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A Large Number of Outcomes

X e{1,2} X €{1,2,3,4}
o Consider a game spinner

1 2

1 2 3
P ‘H%\ | 3 | a4
. ‘ ETC. T T
t X i S

Xe{1,2,3,...,8}) Xe{1,2,3,...,16}

@ Divide disc into n sectors (“pie slices”) of equal size, and define discrete r.v. X as the
number for sector that spinner arrow falls in.

o Let X PMF be Px(x) =% for X € {1,2,...,n}, and zero otherwise.

B
o Clearly, as n — oo, i.e. more and more pie slices allowed:
@ # sectors becomes infinite

e Pr(X =x)=Px(x)= % — 0, i.e. probability of particular sector is zero.

—This does not mean that obtaining an outcome of X = x
is impossible, only that there are infinite possibilities.

@ So how might we handle such scenarios, or similar ones?
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L —
Continuous Sample Spaces

e What about r.v. given by angle 6 € [0, 2x]?...or more generally what about a r.v. X defined
on the real interval [a, b], i.e. Sx = {x:a < x < b}?
@ The real interval [a, b] contains an infinite # (uncountable) possible values for X.

@ By axioms of probability, the total probability on [a, b] must be unity.

@ So how might we handle such scenarios?...or in general a r.v. whose value may fall anywhere within
continuous ranges?
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Probability Density Function (PDF)

@ The PDF of a r.v. X is denoted fx(x) and defined such that, for any reasonable set B C IR,

Pr(X € B) = / fx(x)dx,

B
i.e. the probability of X falling in set B is given by integrating the PDF over the set B.

@ For example, if B = {x:x3 < x < x} then

Pr(X € B) =Pr(xg < X <x) = / fx(x)dx.

X1

e Notation X ~ fx(x) indicates that r.v. X has PDF fx(x).

This area is equal to the probability

/of the experimental outcome | X | < 1

[ L ;
-3 -2 —1 o 1 2 3 T
Jx(2)
o This area is equal to the probability
of the experimental outcome -

fx ()

@ Probability is given by area under the density function. /\}_

|

o

n
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Probability Density Function (PDF)

@ The area under fx(x) for interval of width zero, i.e. a single point, is equal to zero:

Pr(X =x) = /X1 fx(x)dx = 0. (1)

1

@ Not because outcome X = xj is impossible but due to infinitely many possibilities nearby x;.
@ Thus, including or excluding endpoints in an interval has no effect on the probability, i.e.

Pr(x1 <X <x)=Pr(x1 < X <x)=Pr(x1 <X <x)=Pr(x1 < X < x).

@ The axioms of probability require the PDF to possess the following properties:
@ fx(x) >0 forall x € Sx [otherwise negative probability would occur].

Q / fx(x) dx = Pr(—oo < X < 00) = 1 [probability of universal set is unity].

e Small 6 >0, ™"/ fxla)-s
x+6
P Prix < X <x+49) = fx(u)du =~ fx(x) -6 (2)

X

| T x+0
o PDF fx(x) provides a measure of “probability per unit length.” not probability
@ Thus, used to compute but not equal to a probability and not restricted to be < 1.
Lecture 4 6 /40

Henry D. Pfister (Duke) Continuous Random Variables



Example PDF: Uniform R.V.

e Consider r.v. X with range Sx = {x : a < x < b} with PDF

|y, ag<x<b
fx(x) = { 0, Otherwise.

Note that

b b
/ fx(X)dX:’y/ dx:7~(bfa):1:>ry:b_a_

@ Thus, r.v. uniformly distributed on interval [a, b] has PDF
fx(x)

1 a<x<b 1
fx(x)z{ b—a ~— 7 b—a 3)

0, Otherwise.

a b x

e Indicator function 1s(x) £ {1, if x € S, and 0 otherwise = fx(x) = ﬁ]l[a,b](x)-

@ For b=a+ e and small ¢ > 0, we have [a,b] =[a,a+¢€] and b—a =€ and fx(x) = % for x € [a,a+ €]
@ Thus, PDF can assume arbitrarily large values near a for small enough € > 0.
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Cumulative Distribution Function (CDF)

@ The cumulative distribution function (CDF) for r.v. X ~ fx(x) is defined by

X

Fx(x) =Pr(X <x) = / fx(u) du (4)

—0o0
which is very similar to the discrete r.v. case.

