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Remarks

@ Up to now we've considered experiment outcomes that can be modeled as a single random
variable, e.g. X, for both discrete and continuous events.

@ Sometimes, experiment outcomes occur in n-tuples, e.g.
@ in pairs such as (X, Y), e.g. two rolls of a die;
@ or in triplets such as (X, Y, Z), e.g. position of ball #11 bouncing in a powerball machine;
@ or in quadruplets such as (X, Y, W, Z2);
@ or in n-dimensions such as (X1, X2, ..., Xxs).

@ We need tools of probability theory to handle such multivariable observations, i.e. it is
desired to extend the concepts of PMF / PDF, CDF, and expectations to multiple random
variables.
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Joint Probability Mass Function (PMF)

@ The joint probability mass function of paired discrete r.v.'s (X, Y) is defined as

Pxy(x,y)=Pr({X=x}n{Y=y})=Pr(X=x,Y =y).

@ r.v.'s are indicated by subscript “X, Y" and hypothetical values dnoted by arguments “x, y".
e Joint PMF specifies the probability of possible values of pairs (X, Y)

@ The range of possible values pairs (X, Y) can assume is denoted Sxv, i.e.
Sx,y = {(x,¥)|Px,y(x,y) > 0}, sometimes called the support of Px y.
@ By the axioms, the total probability of all possible pairs (X, Y) is unity, i.e.
D Pxy(oy)=> > Pxyl(xy)=1
(x,y)ESx,v xESx yE€Sy

and Px y(x,y) > 0 for all (x,y).

@ The joint PMF completely characterizes the probability of pairs (X, Y) including any
relationship, coupling, or statistical dependencies between X and Y.

Henry D. Pfister (Duke) Multiple Random Variables Lecture 5 4 /65



Joint Probability Mass Function (PMF)

Example: Rolling a Pair of Distinguishable “Fair” Four-Sided Dice

@ Let the r.v.'s (X, Y) denote values shown on the pair of dice, where
Sx,y ={(x,y)lx € {1,2,3,4}, y € {1,2,3,4}} and joint PMF Px y:

Pxy(z,y) Pxy(z,y) B
_ Al ek em 0w em _ 4 I
@ K]
;s-;-x-a-sigz .
Sl ek eh b ek 2

1 .H 16 .% .% 1
1 2 3 4 1 2 3 4
& (1st Die) & (1stDie)

@ The probability of an “event” is obtained by summing the probabilities of each outcome belonging to
that event, i.e. event {(X, Y) € B} has probability
PriBl = > Pxy(x)
(x,y)EB

e For example, consider events E; = {X = Y}, E; = {X > Y},
Ez; = {X <2,Y < 2}; from above image on the right it is clear that

Pr(E1) = {5, Pr(E2) = &, and Pr(E3) = {%. (1)

Henry D. Pfister (Duke) Multiple Random Variables Lecture 5

/65



Joint Probability Mass Function (PMF)

Example: Rolling of Pair of Magical Four-Sided Dice

@ Consider rolling a magical pair of four-sided dice whose joint PMF Px y is:

Pxy(z,y) Pxy(z,y) B,
_ 4] % ew _
S 3| % % cw [: 2
2 2 *ho*% % =
1 ‘%o P 0%
1 2 3 4 1 2 3 4

T (1st Die)

& (1stDie)

@ These dice are unfair (i.e., not all outcomes have equal probability) and also dependent!
@ This is an unusual pair of dice since outcomes (1,1),(1,2) and (2,1) are impossible, and rolls where
Y =5 — X are most likely.
@ The same events E; = {X =Y}, B, ={X > Y}, E3 ={X <2,Y <2} now yield
Pr(E1) = &, Pr(E) = %, and Pr(Es) = &. (2)
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Marginal PMFs Obtainable from Joint PMF

@ The previous examples demonstrate that by summing probabilities Px y for all outcomes
corresponding to {X = x} for each x € Sx, and by summing probabilities Px y for all
outcomes corresponding to {Y = y} for each y € Sy it follows that

Px(x) = Z Px.v(x,y), foreach x € Sx
y€ESy

Py(y) = Z Px y(x,y), foreachy € Sy.

x€Sx

@ PMFs Px and Py are sometimes referred to as the marginal PMFs to distinguish them from
the joint PMF Px y.

Henry D. Pfister (Duke) Multiple Random Variables Lecture 5 7/65



Quiz 5.2

The joint PMF Pg «(q,g) for random variables Q and G is given in the
following table:

Ppc(e,9)|g=0 g=1 g=2 g=3
q=20 0.06 0.18 0.24 0.12
¢g=1 | 004 012 0.16 0.08

Calculate the following probabilities:

(@) PlQ =0]
(b) PIQ =¢]
(©) PIG>1]

(d) PIG > Q]



Quiz 5.3

The probability mass function PH,B(hv b) for the two random variables H
and B is given in the following table. Find the marginal PMFs Pg(h) and
Pp(b).
PHB(h,b)\b:O b=2 b=4
h=-1 0 0.4 0.2
1)

h=0 0.1 0 0.1
h=1 0.1 0.1 0




Joint Probability Density Function (PDF)

@ The joint probability density function of paired continuous r.v.'s (X, Y) is a function

fx,v(x, y) defined such that for any subset B C Sx y
Yy

Pri(X,Y) e B] = ﬂ( sy (6 )dxdy 5

x

o Notation: subscript “X, Y" as r.v.’s, and arguments “x, y"” as hypothetical values.

@ The range of possible values pairs (X, Y) can assume is denoted Sx .y, i.e.
Sx,y ={(x,¥)|fx,v(x,y) > 0}, called the support of fx y.
@ By axioms of probability it follows that fx y(x,y) > 0 for all (x,y) and

/ / fx,v(x,y)dxdy = 1.

@ The joint PDF completely characterizes the probability of pairs (X, Y) including any

relationship, coupling, or statistical dependencies between X and Y.
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Joint Probability Density Function (PDF)

@ As an example, if B={(x,y)]a<x < b, c <y <d}ie. set Bis a rectangular region in
the x, y-plane, then

b d
Prla< X <b, c<Y<d)= / / fx,v (x, y)dxdy.
a c
o Consider that
at+dx  pctdy
Prla< X <a+dy, c<Y< c+6y):/ / fx v (x,y)dxdy ~ fx y(a,c) - 0x -6, (3)
a C

where approximation improves as ¢, — 0, , — 0.
o Note 6,6, = (length) x (length) is a differential area.
@ Thus, joint PDF fx y provides a measure of the “probability per unit area.”
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Marginal PDFs Obtainable from Joint PDF

@ Note that for all sets A € Sx and C € Sy:
o0
Pr(X € A) = / / fx,v(x,y)dydx = / fx(x)dx
x€A J —0 xXEA

— 00

Pr(Y € C) :/ / fx,v (x, y)dxdy :/ fv (y)dy
yeC J—o0 yecC

= e [/DO fx,v(x,y)dx — fy(y)} dy=0

—00

@ Since the difference integral equal zero for arbitrary densities fx y, fx, and fy, the
integrands in brackets [-] must be zero, i.e. the marginal PDFs fx and fy are given by

i = [ T hev(ay)dy. Foly) = /OO v ().

