (1), i.e.

n n -
(a+2)" = Z(k>zfzé’ g

k§0
(p+1-p)° = > (Z) pK(1—p)**
k=0
1 = (1-pP+3(1-pPp+3(1-p)p+p*

Hence, the name “Binomial process” for k.
@ For the length-n binary sequence by b, - - - b, resulting from repeated independent Bernoulli
subexperiments, the probability of k € L = {0,1, ..., n} ones in this sequence equals

n

Pr(k ones) = (k) p(1 — p)nk
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Example 2.19 Problem

What is the probability P[E» 3] of two failures and three successes in five
independent trials with success probability p.



Example 1.19 Problem

A company has three machines By, By, and B3z making 1 k2 resistors.
Resistors within 50 2 of the nominal value are considered acceptable. It
has been observed that 80% of the resistors produced by By and 90% of
the resistors produced by B, are acceptable. The percentage for machine
B3 is 60%. Each hour, machine By produces 3000 resistors, B, produces
4000 resistors, and Bz produces 3000 resistors. All of the resistors are
mixed together at random in one bin and packed for shipment. What is
the probability that the company ships an acceptable resistor?



Example 2.20 Problem

In Example 1.19, we found that a randomly tested resistor was acceptable
with probability P[A] = 0.78. If we randomly test 100 resistors, what is
the probability of T;, the event that ¢ resistors test acceptable?



Example 2.21 Problem

To communicate one bit of information reliably, cellular phones trans-
mit the same binary symbol five times. Thus the information ‘“zero” is
transmitted as 00000 and “one” is 11111. The receiver detects the cor-
rect information if three or more binary symbols are received correctly.
What is the information error probability P[E], if the binary symbol error
probability is ¢ = 0.17



m-ary Sequences

@ Consider a trial/subexperiment that can result in only one of m possibilities where
Pr(Outcome i) =p;, i =1,2,...,m:

Outcome 1
p1
D2 Outcome 2

P3_ outcome 3

Pm—1
Outcome m-1

Pm

Outcome m

@ This subexperiment will be referred to as m-ary trial and m = 2 is a Bernoulli trial.

@ Repeating an m-ary trial n times results in a sequence s;5; -« -s, where s; € {1,2,..., m}.
o If each subexperiment is independent, then the probability of a specific sequence is
k: k;
Prisis2 - sn) = Py - pg” - Y

where kj € {0,1,2,...,n} is the # of subexperiments resulting in outcome j € {1,2,..., m} such that
ki+k+--- 4 km=n.
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m-ary Sequences: Example

o Consider nine subexperiments with a ternary output t; € Tg,p = {0,1,2}, i=1,2,...,9.
How many output sequences (ty, ta, ..., tg) contain 3 zeros, 4 ones, and 2 twos?

o Clearly, m=3, n=29, and interest is in k1 =3, ko =4, and k3 = 2.

@ An example sequence with 3 zeros, 4 ones, and 2 twos, is say 210011210:

210011210

ABCDEFGHI

where letters are used as pointers.

@ Note there are 9! total permutations of pointers ABCDEFGHI.
@ How many copies of this specific sequence are there among the 9! permutations?
@ The 3 zeros with pointers CDI can be arranged 3! = 6 ways to give the same sequence 210011210.
@ The 4 ones with pointers BEFH can be arranged 4! = 24 ways to give the same sequence 210011210.
@ The 2 twos with pointers AG can be arranged 2! = 2 ways to give the same sequence 210011210.
@ Thus, there are 3! x 4! x 21 = 288 permutations that give exactly the same sequence 210011210.
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m-ary Sequences: Example

@ Continuing this example on # copies of this specific sequence among 9! permutations:
@ There are 288 copies of every sequence containing 3 zeros, 4 ones, and 2 twos.
e Dividing 9! = 362880 by 3! x 4! x 2! = 288 gives the # of unique seq with 3 zeros, 4 ones, and 2 twos:
n! B 9! 362880
kil X kol x k3!~ 3lx 4l x21 288

= 1260.

@ In general this is called the multinomial coefficient:?

n! A n
k1!><k2!><~--><km!_ kl,kz,...7km

and is a generalization of the binomial coefficient.

1The multinomial theorem provides a compact polynomial expansion of the sum of m terms raised to a power n:

(n+z+ - +zm) = Z ( n km) mz.j

ki, ko, ... ; J
Ky kot -+km=n L2 K2 ) J=1

where n is a whole number; the sum is over all m-tuples (ki, k2, ..., km), kj € {0,1,2,..., n} such that

kit kot Atk =n.
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Multinomial Process

Multinomial Process

@ In general given a n-length sequence s; 5,53 - - - s, resulting from repeated independent m-ary
subexperiments, the probability of obtaining k; occurences of outcome j € {1,2,..., m}
such that ky + ko + - - - + k;, = n is given by

n ko k k
Pr(ki, ko, ..., k = X 1. pke .. pkm
r(ki, k2 m) (kl, o, ,km) PPy P
Count of all probability of

such sequences specific sequence

where clearly the multinomial coefficient is the total number of unique sequences containing
k; occurences of outcome ;.
@ This is called the multinomial process due to its connection to the multinomial theorem.

e Set z; =p;, i =1,2,...,m, and note probability space.
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Multinomial Process

A Bernoulli Trial Interpretation of m-ary Trials

o Consider n repeated independent m-ary subexperiments yielding k; occurences of outcome j
such that k; + ko + - - - + k;, = n. For the possible resulting sequences s1s; - - - s, note that

Outcome 1

Outcome j

P )

‘Da_- Outcome 2 Pj

P3_ outcome 3

N :
Pm—1
Outcome m — 1 1—pj

Pm Outcome M, Not Outcome j

i.e. j-th Outcome of m-ary Subexperiment can be interpeted as Bernoulli process.

@ total number of possible arrangements of n-length sequences that have k; occurences of outcome 1 is
given by the binomial coefficient (k"l) ; see above Figure with j = 1.

@ total number of possible arrangements of the remaining the n — k; sequence elements having k»
occurences of outcome 2 is given by the binomial coefficient (”;zkl).
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Multinomial Process

A Bernoulli Trial Interpretation of m-ary Trials

@ More on repeated m-ary subexperiements:
@ the total number of distinct arrangements of the remaining n — k; — ko sequence elements having k3

occurences of outcome 3 is given by the binomial coefficient (”_kkl;kz)

o the total number of distinct arrangements of the remaining n — ky — ko — - -+ — kjy—1 sequence

elements having kmy, of outcome m is given by the binomial coefficient ("_kl_kzk_‘“_kmfl).
m

@ The product of these binomial decompositions of n subexperiments must yield the same number of
permutations as the multinomial coefficient. Thus, we have the identity

(kh k2,r.7. - km> = (:1> (n ;2k1) <n7 l:?’* k2) (n — ki — k2k;... _ km71>

@ How might one prove this equality?
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