@ The CDF “accumulates” all probability up to and including the value x.

e Example: Uniform r.v.: Consider r.v. X with PDF given in (3).

Fx(x) =Pr(X <x) = /X fx(u) du = 1 /X 1,4y (u)du

o b—a

0, x < a
1 x XxX—a
= du = , a<x<b
b—a/, b—a
1, x > b.
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Quiz 4.2

The cumulative distribution function of the random variable Y is

0 y <0,
Fy(y) =qy/4 0<y<4, (1)
1 y > 4.

Sketch the CDF of Y and calculate the following probabilities:

(@) Ply <-1]

(b) Py <1]

(c) P[2<Y <3]

(d) P[Y > 1.5]



Expected Values: Mean, Variance, Functions of R.V.

@ The mean or expected value of a continuous r.v. X ~ fx(x) is defined as

E[X] = /OO x - fie(x)dx

— 00

@ The expected value of g(X), a function of r.v. X ~ fx(x) is defined as

Ee)] = [ 8 Klx)ae
@ The variance of continuous r.v. X ~ fx(x) is defined as
Var[X] = E[(X — E[X])?] = /_OO (x — E[X])? - fx(x)dx £ 0.

As in the discrete r.v. case, it follows that
0 < Var[X] = E[X?] — E[X]*.
@ The standard deviation is the ox = /Var[X].
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Expected Values: Mean, Variance, Functions of R.V.

@ The n-th moment and n-th central moment are respectively defined as

oo

E[X" = /OO x" - fx(x)dx, and E[(X — E[X])"] = / (x — E[X])" - fx(x)dx.

— 0o — 00

@ It can be shown, as in discrete r.v. case, that if Y = aX + b where a, b € R then
E[Y] = aE[X] + b, Var[Y] = a*Var[X].
e Example: Assume r.v. X is uniform on [a, b]. What is E[X] and Var[X]?

E[X]—/ x.fx(x)dX—b_a/a xdx-b_a[2x a] _(b—a). 5 ==

— 00

o 1 h 1 |1
E[X]_/ x= -+ fx(x) dx b—a/a x< dx b—al3x

— 00

11 BB
A CEDEE

_(b—a)(b®+ab+a®) b’ +ab+a’
B 3(b — a) B 3

Henry D. Pfister (Duke) Continuous Random Variables Lecture 4 10/ 40



Expected Values: Mean, Variance, Functions of R.V.

o Example Cont.: The variance is

2 2 2
Var[X] = E[x?] — EX? = 2F "’3b+ T b;“"')
_ 4(b*+ab+ a%) —3(b*+2ab+a%)  b*+a*—2ab  (b— a)?

12 12 12

@ Note that the standard deviation is

1 1
——(b—a) =0.29 x (b— a) &~ = x (width of interval support).
(b= =029 x (b-2)~ § x( pport)
e Thus, Pr(X € [E[X] —ox, E[X]+0ox]) = % = 0.5774; i.e. not quite, but close enough to ~ % = 0.67.

@ Try calculating the mean and variance of 3X + ...
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Families of Continuous Random Variables

@ The uniform distribution is discussed above as an example. So, we summarize briefly next.

Uniform Random Variable:

e X is said to be a uniform (a, b) r.v. if it has PDF given by (3). It has mean (b + a)/2 and
variance (b — a)?/12.