— 00
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Example: 2-D Uniform PDF

o Consider paired r.v.'s (X, Y) having joint PDF

fov(xy)={ 7 a<x<b c<y<d (4)
0, Otherwise

Note that 1 = / / fx.y (x,y)dxdy = v = (b—a)d—c)

@ The marginal PDF fx(x) for a < x < b follows from

fx(x) = /OO fx, v (x,y)dy = (1b—a)1(d—c)/cd dy :1 m' [Yﬂ

— 00

= — . d — = —
b-ad—o ¥ 95—
@ The marginal PDF fy(y) for ¢ <y < d follows from

fy(y) = /OC fx v(x,y)dx = m /ab de m . [x|ﬂ

1
“Goae-o Y ae
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Joint Probability Density Function (PDF)

Example: More 2-D Uniform PDF
@ Fora=0,b=1,c=0, and d =1 in the previous example, we get

_[1, 0<x<1, 0<y<1
fx,Y(X,}/){ 0, Otherwise ©

o Consider events £; = {X <3,V >3} E={X> Y}
H _ (! 3y _1
oo bl ()
1 X 1 1
Pr(Eg):Pr(X>Y):/ dx/ dy:/ dx[ym:/(xfO)dx
Jo Jo Jo 0
1,0 1 1

2 2

b\w

Pr(Ey) = Pr(X < %

N
x

0

e Try computing probability for event {X? < Y}, and show that it is %
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Quiz 5.4

The joint probability density function of random variables X and Y is

czy 0<z<1,0<y<2
0 otherwise.

Ixy(zy) = { 1

Find the constant ¢. What is the probability of the event A = X24Y2<
1?7



Joint Cumulative Distribution Function (CDF)

Joint Cumulative Distribution Function (CDF)

@ The joint cumulative distribution function of paired r.v.'s (X, Y) is

Frvl(oy) = PrX<xin{Y <y))
= Pr(X<x,Y<y) /

This definition applies to both discrete and continuous r.v.'s, but results in:

Fx.y(x,y) = Z Z Px.y(a,b) (discrete r.v.)
a€ Sy be Sy :

2Sx, bsy @)
Fx v(x,y) = / / fx,y(u, v)dudv  (continuous r.v.)

@ The following properties of the CDF hold by inspection:
e 0 S FX,y(X7y) S 1, FX,y(O0,00) =1
o Fx(x) =Pr(X <x) = Fx,y(x,00), Fy(y) = Pr(Y < y) = Fx,y(c0,y)
° FX,Y(X7_OO) =0, FX’Y(—OO,_)/) =0
o If x; < x2 and y1 < y», then Fx y(x1,¥1) < Fx,y(x2,y2)
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Joint Cumulative Distribution Function (CDF)

Prixs < X <xo,y1 <Y < y2) = Fx vy (2, ¥2) — Fx,v(x1, 1)
— [Fx,v(x1,y2) — Fx,y(xa, y1)] — [Fx,v(x2, 1) — Fx,v(x1, y1)]
= Fx,vy(x2,y2) + Fx,v(x1, 1) — Fx,v(x1,y2) — Fx,y(x2, y1)

Y Yr Fxy(22.92) - Fxy(21,51)

Y2

Area for
Desired
Region

Fx,y (22, y2)
u
Fx,y(z1,51)

T T & [ o P

o Note: Some probabilities are more easily obtained using the PMF / PDF, rather than the CDF.

@ For continuous r.v.'s the fundamental theorem of calculus says that the joint PDF is given by

X 4 O%F X,
Fx y(x,y) = / / fx,v(u,v)dudv = fx y(x,y) = g;a(ym
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Joint Cumulative Distribution Function (CDF)

Example: 2-D Uniform Distribution

e Example: Let (X, Y) have joint PDF given in (4). The joint CDF follows from

Xy
FX7Y(X7}’):/ / fx,v(u, v)dudv =

@ This simple integration leads to

X Yy
FX,Y(XvY) = / / fX_,Y(X,y)dXdy =

Henry D. Pfister (Duke)

0, x<a ory<c
aal |
dudv, a<x<b, c<y<d
(b—a)(d —c)
1
dud <x<by>d
(b—a(d // udv, a<x<bhb,y
1
dud b, c<y<d
(b—a(d // udv, x>b, c<y<
1, x>b, y>d.
0, x<a ory<c
(x—a)y—9
<x<b <y<d
b—a)d—c) “=X=Dc=V=
X a, a<x<by>d
Y ) X>b’C§)/§d
d—c
17 X>b,y>d.
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Independent Random Variables

@ Recall that events A and B are said to be independent if and only if
Pr(AB) = Pr(A) - Pr(B). (8)

e Recall that Pr(AB) = Pr(.A) Pr(B|A) = Pr(B) Pr(A|B).
@ Thus, if events A, B are independent, then Pr(B|.A) = Pr(B) and Pr(A|B) = Pr(A).

o Consider paired discrete r.v.'s (X, Y) ~ Px y and events A = {X = x} and B={Y =y}.
o If A, BB are independent, then

Pr(AB) = Pr(A)-Pr(B)
Pri{X=x}n{Y =y}) = Pr({X =x}) -Pr({Y =y})
Px,y(x,y) = Px(x)-Py(y)
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Independent Random Variables

@ For continuous r.v.'s (X, Y) ~ fx y and events A= {x | x € A} and B={y | y € B},
o If A, B are independent, then

Pr(AB) = Pr(A)-Pr(B)
Pr({x e A}n{y € B}) Pr({x € A})-Pr({y € B})

v (x, y)dxdy K [ flndy —
x€EA JyeEB XEA yeEB

[fx,v(x,y) = fx(x) - fy(y)] dxdy = 0 =
x€EAJyeB

fx.y(x,y) = fx(x) - fr(y)

@ Thus, paired r.v.'s (X, Y) are said to be independent if and only if

Px v(x,y) = Px(x) - Py(y) (discrete r.v.'s) )
fx,v(x,y) = fx(x) - fy(y)  (continuous r.v.’s)

o To determine if paired r.v.'s (X, Y) are independent one can test if condition (9) holds.
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Example: Roll of Pair of Four-Sided Die

@ Recall this discrete r.v. example discussed earlier that resulted in equations (1) and (2)
and resulted in the corresponding marginal PMFs specified below these equations.

@ The marginal PMFs Px and Py below (1) show that Px(x) - Py(y) = % for all (x,y) € Sx,y.