Exponential Random Variables:
e X is an exponential (A) r.v. if for parameter A > 0 it has PDF

e ™™ x>0
P(x) = { 0, Otherwise, (%)

e Plot graph of PDF!...
@ The CDF for an exponential (\) r.v. is obtained via

X 0, x <0
Fx() = / Fe(u)du = /X Xe Mdu, x>0
0

— 00

IRecall =1 =0.3679, e=2 = 0.1353, and e—3 = 0.0498, etc.
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Families of Continuous R.V.: Exponential PDF

@ Note that exponential CDF follows from
X N X \ —Ax dt 0 0 N
/)\e* ”du:)\/ e “du:)\/ et—:/ e'dt = ¢ =1—e "™ (6)
-\ —Ax
Jo Jo 0 J—xx
where change of variable t = —A\u = dt = —\du is adopted in second equality.
o It follows that the CDF of an exponential () r.v. is

l—e ™ x>0
Fx(x) = { 0, Otherwise. (Plot graph of CDF...)

[e'e) [e's) _1
—A/ —— e Mdx
0 0o A

@ The mean of exponential r.v. is E[X] = 1/ evaluated as:

E[x]:/ x-fx(x)dx:)\/ xoeMd= A X
0

- o 1 1 ()
—Ax | —Ax
. dx=(0-0)+% =1
xe {0 +/0 e Ix = ( )+ Y
where integration by parts uses variables u = x,dv = e™*dx => du = dx, v = — ;e .
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Families of Continuous R.V.: Erlang PDF

@ More on expontential PDF:
@ Use integration by parts to show that E[X?] = 2/A2 for an exponential (}) r.v. X.
@ The variance of an exponential () r.v. is therefore
2 1 1
Var[X] = E[X?] — E[X]? = i inhvy
Erlang Random Variable: models the time of the k-th event in Poisson process

e X is an Erlang (r, ) r.v. if for parameters A > 0 and integer r > 1 it has PDF

)\rerlef)\x

fx(x) = (r—1) ~
0, Otherwise.

=0 ®)

Parameter r is often called the order of the Erlang process.
@ The Erlang PDF generalizes the exponential PDF (5) and is the same when r = 1.
@ A Useful Integral Identity: Note that because (8) is a PDF, the following identity holds:

0 A xr—1 7>\x 1w (I‘—l)!
17/ fx(x)dxf/o T dx:>/ e dx = G (9)

— 00
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Families of Continuous R.V.: Erlang PDF (optional)
)\rerlef/\x

(r—=1)!

" 00 00 ror—1 ,—Ax r 00
E[X"] :/ X"'fX(X)dXI/ X" A e dx = A / Xt =leg=Ax gy
0 (r—1)! (r=1!Jo
A (n+r—=10)" (n+r—1)(n+r—-2)(n+r—=3)---r(r—1)---2-1 1

@ The n-th moment of an Erlang r.v. X ~ ,x>0forn>1:

— 00

r—1)! At r—1)(r—2)---2-1 an
( ) :(n+r—1)(n+r—2)((n+r)£3)~-)~(r+1)r.

@ Thus, the first and second moments are given respectively by

(r+1)r
A2

EX]=1.  EX]= (10)

@ The variance of an r-order Erlang r.v. is therefore
(r+1)r r27r2—&—r—r2 r

Var[X] = E[X?] — E[X]? = = = ' =3
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Quiz 4.3

Random variable X has probability density function

cre~*/2 g >0,
. (1)
0 otherwise.

Ix () ={

Sketch the PDF and find the following:
(a) the constant ¢

(b) the CDF Fx(z)

() Pl0< X <4]

(d) P[-2<X <2]



Quiz 4.4

The probability density function of the random variable Y is

3y?/2 —-1<y<1,
0 otherwise.

fy () ={ )

Sketch the PDF and find the following:
(a) the expected value E[Y]

(b) the second moment E[Y?]

(c) the variance Var[Y]

(d) the standard deviation oy



Relationship Between Erlang PDF and Poisson PMF (optional)

@ For a Poisson process with A arrivals per unit time, the random # of arrivals in duration T is

characterized by a Poisson (a) r.v. K ~ Pg(k) = "k:; , for k=0,1,2,... where o = AT:

Fe—ok Fe—h—Jok+—;

J (Time)

T
@ Let the arrival time of the r-th arrival be 7,. Then,

Pr(7, > t) = Pr(r-th arrival time exceeds t) = Pr (

no more than r — 1 arrivals
occur in duration t

r—1 k o= At
= Pr(K < r — 1 for duration T:t)zz%z

-0
r—1 Kk —At
FT,(’-“):PI’(TrSt):l—Pr(Tr>t):1_ZM_1 F(r,\t)

R ]
00 urflefu gesl (/\v)rflef)\v ot (/\v)rflef)\v
:1—/ 7du:l—/ 7)\dv:/ ——Q\dv
W v I R ]
v) —le—Av
= . U(V)WAdV: . f'Tr(V)dV
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Relationship Between Erlang PDF and Poisson PMF (optional)

@ Regarding the previous calculation?, the fourth to last equality follows from the change of
variables v = u/); the third to last equality follows since 1 — Pr(A) = Pr(A<) for any event
A: the second to last equality introduces the unit step function?; the last equality simply
recognizes that the integrand for an integral in this form must be the PDF by the
fundamental theorem of calculus.

@ Thus, the PDF of the r-th arrival time 7, is obtained via differentiation:

d (/\t)r—le—)\t

fr.(t) = —Fr.(t) = (r—1)!
0, otherwise

A, t>0 (11)

which we recognize as the Erlang PDF (8).

2The complete Gamma function is defined as the integral ['(a, x) = fxoo u?~le~Udu. When a = m, i.e. ais an integer,

then F(m,x) = (m —1)le™™ zkm;()l );(—kl
3The unit step function is U(x) = 1 for all x > 0, and U(x) = 0 for x < 0.
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Relationship Between Erlang PDF and Poisson PMF (optional)

@ Thus, we have the interesting result that the arrival time for the r-th arrival of a Poisson
process has an Erlang PDF.
o Note that the time elapsed before the first arrival, i.e. for the r = 1 case, is a first order Erlang or
equivalently an exponential PDF: 71 ~ Ae™*t, t > 0.

@ Also, because adjacent time intervals are independent, the time between arrivals (called interarrival
times) is also given by an exponential PDF.

@ It is noteworthy that the r-th arrival time 7, can be interpreted as the sum of r independent identically

distributed interarrival times, i.e. 7, = X1 + Xo + - -+ + X, where X; ~ exponential (\), i=1,2,...,r
and statistically independent.
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Relationship Between Erlang PDF and Poisson PMF

@ There's an alternative approach to establish this relationship between the Poisson PMF and
the Erlang PDF.

@ Recall that a Poisson process can be decomposed into a series of independent Bernoulli trials by
dividing the time interval duration T into many small time slots of duration AT:

No Arrival in AT
1-MAT
AT =T/n
oL

L r J (Time)

T

AT
Arrivalin AT

@ The Poisson process is then determined by the number of successes in n independent Bernoulli trials,
i.e. a Binomial process.

@ We showed that in the limit of AT — 0 that this Binomial distribution approaches the Poisson PMF.
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Relationship Between Erlang PDF and Poisson PMF

A simple argument for the Erlang PDF:

o Consider the probability of the r-th arrival time, i.e. the duration up to and including the
r-th arrival. By independence of nonoverlapping time intervals, it follows that for t > 0:

Pr(t <7, <t+ AT)=Pr(K =r—1in duration t) - Pr(one arrival in AT)

= Pr(Poi(At) =r —1) - AAT = (/\gtlle)_!)\t

but as AT — 0 recall from (2) = Pr(t < T, <t+ AT) ~ f1.(t)- AT

“AAT

Thus, it follows that

()\t)rflef/\t

() ==y

-\, fort>0
which is again the Erlang PDF.
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Moment Generating Functions (MGF)*

Transforms such as the Laplace transform and Fourier transform play important roles in
many areas of science, engineering, and mathematics. Probability theory is no exception.