@ The Figure preceding (1) shows that Px(x) - Py(y) = Px(x,y).
@ Thus, the paired discrete r.v. (X, Y) whose joint PMF resulted in (1) are independent.

e The marginal PMFs Px and Py below (2), however, have a product that is not equal to the

joint PMF illustrated in the Figure preceding (2), i.e. Px(x) - Py(y) # Px,v(x,y).
@ Thus, the paired discrete r.v. (X, Y) whose joint PMF resulted in (2) are not independent.
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Expectation, Mean, Covariance, and Correlation

@ Given paired r.v.'s (X, Y) ~ Px y or fx y the expected value of function g(X,Y) is

Elg(X. V= Y. &lxy) Pxy(xy)

(x,y)ESx,vy
= Z Z g(x,y) - Px y(x,y) (discrete r.v.'s)
xESx yESy
Elg(X,Y)] jf - fx.y(x,y) dx dy
(x,y)ESx,v

/ / - fx,y(x,y) dxdy (continuous r.v.'s)

@ This is an incredibly useful result.
@ Indeed, the average of the r.v. W = g(X, Y) can be determined without knowing PMF
Pw(w) (discrete case), or PDF fy/(w) (continuous case).

Henry D. Pfister (Duke) Multiple Random Variables Lecture 5 19 /65



Expectation: Linear Combination of Functions

@ Given paired r.v.'s (X, Y) ~ Px y (or fx y), the expected value of function
g(X,Y)=ag1(X,Y) + ag(X,Y) + -+ anga(X, Y) is:

E[g(X7 Y)]: Z g(Xv.y)"DXﬂ/(va)

(x,y)ESx,y

= > |a80y) + 2800 ) + o+ angnl(x,y)] - Prov(x.y)
(x,y)ESx,y

—a Y, sly)Pxy(oy)+o+an Y glxy)Pxy(xy)
(x,¥)ESx,v (x,¥)ESx,vy

= a1 E[gi(X, V)] + a2E[g(X, V)] + - + anE[gn(X, Y)]
@ Thus, expected value of linear combinations is a linear combination of the expectations:
E[g(X,Y)] = a1E[g1(X, V)] + -+ + anE[ga(X, Y)] (10)
and the same result holds for continuous r.v.’s via integration.
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Expectation of Sums of Random Variables

@ For any two random variables X and Y we have E[X + Y] = E[X] + E[Y].

e Follows from (10) with g(X,Y)=X+Y,ie.n=2, a1 =1,a =1, g1(X,Y) =X, and

(X, Y)=Y.

o Consider r.v.'s X1, Xo, ..., X

o Let X; =Xy and Y1 = Xo + Xz + - - - + X, then E[X1 + V1] = E[X1] + E[V4], i.e.

E[Xi 4 -+ Xa] = E[X1] + E[Xo + - + Xu].
o Let Xo =Xz and Yo = X3+ X4 + - - - + X, then E[Xo + Yo] = E[Xa] + E[Y2], i.e.
E[X1 4 -+ Xn] = E[X1] + E[X2] + E[X3 + - - - + Xi]
@ And so on ... By induction, it follows that
E[X1 + - + Xo] = E[X1] + E[Xo] + E[Xs] + - - - + E[Xa—1] + E[Xa]. (11)

i.e. the expected value of a sum is the sum of the expected values.
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Recall Previous Families of R.V.

@ Recall the expected values of the Binomial, Pascal, and Erlang models.
@ Binomial (n, p) = sum of n Bernoulli (p) r.v.’s
e Bernoulli (p) r.v. X has mean E[X] = p
e Binomial (n, p) r.v. K has mean E[K] = np
@ Pascal (r, p) = sum of r Geometric (p) r.v.'s
e Geometric (p) r.v. L has mean E[L] =1/p
e Pascal (r,p) r.v. L, has mean E[L,] =r/p
@ Erlang (r, A) = sum of r Exponential () r.v.'s
@ Exponential (A) has mean E[X] =1/
e Erlang (r,\) has mean E[X] =r/A
o Equation (11) can be used to deduce expected value of these r.v.’s
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Expectation, Mean, Covariance, and Correlation

Covariance

@ For any two random variables X and Y the variance of W = X + Y is given by
Var[W] = E[(W — E[W])?]
Var[X + Y] = [ [(X + Y) — (E[X] + E[v])ﬂ
= E [[(X ~ EIX]) + (¥ — E[Y)P?]
= E [(X — E[X])*> +2(X — E[X])(Y — E[Y]) + (Y — E[Y])?]
= Var[X] + 2E[(X — E[X])(Y — E[Y])] + Var[Y], (12)

@ The variance of the sum of two r.v.’s is the sum of the variances plus the cross term
that quantifies the relationship/dependence (or covariance) between X and Y.

@ The covariance between two r.v.'s X and Y is defined as

ox,y = Cov(X,Y) 2 E[(X — E[X])(Y — E[Y])] = E[XY] — E[X] - E[Y].
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Covariance Interpretation

@ Covariance helps quantify the “spread” of pairs (X, Y) around pair (E[X], E[Y]).

If Cov(X,Y) >0 then (X — E[X]) and (Y — E[Y]) have same sign “on average.”
e i.e. (X — E[X]) and (Y — E[Y]) move together more often than not

If Cov(X, Y) < 0 then (X — E[X]) and (Y — E[Y]) have opposite sign “on average.”
e i.e. (X — E[X]) and (Y — E[Y]) move opposed more often than not

o If Cov(X,Y) =0 then (X — E[X]) and (Y — E[Y]) are asynchronous “on average.”
e X and Y are said to be uncorrelated if Cov(X,Y) =0, i.e.

Cov(X,Y) =0 = E[XY] — E[X]- E[Y] =0
— E[XY] = E[X] - E[Y].
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Covariance Properties and Correlation

@ Some useful properties of covariance include:
e Cov[X, X] =Var[X]
Cov[X,aY + b] = E[X(aY + b)] — E[X] - E[aY + b]
E[aXY + bX] — E[X] - (aE[Y] + b)
aE[XY] + bE[X] — aE[X] - E[Y] — bE[X]
= a(E[XY] — E[X] - E[Y]) = aCov(X, Y)
@ Similarly, Cov[X, a1 Y1 + a2 Y2] = a1-Cov[X, Yi] + a2-Cov[X, Y]

@ The correlation between r.v. pair (X, Y) is defined as rx,y = E[XY].
o Note that Cov(X,Y) =rx,y — E[X] - E[Y].
e When X = Y = rx x = E[X?] = Var[X] + E[X]%.
o If rx,y = E[XY] =0 then r.v.'s X and Y are said to be orthogonal.
@ Orthogonality does not imply r.v.'s are uncorrelated.
@ Uncorrelatedness does not imply r.v.'s are orthogonal.

e If X and Y are zero mean then they are orthogonal if and only if uncorrelated.
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Correlation Coefficient

@ The (Pearson) correlation coefficient between r.v. pair (X, Y) is

px,y—EKX_Uf[xU(v—af[v]ﬂ_%_UZX_L. (13)

@ px,y is the correlation between standardized values of X and Y.