Transforms can be advantageous to establish important theorems, computing moments, and
analyses of sums of random variables. We introduce the concept now.

The moment generating function (MGF) of a r.v. X is defined as
ox(s) = E[e]

for continuous and discrete random variables, differing only in formula for expectation.

For continuous r.v. X ~ fx(x) the MGF is

oo

6x(s) = E[e] = / e . fic(x) dx. (12)

— 00

The integral defining the MGF in (12) is simply the Laplace transform of the PDF. The
values of s for which the integral converges (¢x(s) exists) is the region of convergence.

4See Chapter 9.2 in Yates/Goodman [1]
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Moment Generating Functions (MGF)

@ For discrete r.v. X ~ Px(x) the MGF is

¢x(s) = E[eX] = > €™ Px(x).

XESx

@ Note from the definition of MGF that ¢x(0) = 1:

continuous r.v.: ¢x(0) = E[e*] —/ €9 . fi(x )dx:/ 1. fx(x)dx = 1.
discrete r.v.: ¢x(0) = E[e®X] = Z €% . Px(x Z 1. Px(x

xXESx XE€Sx

Thus, s = 0 is always in the region of convergence.

@ Because of the uniqueness of Laplace transforms, knowledge of MGF ¢x(s) completely
characterizes the PDF fx(x) (or PMF Px(x) if discrete). Thus, in theory, the MGF is a
complete description of a r.v.
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MGF and n-th Moments

@ Random variable X ~ fx(x) with MGF ¢x ( ) has n-th moment:
donls)_ 4 [ o _/ s°_/°° .
s ds) - fx(x) dx (x) dx —ooX e - fx(x) dx =
dox(s)
f = E[X].
=~ /mx 5 (x) o = E[X]

d2¢x S d? * sx < d? e > sX
ds2():d52/_ooe -fx(X)dxz/ 72 € fx()dx:/_ooxz-e - fx(x) dx =
d?¢x(s)

= - fx(x) dx = E[X?],
ds2 |, /,Oo

dn¢X(5) _ d" e Ssx _ o d" sx _ o n SX
dor _ds"/ e -fx(x)dx—/ el - fx(x )dx—/ X" e¥ - fx(x) dx =

T arex(s)| e
il */_oo - Fe(x) dx = E[X"].

5s=0
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Moment Generating Functions

MGF and n-th Moments
@ Regarding a discrete r.v. X ~ Px(x), one obtains

d"¢x(s)  d" T

n n
ds ds XESx XESx xESx
d” s
X)) S e () = E[XT.
ds” s=0
= XESx
DIFFERENTIATION INTEGRATION

Hence, named “moment” generating function.

@ Evaluation of moments for a r.v.

in several cases can be significantly
simpler to do with the MGF than directly
with the PDF because differentiation

is often easier to do than integration.

A bit of humor from author Randall Munroe
(https://xkcd.com/2117/) =
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MGFs: Example

e Example: Consider X ~ fx(x) = Ae™, x >0, i.e. an exponential (\) r.v.
The MGF is evaluated as
e™ - fx(x)dx = /

ox(s) = Ele¥] = [
J —oo 0
-, du A _ A A
= u = . u o0 = — — ]_ =
)\/0 SN s (e o ) s—A (0-1) A—s
where variable change is u = (s — A\)x, du = (s — \) dx for Re(s — A\) < 0.

@ As a test, note that ¢x(0) = X/(A—0) =1.
@ The first moment can be obtained via

o0 ge.

e - e Mdx = A / els= M) gy
Jo

dox(s) _ A=1) . _ A dox(s)| _ A _ 1 _
s oosr V=0T T |, e X
@ The second moment follows from
d’px(s)  A(-2) 2 dox(s) 22 )
ds? _(/\—5)3.(71)_()\—5)3: ds SZO_F_E_E[X I

@ A table of various MGFs is provided in Table 9.1 of Yates/Goodman [1] p. 312.
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Gaussian Random Variables

@ The Gaussian distribution appears quite frequently in many applications. Thus, it is a
probability model with which it is worth becoming very familiar.

e X is a Gaussian (p, o) r.v. if it has PDF
1 =)

fx(x) = —=e 22, for —c0 < x < (13)

V2mo?

where parameters 4 € R and o > 0.