@ Note px y is a unitless quantity due to normalization.

@ One can establish that —1 < px y < 1. First, we review:
@ Recall that for two vectors a = (a1, a2,...,an) and b = (b1, b2, ..., by) the dot product is
n

n
a-b=7 aib = |[al| - |Ib]| - cos O, where [[a|* =7 a
i=1

i=1 n
E aib;

. (14)
and —1<cos,,<1=-1< —=L <1,

where cos 0, , = £1 if and only if a = c - b for some c € R, i.e. a linear relationship exists.

@ The last inequality in (14) is called the Cauchy-Schwarz inequality.
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Correlation Coefficient

@ Proof cont.:
o Given paired discrete r.v.’s (X, Y) ~ Px y, consider the choice

axy = (x — E[X]) - v/Px,v(x,¥), by =(y—E[Y]) /Px,y(x,y) =

D axyboy = E{(X — EXX])(Y — E[Y])} = Cov(X, Y),

(x,y)E€Sx,y
S a2, =E{(X-EX])?*}=Var[X], Y. b2, =E{(Y—E[Y])?}=Var[Y]
(x,¥)ESx,y (x,¥)ESx,y
2« 7,V)€5x y 3xybxy Cov(X, Y)

= PX,Y-

\/Z XY)ESX,y Ry Z x,y)ESX,y b2, \/Var[X] -VarlY]
Thus, by (14) we have established |px,y| < 1. K

@ This proof illustrates that expectations can be interpreted geometrically as a type of dot
product (or inner product in general) for random variables.
@ This is a powerful concept used extensively in signal processing.

@ A similar argument can be made for the continuous r.v. case.*

J a(x)b(x)dx <1

V[ a2 (x)dx- [ b2(x)dx

*
A version of the Cauchy-Schwarz inequality for functions a(x) and b(x) of a continuous variable x is —1 <
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Correlation Coefficient

e Consider data samples of r.v. pairs (X}, Y;) ~ fx,y with E[X] = E[Y] =0,
Var[X] =Var[Y] = 1 and cases of px,y plotted (Yates/Goodman p. 188):

2 .-:- :'_. :
ARG .
’yu, KINE
>~ >~ . A >~
O L ESE
VL ek ime .
-2 el
2 0 2 2 0 2
X X
(@) pxy =-0.9 (b) pxy =0 (¢) pxy =09

o Note cases (a) and (c) show a cloud of data points roughly falling on a line.
o Case (a) shows that pxy ¥ -1 = X~ -Y
o Case (c) shows that px y ¥ +1= X~ Y
@ Such paired r.v.'s are said to be highly correlated

e Case (b) for px,y =~ 0 shows no apparent linear relationship between X & Y
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Expectation, Mean, Covariance, and Correlation

Correlation Coefficient and Linear Relationships

o If paired r.v.'s (X, Y) satisfy Y = aX + b for a,b € R, then px y = sign(a):

B Cov[X, aX + b] B aCov[X, X] ~a Var[X]
oy = VVar[X]-Var[aX + b]  /Var[X]- a?Var[X] Ja|  Var[X]
1, a>0 (15)
=sign(a)=< 0, a=0
-1, a<0.

@ Recall that —1 < px y < 1.

o Cauchy-Schwarz inequality (14), and equation (15) above show that to obtain
px,y = %1, a linear relationship between X and Y is necessary.

@ Thus, correlation coefficient px y is a measure of linear relationship.

Lecture 5
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Example: Correlation Coefficient and Nonlinear Relationships

o Let X ~ N(u,0%) and Y = e X + b where b € R is constant.

o Clearly, paired r.v.'s (X, Y) are dependent/related but via a nonlinear relationship.
520’2 .
@ Use the MGF ¢x(s) = E[esX] = e*#*+*% to show the following*

Cov(X,Y) = —o2e#+5 | Var[y] = e 27 (7 — 1) —

Cov(X,Y) -0 oo (16)
V/Var[X] - Var[Y] S Ver o1 ™

XY =

@ This example highlights that correlation is only a measure of linear dependence.
@ Thus, px,y ~ 0 does not mean X and Y unrelated; only that relationship is not linear.

. . d"¢ . ) . .
*Hint: Convince yourself that E[X"e™X] = 357),(,(5) and use this to find desired expectations.
s=a
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Bivariate Gaussian

Bivariate Gaussian Random Variables

@ Recall univariate Gaussian random variable X ~ N(u,0?) has PDF and MGF:

fx( R e o NPT <
x(x) = e 2 e = ¢x(s) (17)

V2mo?

@ The column vector W = [X, Y]7 is a bivariate Gaussian if its joint density is

1
fw(w) = [27Cp |2 exp [—2(w — ) TCH(w — [,Lw):| , where
2 2
% [ oo% oxvy | o% PX,YOXTy
= ,and Cy = = )
Hw { fry } v { oxy oy } { PX,YOXTy oy }

and px = E[X], py = E[Y], 0% = Var[X], 0% = Var[Y], ox,y = Cov(X,Y),

pPXy = % w = [x,y]”, and the support Sw is the entire xy-plane.

* Notation: italics indicate scalars, as in A; lower case boldface indicate column vectors, as in a; upper case boldface
indicate matrices, as in A. Complex conjugation is indicated by a superscript x as in A*. Matrix transpose is indicated by
T\*

a superscript T as in AT, and complex conjugate plus matrix transpose is indicated by a superscript H as in AH = (A")*.
Absolute value of a complex scalar indicated as |A|; and the matrix determinant indicated as |A| and det(A).
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Bivariate Gaussian Random Variables*

@ Intuitive value of expressing bivariate Gaussian PDF as in (18) is its analogous form
to univariate Gaussian PDF in (17) and similar interpretations:
e Parameter vector g1y is mean vector for random vector W = [X, Y]7.
@ Parameter matrix Cyy is covariance matrix of random vector W = [X, Y]7.
@ We denote this distribution as W ~ N(guy, Cyy).

o Note that (18) can be written exclusively in terms of the pair (X, Y) via (x, y).
@ To see this clearly, first recall from linear algebra that
O'%, —O0X,Y j| . 1

—0 o 2 2 2
X, Y X OXx0y —0xy

-1
Also, [27Cyy| = (27)2|Cw|, |27Cy|~1/2 = <27r1 [o% o2 — Ui’y) ,and px y = ;:a: =

|ICw| = UE("%/ — O'i’y, and C;Vl = {

1 _pxy L )
1 2 oxoy - / B
C, = _ g%,V 1 T2 and [27Cyy| 1/2 _ (27r(7xay 1-— pi,y) .

oxoy g—% - pX,Y
. g2 2 - - a2
e Thus, it is seen that 1 (XU;X) 77”’”2;;(3@ “Y)+(—y U;Y)
exp |—%
2 17/)?(,)/
fw(w) = fx,y(x,y) =

2noxoy,/1 — p§<.Y
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Bivariate Gaussian: Vector Interpretations

@ (18) expresses fx,y in vector form and is perhaps more intuitive.
@ Recall from linear algebra that vectors add graphically from head-to-tail. This is illustrated below:

where vector b is redrawn as a dashed-line arrow starting from the head of vector a. The sum vector
a + b is obtained by drawing an arrow from the tail of a to the head of the re-drawn b (this is
illustrated in red).
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Bivariate Gaussian: Vector Interpretations*

@ Regarding (18), note that the argument of the exponential is a quadratic in terms of
the vector w — pyy.

@ This vector difference is illustrated below with head-to-tail addition:

W W — Uw

Hw

o Clearly, the tail of w — py begins at the head of pyy, and the head of w — p\y ends at the head
of w (this is illustrated in red).

o Note graphically the head-to-tail addition is consistent, i.e. gy + (W — pyy) = w.

@ Thus, regarding (18) we should treat gy as the new origin of the coordinate system that
matters here, and view all vectors w relative to pyy via the difference w — oy .
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Bivariate Gaussian: Covariance Eigenvector Decomposition

o Later we will prove covariance matrix Cyy is symmetric, i.e. Cyy = Ca/, and it
is positive definite, i.e. a’Cya > 0 for all 2 x 1 vectors a = [ay, a,]" # 0.
@ Recall from linear algebra such matrices have an eigen-decomposition such that

cW:Q[ Aol ;’2 ]QT, whereQQT:QTQ:[(l) H,andxoo, Ao > 0.

e Matrix Q is orthogonal or orthonormal and rotates/reflects vectors they multiply.

@ The form of Q that rotates vectors by angle 0 is:

o=[ o0 O ] —a 5] =[S e [ S]] )]

e i.e., standard basis e; = [1,0]" ~ [cos(f),sin(0)]"; ex = [0,1]7 — [~ sin(h), cos(6)]”.
@ These rotations are illustrated here: Y

ST () S— ‘
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Bivariate Gaussian: Covariance Eigenvector Decomposition

@ Let wog = w — pyy and note the inverse covariance can be written as
+ 0
Cc, =Q [ )[\)1 1

A2

1
Q7 = - )T CHw - ) = wia |

0
AT QT wo. (19)
0
@ Define the new variables z = Q" wg whose origin is gty in the w plane.
@ Note that

1 1 2 2
L 0 L 0
wlQ| M QTwo=2" | M | |z2=82 42
e e VLIS W

o Contours of constant density given by ellipses in variables z; and z, i.e.
22
1

fw(w) = constant =

% 2
+ = = constant > 0
=7 ( >0)
Henry D. Pfister (Duke)

(20)

which is clearly the equation for an ellipse in [zl,zg]T, whose origin is pyy .

Multiple Random Variables
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Bivariate Gaussian: Change of Variables Interpretation*

o To interpret new variables z, first recall that in the original coordinate system for w that if
coordinates w = [x, y]T, then we interpret this as meaning
W — x- 1 Ly, 0 i.e. each coordinate represents a (21)
o 0 Y 1 |’ coefficient for a basis vector.

e Transformation via multiplication by Q" defines new coordinates z = Q" wg = [z, 2] "
o Let Q = [q1]|q2] where q;, i = 1,2 are column vectors. Since Q is full rank, then for any vector wg —>

wo = a1q1 + axqp where coefficients «; can be found by noting
a/wo=01q] g1 +o2q{ e =011+ 0=an

qywo =010 q1 + 020 G2 =1 -0+ oz - 1 = .

T T

. q; q; Wo a L . _

—0Twn — — — 1

@ Notingz=Q"wp = [T:| wo = {W] = { a }, and recalling interpretation (21), it is clear
that z = [z1, 2] 7 are the coordinates of the new variables, and the basis vectors defining the

coordinates of the new systems are given by q1 and q.
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Bivariate Gaussian: Change of Variables Interpretation*

@ Now, we put these pieces together to visualize the bivariate Gaussian PDF .
e Consider plotting contours of constant density, i.e. set of points with fiy(w) = A.
e By (18) this requires (w — Mw)TC;VI(W — pw) = —2In [|2nCw | /2 - A].
e By (19)—(20) these contours are given by
i .5

L 4+ 2 ="2In [\27rCW|1/2 . A]

AN
SV -7

(22)
i.e. ellipses where the major and minor axes are along the basis vectors q; and qp.
@ Which axes is minor or major depends on the values of A\; and A;.
o Note that the set of all points satisfying (22) can be parameterized as
71 = v/ A1 - cos(¢)
. =
22 = v/ A2 - sin(¢)
VAL cos(@) | vz -sin(@)2  v2A1-cos?(9) | A2hz - sin®(g)
+ = +
A1 A2 A1 A2
=[cos*(9) +sin®(¢)] =7 - 1.

@ An ellipse is obtained as the desired contour by varying ¢ from 0 to 27.
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Bivariate Gaussian: Contours of Constant Density

@ These parameterized points in [z1, 2] for a contour of constant density can be transformed
back into the original coordinates w via:

z=Q7(w—pw) = Qz=QQ" (W - pw) = b(w — pw) =
w = pw + Qz.

@ To demonstrate such contours consider two examples illustrated below:

— A =0.00235

Cw =

7.0000 1.7500
1.7500 7.0000

5.0000 -10.4103
-10.4103 30.0000

> rhoXY =0.2500
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Contours of Constant Density: Example 1

@ The first example in the left image is for a bivariate Gaussian with parameters:

3 5 ~10.4013
Hw = [ 1 ]  Cw = { ~10.4013 30 , where px y = —0.85.

@ Notice that contours of constant density are centered on the mean [3,1]7.

@ The axes of the new coordinate system are indicated by the cross-hair black dash-dot lines.
@ These cross-hairs are colinear with basis vectors q; and qa.

@ The spread of the PDF about these axes is determined by A; and ).

@ Three level density contours are illustrated: one for 0.1, 0.5, and 0.9 times the maximum value the
density assumes (namely, 27rCW|*1/2)_

@ Note that a correlation coefficient of px y = —0.85 suggests a strong linear dependence with points
clustering in the “quadrants” Il and IV. This interpretation is consistent with “quadrants” of the
coordinate axes of the original system when relocated to center on .
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Contours of Constant Density: Example 2

@ The second example in the right image is for a bivariate Gaussian with parameters:

—4 7 175
e { 4 } Cw = [ 175 7 } where px,y = 0.25.