@ A Gaussian r.v. is also sometimes referred to as a normal r.v.

@ Shorthand notation X ~ N(pu,0?) is often used to indicate a Gaussian (i, o) r.v.

@ Gaussian PDF illustrated below; the name “bell curve” has clear origin:

fx(@)
~
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MGF of Gaussian R.V.s

@ Since (13) is a PDF, it must hold that

o0 oo 1
1:/ f; xdx:/
—o0 x(x) - 27702

@ The MGF for a Gaussian r.v. with PDF (13) is ¢x(s) = RO

° "0 1 ()’
¢x(s) = E[e™] = / e” - fx(x)dx = / e ——=e 22 dx
o o V2mo?

2

=V2ro?.  (14)

B
_ xP—2xputp4202sx €252 0 2 o(utos)
202 X = —— e 2072 X.

=/ v
= e =
2m0? J_o 2mo?

Completing the square in x we obtain

2 2.2
il pe=(ptos)
ex?  k—luro = (uto29? e 27 X e (uto2s)?

ox(s) = —= e 252 dX = ———— e 202 dx
V2mo? J-oso V2mo? —o0
e +2,1;725+o452)
e 2
= i -V2mo2 =e

V2mo?

where integral by (14)
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Mean and Variance of Gaussian R.V.s

@ The first moment E[X] is easily deduced from the symmetry of the PDF (13), i.e. the center
of mass is clearly E[X] = u. This can be established formally via:

dox(s) dox(s)

2 2
= 2) @St = = E[X].
) (e s0%) e 2 —n=ew
@ The second moment E[X?] follows from
ZZ(Z(S) _ (M+502)2 SHHTE | g2 eSHt T <§;<2(5) =12 + 02 = E[X?).
5=0

Thus, the variance of a Gaussian r.v. (13) is
Var[X] = E[X?] — E[X]* = pi* + 0® — pi* = 0°.
@ The parameters of Gaussian PDF (u, 02) are therefore respectively the mean and variance:

X ~ N(pt,0%) = E[X] = i, and Var[X] = 0?.

Henry D. Pfister (Duke) Continuous Random Variables Lecture 4



Gaussian Random Variables

Gaussians and Linear Transformations

o Important property: Gaussian r.v.'s regenerate under linear transformations.
o If X ~ N(u,02) then Y = aX + b ~ N(ap + b, 2%°02):

2,2
. 2,0 820
E[esY] — E[es(aX+b)] — b E[esaX] — eh. E[esX] ) — b . gSnti3
s=sa 5=sa
. 2,252 202, ) 5 2
=e% . e T = YT T2 where uy = ap + b, 03 = a’o?.

e Thus, by uniqueness of the Laplace transform, it follows that Y ~ N(ap + b, a%0?).

@ Random variable Z ~ N(0,1) is said to be a standardized normal random variable. It has
the property that E[Z] = 0 and Var[Z] = 1.
o Convince yourself that if X ~ N(u,?), then Z = (X — u)/o ~ N(0,1).

@ The CDF for a standardized normal random variable is a well-tabulated function (see Table
4.2, p. 143 in [1]. MATLAB also have special functions available for its calculation (see
functions erf and erfc)).
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CDF of Standardized Gaussian R.V.

@ The rv. Z ~ N(0,1) has CDF given by N(0,1)
1 z g A T
Pr(Z<z)=— e 2 du=d(z )
RS — Su

@ The r.v. Z ~ N(0,1) has complimentary CDF given by

1 2
PI’(Z > Z) = \/7/ ez du=1- cb(Z)
™ Jz

where notation Q(-) is adopted to indicate this function.