@ The contours of constant density are centered on the mean [—4,4]7.

@ The axes of the new coordinate system are indicated by the cross-hair black dash-dot lines.
@ These cross-hairs are colinear with basis vectors q; and qa.

@ The spread of the PDF about these axes is determined by A; and ).

@ Three level density contours are illustrated: one for 0.1, 0.5, and 0.9 times the maximum value the
density assumes.

@ A correlation coefficient of px y = 0.25 suggests a weak linear dependence with points clustering more
so in the “quadrants” | and Ill. This interpretation is consistent with “quadrants” of the coordinate
axes of the original system when relocated to center on .
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Bivariate Gaussian ~ MGF

MGF of Bivariate Gaussian*

e We want to determine the MGF for W ~ N(gw, Cw). Recall that

1= / fw(w)dw = exp {;(w —pw) CHW — pw) | dw = [27Cw|Y2. (23)
J Sw Sw

@ Interestingly, this integral converges no matter the actual value of fyy.

@ The bivariate MGF for vector W = [X, Y] is defined as

Ox,v (s, 5y) = E{e>* TV} = E{esTw} = ¢w(s)

where the frequency vector s = [s,,s,]".

@ Consider .
ow(s) :/ e® “fw(w)dw = |27rCW|*1/2/ exp[Arg; |dw where,
SW SW
1
Arg, =s’w — > (wiCyiw —w' Cyluw — pl Cpfw + p)y Cf ]
1

=—3 wiCyw —2 (upCyf +s™)w+ ppCrlpw]

—_

=~ (W w =2 (uly +57Cw) Cylw + uly €t ]
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Bivariate Gaussian ~ MGF

MGF of Bivariate Gaussian*

@ Now by completing the square in w we obtain

1
Argy = —= { w — (1w + Cws)) € [w — (w + Cws)]
—(uw + Cws)"Cl (w + Cws) + iy Crlpw } -

@ Thus, integral for MGF can be written as

1 1
dw(s) = [2nCu| /2 exp [zww + Cws) Cy! (w + Cws) - Q%CWWW]

1
X / exp <_2 {[w — (uw + Cws)] T Cyl [w — (pew + ch)]}> dw.
Sw
@ This integral can be evaluated using the integral identity in (23) =

1
dw(s) = |27Cp |~ exp LArgQ} x [2rCw|Y/?, where

Arg, = (uw +Cws)TCy (mw + Cws) — ul, Cil w
plCntow + €t Cws +sTCwCi uw +s"CwCy Cws — pl, Cof
= 28" puw +s"Cys.
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Bivariate Gaussian ~ MGF

MGF of Bivariate Gaussian*

@ Thus, we conclude that the MGF for the bivariate Gaussian is

dw(s) = exp |s" pw + %STCWS for all s € C? (24)

@ The form of ¢w(s) is similar to the univariate MGF in (17), but represents a
bivariate extension.

e We will discover that (24) is the general form of the MGF for a multivariate
Gaussian distribution that we will soon define;

@ namely, when we consider n joint random variables W = [X1, X2, ..., X5]T with mean
vector pyw =[xy, Bxys - -5 ;LXH]T and n X n covariance matrix Cyy, and frequency vector
s=[s1,%,...,5]".
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Bivariate Gaussian ~ MGF

Example: 2-D Uniform PDF

@ Recall joint PDF example in (4) where we showed that the marginal PDFs are
1 a<x<b 1 c<y<d
fi(x) =4 b—a == A(y)=13 d—c “=7Y=
0, Otherwise. 0, Otherwise.

From this, we also know that the product is fx(x) - fx,y(x, y)

e If pair of r.v.'s (X, Y) are independent, then they are uncorrelated:
Exvl= [ [ o tertenddr= [ [ ) ey

= [ xentodee [y fdy = EX-EDY]

— 00

— Cov(X, Y) = E[XY] — E[X] - E[Y] = 0.

e If pair of r.v.'s (X, Y) are uncorrelated, then they are not necessarily independent.

@ Such was illustrated in the example of equation (16).
@ Independence is a much stronger statement than uncorrelatedness.
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Bivariate Gaussian ~ MGF

Sums of Independent Random Variables

@ If pair of r.v.'s (X, Y) are independent, then Cov(X, Y) = 0 and by (12) it follows:

Var[X + Y] = Var[X] + Var[Y]. (25)
e Consider n independent r.v.'s X1, Xo,..., Xs. By (25) we can establish
Var[X1 + X2 + - - + Xp] = Var[Xi] + Var[Xa] + - - - + Var[X,_1] + Var[X;] (26)

i.e. the variance of a sum of independent r.v.’s is the sum of the variances.

e If rv.'s X and Y are independent, then given functions g(X) and g(Y) =

Elg(X / / “fx,v(x,y) dx dy

/ / ) fx (x)fr () dx dy

SR CN: ()dx/_ooq(y)~fy<y)dy
~ Elg00)] - Ela(Y)] @)
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Bivariate Gaussian ~ MGF

Sums of Independent Random Variables
o Consider W = X + Y where r.v. pair (X, Y) ~ fxy = fx - fy.
e The MGF for W follows from
Pw(s) = E[eV] = E[esX )] = E[eX - e*] = E[eX] - E[e*Y] = ¢x(s) - dv (s)

:/j; fx(x)esxdx-/oo fY(y)eSydy:/; fX(X)dX/ fy (y)eS0) dy,

where the fourth equality follows from (27), i.e. independence between X and Y;

@ Change variables from y to w = x + y for fixed x; thus, dy = dw, y = w — x =

ow(s) = /jo fx(x) d></o:O fy(w — x)e™" dw

L st [ e o

@ Since the Laplace transform is unique, fiy(w) is equal to integrand in brackets [-].

@ Thus, PDF of sum of two independent r.v.'s is given by convolution of their PDFs:

o (w) = /jo F () fy (w — x) dx.

e Try finding fiy when X ~ boxx(0,1), Y ~ boxx(0,1), i.e. both uniform on [0, 1] and independent.
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Conditioning on Discrete Random Variables

o Conditional probabilities naturally update a model based on new information.

@ Conditional probability of event A given that B has occurred is

Pr(ANB)
Pr(B)

Pr(AN B) = Pr(B) Pr(A|B). (29)

Pr(A|B) = , for Pr(B) # 0. (28)

@ It follows that

@ Given discrete r.v. X and event B C Sx with Pr(B) > 0, one gets a conditional PMF:
o Consider event A = {X = x}; by (28) it follows that
Px(x)

, eB
Pr(B)
0, Otherwise

PX|B(X) = Pr(X :X‘B) — PI’({X :X}m{X c B}) _ {

Pr(B)

o Notational convention for a conditional PMF given event B is Px |z
o Note that updated model satisfies all axioms, e.g. >, cs Pxs(x) = 1.
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Conditioning on Multiple Discrete Random Variables*

@ The conditional expectation of function g(X) given event B can be defined as

E[g(X)I1B] = ) g(x) - Pxi5(x)- (30)

XESx

i.e. the same as unconditional definition, but using conditional PMF.

@ This idea extends to paired r.v. (X, Y) ~ Px y by choosing the event A ={X =x,Y =y}
e Conditional joint PMF is also obtained using (28):

Prvis(oy) = Pr(X = x, Y = y|B) = X =xY zﬁ; tey) € BY)

{ PX,Y(Xv.y) (X y) enB (31)

Pr(B)
0, Otherwise

e Conditional expectation of function g(X, Y’) given event 3 defined as

Elg(X, Y)|B] = Z g(x,y) - Px,yi8(x;y)-
(x,y)€Sx,y
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Example: Uniform PMF

o Consider a discrete r.v. X ~ Px(x) such that

! 1,2,3,...,10 o
—, x=12,3,..., 000 eee
Px(x) = 10
0,  Otherwise. R B B et
and consider events A = {X = x} and B = {|X — 4| < 2}.
o Note that Pr(A) = Px(x) and Pr(B) =Pr(2< X <6) =3, 53456 Px(x) = %
@ The conditional probability of event A given event B is
Pr(ANB)
Pr(B)
Pr({X = x} n{|X — 4/ < 2})
PriX —4<2)

Pr(A|B)

Pr(X:XHX—4|§2) =

P 1 1 Px|(z)
P = X(X):%:f’ 2sx<6 ;o000
x|g(x) = Pr(B) 5 5 5
0, Otherwise 01234567
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Example: Uniform PMF Cont.

@ The conditional expectation of X, X2 and its variance given B:

1 20
E[X|B] = ZX'PX|B(X):(2+3+4+5+6)-—:7:4
XESx 5 5
1
E[X2‘B] = Z X2 . PX\B(X) = (22 +32 +42 +52 +62) R @ — 18
XESx 5 5
Var(X|B] = 3 (x — EIX|B])? - Pxys(x) = E[X2|B] — E[X|B]? = 9(’5;80 _ % —2.

XESx
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Example: Rolling a Pair of Four-Sided Dice

@ Recall this discrete r.v. example discussed earlier that resulted in equation (1).
e Consider events A={(X =x)N(Y =y)}and B=E, ={X > Y}
e Conditional probablity of event A given event B follows from (31):

Pr(ANB)
Pr(B)
Pri{X=x,Y=y}n{X>Y})
Pr(X>Y'  © Peyip(ay)

Pr(A|B) =

PriX=x,Y=y|X>Y)

- 4
PXY(X’y)_i:l (x.y) € E 23 ;
Pxvie(xy)=4 Pr(E) ~— &6 i, R
0, Otherwise = o
1 2 3 4
@ The marginal PMFs easily follow: & (astpie foll)
° Pxig(x) =3 es, Pxvig(x,y) = (%, %, %) for x = 2,3, 4 respectively; otherwise Px|g,(x) = 0.
° Pyg(y)= ersx Px v|5(x,y) = (%, %, %) for y = 1,2,3 respectively; otherwise Py g,(y) = 0.
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Example: Rolling a Pair of Four-Sided Dice Cont.

o Conditional expectations can be determined by using the conditional PMFs:

1 2 3 246412 20 10
EX|E] = ZX'PX\EZ(X):z'*+3'*+4-f:i:—:

€s 6 6 6 6 6 3
XCox
3 2 1 3+4+3 10 5
EIYIE]= Y y-Prial) =1 2+2 543 ¢ = ———="F=2
" 1 35
EXY|E]= X Pxyig(xy) =(2+3+4+6+8+12). = =
(x,y)ESx, v

and the conditional covariance follows from

35 50 105-100 5
CovlX, Y|E] = EIXY|E] — EIX|E] - E[Y|E] = 5 — 5 = — 15— =15
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Conditioning on Continuous Random Variables

@ Given continuous r.v. X and event B C R with Pr(B) > 0, one gets a conditional PDF:
o Consider event A = {x < X < x + §}; by (28) it follows that

fx(x) -8
P <X < irnB _—
Pr(x < X < x 4 6|8) = r(fx <X <x+8}NB) Pr(B) x€B
Pr(B) 0, Otherwise
Thus, it follows that the conditional PDF given event B is
fx (x)
, x€B
fxis(x) =141 Pr(B)
0, Otherwise

@ Notational convention for a conditional PDF given event B is fx|s.

o Note that updated model satisfies all axioms, e.g. [77_ fxp(x)dx = 1.

@ The conditional expectation of function g(X) given event B can be defined as

o0

Ee(IBI = [ g)- fas(x)d ()

— 00
@ Same as unconditional definition, but using conditional PDF
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Example: Exponential PDF

e Consider r.v. X ~ fx(x) =2e7%*, x > 0, and conditioning event B = {X > 1}.

oo —c0 _2
Pr(B) = / ., fx(x)dx = /1 2e Xdx = 2/2 e“% = / e'du = e“|:io =e?
xXe — — 0o

where third equality uses change of variables u = —2x, du = —2dx. Thus,
() 2-2
x € B e X x>1
0, Otherwise 0, Otherwise.

@ The conditional mean of X given event {X > 1} can now be determined:
oo o0
E[X|B] :/ x-fX|B(x)dX:2e2/ x- e Xdx
oo 1
° >® -1 1 1
— / —e_2xdx:| =2¢? |:7e_2 + 7e_2:| 3
1 J1 2 2 4

_Tlefzx, du = dx.

— 22 ;Xe—Zx
2

where we use integration by parts with u = x, dv = e~ ?¥dx, v =
Multiple Random Variables Lecture 5 55 /65
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Conditioning on Multiple Continuous Random Variables*
@ Given cont. r.v.'s (X, Y) and B C Sx y with Pr(B) > 0, define a conditional joint PDF:
o Consider event A = {x < X < x+dx,y <Y <y—+6,}; by (28) we have

P <X< é <Y< Sy}NB
Pr(x < X < x4,y <Y <y 4 o8 = TXEXEXE0y SV 2y 40} 0F)

Pr(B)
fX Y(Xv.y) ° 6)(6)/
’77 , c B
= Pr(B) (.y)
0, Otherwise
Thus, it follows that the conditional joint PDF given event B is
fx,v(x,y)
———= (x,y)E€B
fx,via(x,y) = Pr(B) (x¥)
0, Otherwise

e Notational convention for a conditional PDF given event B is fx y|5
o Updated model satisfies all axioms, e.g. [*0_ [ fx yip(x,y)dxdy = 1.
@ The conditional expectation of function g(X, Y) given event B can be defined as

Elg(X.Y)|B] = / / ) Fryis(x, y)dxdy.