2

Q(z).

e Consider r.v. X ~ N(p,02) and note that it has CDF
Fx(x) = Pr(X < x) = Pr(X — < x — ) = Prl(X — )/ < (x — ) o]

:Pr[Z<(X—u)/o]:¢<X_M).

g

Pr(a<X§b):Pr[(a—u)/a<Zg(b—u)/a]:¢([?l)—¢(a_u).

g
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Using CDF of Standardized Gaussian R.V.

e Consider that for X ~ N(u,o?) we have
PriIX —p| <ac] =Pr[—ac < X —pu<ac]=Pr|—-a< <a| =Pr[-a<Z <
=®(a) — P(—a) = P(a) — [1 — P(a)] =2¥(a) — 1

where integrals and symmetry ®(—a) = 1 — ®(a) are illustrated in Figure:

X—p

N(0.1) N0, 1) N(0.1)
Mm /\lg ’ X
— ®(a)
- = —Ju — a5 /L‘”—Kfz
@ As an example, note that for X ~ N(u,0?):
0.682, a=1
Prl[—ac < X —p<ac]=2¢(a)—1=¢ 0954, a=2
0.997, a=3.
@ Thus, there's 68% chance (i.e. ~ % = 0.67 probability) r.v. X belongs to [ — o, u + o]; Almost 70% of

the time r.v. X will be within a standard deviation of its mean value.
@ There's a 95% chance r.v. X belongs to [ — 20, i + 20], i.e. it will be within two standard deviations
of its mean value with 95% certainty.
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Exceeding Mean p by Multiples of o

@ Note probability of X exceeding its mean by multiples of the standard deviation:
1 0.1587, a=1

PriX — u > ao] :17¢(a):§{17[2¢(a)71]}: 0.0228, a=2

0.0013, a=3.

@ Thus, exceedance of mean p by o is about ~ 1/6;

exceedance of mean p by 20 is about ~ 1/50;

exceedance of mean p by 30 is about ~ 1/1000;

@ Last two events are quite rare.
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Quiz 4.6

X is the Gaussian (0,1) random variable and Y is the Gaussian (0,2)
random variable. Sketch the PDFs fx(z) and fy(y) on the same axes
and find:

(@) P[-1< X <1],
(b) P[-1 <Y <1],
(c) P[X > 3.5],

(d) P[Y > 3.5].



Delta Functions, and Mixed Random Variables

Delta

Functions, and Mixed Random Variables

So far we've considered only continuous random variables with ranges such that Sx C IR,
and having CDF functions Fx(x) that are continuous.

@ Recall that for such r.v.'s Pr(X = x1) = [ fx(u)du = 0.
x1

Our discussion of discrete r.v.’s on the otherhand focused on r.v.'s with ranges
Sx ={s1,%,53,...} CRR, i.e. consisting of a countable number of elements.

It is desired to consider a mixed / hybrid r.v. that is like both a continuous r.v. and a
discrete r.v., such that for a point x; € Sx it is possible to have nonzero
Pr(X = x1) f fx(u)du > 0 for X defined on an uncountable range Sx C IR.

Such a mixed r.v. is made possible by consideration of the Dirac delta unit impulse function
denoted as 4(x).

The Dirac delta function 6(x) is defined by how it behaves under the integral sign, rather
than the specific values it assume for x € R.

@ Such functions are called generalized function or distribution.
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L Deita Functions and Mised Random Variabies
Delta Functions, and Mixed Random Variables

@ Consider the function da(x) defined as

1 A A
Sa(x)={ A" T25X=32
0, Otherwise

oa(z) o(x)

b=
>3
4
o

o]
o
| ]
o
8

where clearly da(x) has unit area for all A >0, i.e.

o0 1 (% 11° 1.A —-A. A
/_OC(SA(X)dX—A/_édX—AX_ — =1.

. a2 2)7a
2
@ As A — 0, width becomes arbitrarily small while area under the pulse is fiexd to 1.
o The length of interval [_TA, %] i.e. A, approaches zero.

e This assigns a nonzero probability (area) to a single point, i.e. a width zero interval.