@ Same as unconditional definition, but using conditional PDF
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Example: 2-D Uniform Joint PDF

@ Recall 2-D uniform r.v. described in (5), and consider finding for event
E> = {X > Y} the conditional joint PDF fx y|g,(x).

fX,Y(Xﬂy)
fX,Y|E2(Xay) = Pr(E2) ’

(x,y) € B _{ 2, 0<y<x<1
0, Otherwise

0, Otherwise
where Pr(E;) was calculated in (6).
@ The conditional marginal PDFs given E; are obtained as

o 2/d:2x, 0<x<1
x5 (%) :/ x,v16 (%, y)dy—{ 4 =0 =

0, Otherwise
e dx =2(1 — 0<y<1
fy15,(y) = / fx,v|E (X, y)dx = /y (1=y), Osys
B Otherwise
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- QCdoie__________________________
Example: 2-D Uniform Joint PDF Cont.

o Conditional expectations given E; follow as
1

> ! x3 2
EX|E)] = / x - fx|g, (x)dx :/ X 2xdx = 2—| = =.
-0 0 3lp 3
o 1 1
E[Y|E] = / y-fwa(y)dy:/o y-2(1—y)dy:2/o (y — y*)dy
(VN[ (1) _2_1
2 3)|, "\2 3] 6 3

e’} e’} 1 X
E[XY|E] / / xy-fX,y‘Ez(x,y)dxdy:/ dx/ dy - xy -2

—00 J -0 0 0

1 2 X 1 1

= / 2xdx - A :/ x3dx = X—4 —1.
0 2 0 0 41, 4
@ The conditional covariance follows from
Cov[X, Y|E:] = EXY|E)] - EIX|E] E[Y|E] = - — 2 =28 _ 1
4 9 36 36
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Conditioning on a Discrete Random Variable

e Consider discrete paired r.v.'s (X, Y) ~ Px y(x,y) and the events

o A={X=x} and B={Y =y} where (x,y) € Sx,vy
_ _ _ oy PrliX=xpn{Y =y})
PrAIB) = Pr({X = x} [ {¥ = y}) = AT

PrX=xY=y) _ {Px,sjﬁj;”, (x,y) € Sx.v

Pr(Y =y) 0, Otherwise.
@ Thus, the conditional PMF of X given event Y = y is

Px,y(x,y)
2 (x,y)ES

Pxiy(xly) = Py(y) bey) € Sxy
0, Otherwise.

e Similarly, the conditional PMF of Y given event X = x is

Px.v(x.y)
X) X,y 6SX,Y
Pylx(Y|X)={ Ao bey)

0, Otherwise.
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Example 7.15 Problem

Y

Px y(z,y)

R

Q= ol

Random variables X and Y have the joint PMF
Px y(x,y), as given in Example 7.11 and repeated
in the accompanying graph. Find the conditional
PMF of Y given X = z for each z € Sx.



Conditioning on a Continuous Random Variable

o Consider continuous paired r.v.'s (X, Y) ~ fx y(x,y) and the events
o A={x<X<x+d}and B={y <Y <y+dy} where (x,y) € Sx,y

Pr(ANB
CPr({Ix <X <x+65N{y <Y <y+4,}) Prix<X<x+6,y<Y<y+4§))

Pry <Y <y+34,) Priy <Y <y+3$,)

_ %);.)gjxéyv (X7y)ESX,Y _ %'6)(7 (X7y)ESX,Y
0, Otherwise 0, Otherwise.

=Pr({x <X <x+4} [{y <Y <y+4,})

@ Thus, the conditional PDF of X given event Y =y is

fx.v(x,y)

77) X, €S ,
() =4 Ry 0 V) ESxy

0, Otherwise.
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Conditioning on a Continuous Random Variable*

o Similarly, the conditional PDF of Y given event X = x is
fX Y(Xa.y)
777 X, € S s
fxrb) =4 G o DoY) €8xy
0, Otherwise.

e Example: (Prob. 7.4.6. Yates/Goodman) Consider (X, Y) ~ fx y(x,y) where

4x 42y
<x<1 <y<l1
fx,y(x,y):{ 3 0sxsbhO0sys

0, otherwise.

Determine fy|x(y|x) and E[Y|X].
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Some Useful Relationships for PMFs and PDFs

@ Recall that the chain rule says Pr(AB) = Pr(A) Pr(B|.A) for events A, B.

@ For a joint PMF or PDF, the chain rule implies that:

Px.v(x,y) = Px(x)Pyx(yIx) = Py(y)Px v (x]y),
fx.v(x,y) = tx(X)fyx(y[x) = fy (¥) fx v (x]y),

that follow from the definitions of conditional PMFs and PDFs.

e Comparing these to (9), it follows that if X and Y are independent if and only if

Py ix(y|x) = Py(y), Pxjy(xly) = Px(x) (discrete r.v.'s)
fyix(vlx) = fy(y),  fxv(xly) = fx(x)  (continuous r.v.’s)
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Expectations Conditioned on a Random Variable
e From (30) and (32) with B = {Y = y}, the conditional mean of g(X,Y) given Y =y is

oo

Elg(X, V)Y =yl = > g(x.y)Pxy(xly). Elg(X, Y)Y =y]= / g(x, ¥)fx v (x]y)dx

XESx —00
o Note that if g(x,y) = x, then

EXIY =y = 3 x- Pay(ly)s EXIY =31 = [ x- iy (xly)as,
XESx -

@ Similarly, for B = {X = x} that the conditional mean g(X,Y) given X = x is

Elg(X, V)X =x]= 3 g(x,y)Pyix(vIx), Elg(X,Y)|X = x] = / g(x, y)fyix(ylx)dy  (33)
y€ESy e
o Note that if g(x,y) =y, then
EYIX=x= 3y Puxrlx),  EVIX=xi= [ Ty Al dy.

yESy

e Note E[g(X, Y)|X = x] is a function of x;  E[g(X, Y)|Y = y] is a function of y.
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Chain Rule of Expectation / Law of Total Expectation

@ For continuous r.v.'s the expectation of a function g(X, Y) can be written

Elg(X,Y)] —/ / (x,¥)fx v(x,y)dxdy = / / (%, y) fx (x) fy x (y|x) dxdy

- RS [ I i (X./y)fyx(mdy} o= [  KGOELB(X. V)X = xJdx

and for discrete r.v.'s we have

E[gXY]—ZZ (x,¥)Px v(x,y) = ZZ (x,y)Px(x PY|X()’|X)

xESx yESy xESx yESy
-y Px(x>{ S g(x,y)Pyix y|x} S Pe(x)Elg(X, V)X = A
x€Sx y€ESy XESx

@ Both expression demonstrate that in general that

Elg(X, Y)] = E[E[g(X, V)IXII; Elg(X, Y)] = E[E[g(X, Y)[Y]].
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