@ The limiting form of da(x) as A — 0 is denoted 6(x), and is graphically denoted as in above
Figure where the number in parentheses (-) indicates the area, i.e.

/ d(x)dx = 1.
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Delta Functions, and Mixed Random Variables

Sifting Property of Dirac Delta Function

@ Consider a function g(x) and the area under g(x) - da(x):

/O:o g(x)0alx 77./A 1 -g(0)- A = g(0)
( g(x)

where approximation is similar to that in (2) and exact as A — 0.

]X(O)-A

A

A
2

@ Similarly, for function g(x) the area under g(x) - da(x — xo): T

'»”H/_j—

[e'e] 1 X0+% 1
| etale-xyax= 5 [ axyox~ 5 gl) A= glo)

— 00
where approximation improves as A — 0 for same reasons aforementioned.
@ Thus, we have the sifting property of the Dirac delta function:

o0
/ g(x)5(x — x0) dx = g(x0). (16)
—00

@ i.e. integral of function times a delayed/shifted unit impulse equals function evaluated at delay/shift
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Delta Functions, and Mixed Random Variables

Dirac Delta Relation to Unit Step Function

@ From equation (15) and the figure below it, note that the cumulative integral of function
0a(x) is denoted Ua(x) and illustrated below:

/-J, ‘!M('“)”'“ = Ua(2) [x O(u)du = U(x)
h — A=0

@ Thus, we have the following property that the cumulative integral of the unit impulse
function is the unit step function:

x 1, x>0
/_Oo Ou)du = Ux) = { 0, Otherwise (17)
Extending the fundamental theorem of calculus to “distributions”, one writes
d
o(x) = —U(x).
(x) = 2-U(x)
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Example: Using PDF to Represent a Discrete R.V.

e Consider the PDF fx(x) = 5(x) + 36(x — 1) + 36(x — 2), illustrated below
Fx)= [ fxtwau

— 4

Ix (@)

@ Using (17) the CDF is shown to be
Fx(x) :/ fx(u)du = / 15(u)+%5(u7 1)+%5(u72)du

oo —s0 4
1 1 1 .
= ZU(X) + ZU(X -1+ EU(X —2) (illustrated above)

@ Clearly, unit impulse function provides a way of representing discrete events with nonzero probability
within a continuous domain of infinite possibilities.

@ This example is essentially a discrete r.v. because the range of X is Sx = {0, 1,2} that is clearly finite
in size and therefore countable.

@ This example shows how a discrete r.v. can be represented with a PDF (instead of a PMF).
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Delta Functions, and Mixed Random Variables

Example: Using PDF to Represent a Discrete R.V.

@ The expected value of X is given by

E[X] = /OO X+ fe(x)dx = /OC x- E(s(x) + %5(X— 1)+ %5()( _ 2)} dx

—0o0

1 [ 1 [ 1 [
:Z/ x-6(x)dx+1/ x-6(x—1)dx+§/ x - 0(x — 2) dx
1 1 1 5

where that last equality follows from (16) the sifting property of the unit impulse.

Henry D. Pfister (Duke)

Continuous Random Variables

Lecture 4



Delta Functions, and Mixed Random Variables

Example: Mixed Random Variable

e Consider PDF fx(x) = & - 11_3.11(x) + 36(x — 2), iIIustFra:t>ed below
fx (@) X
=
—3 1 2 T

3 0 1 2 T
@ This represents a mixed r.v. with continuous and discrete random components.
@ Convince yourself that the CDF illustrated above and specified below is correct:

0, x < -3
E(X_'_ 3), —3<x<1 ° .CDF.F)((X) i-s discontTuous
8 in this case, i.e. at x = 2.
1 lex<? @ At points of discontinuity xp
2’ ’ we can define the PDF value as =
1, x> 2.
dF.
fx(xp) = ;((X) = (jump size) - 6(x — xp) + any continuous part (18)
X

X=Xp
o Note that f22 fx(x)dx = % > 0 in this case.
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