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Remarks

@ So far we've considered probability models that allow us to characterize one or two
(i.e. a pair of) random variables, e.g. the pair (X, Y).

@ We now consider probability theory to handle multivariable observations for more
than two random variables, e.g. a random vector X = [Xi, Xz, ..., X;]” of n
variables.

@ The theory presented will be seen to be straightforward extensions of ideas we've
already developed for joint PMFs, PDFs, and CDFs.
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Multivariate Joint PMF, CDF, and PDF

@ The joint PMF for a set of n discrete random variables represented collectively as
the vector X = [Xi, Xa,..., X,]" is defined as

Pr(X1 :Xl,X2 :XQ,...7Xn:Xn) = PXl’sz_7X"(X17X2,...,Xn)
Pr(X=x) = Px(x),
and the probability of event B C R" in the support of Px, i.e. Sx, is given by
Pr(B) = Z P, X, Xo (X1, X2, -+ Xn) :ZP)((X).
(x1,%2,-- -, xp)EB xEB

@ The joint PDF for a set of n continuous random variables represented collectively
as the vector X = [X1, X, .. ., Xn]T is a function fx, x,,....x,(X1, X2, . .., Xn) = fx(x)
defined such that for any subset B C RV in Sx the support fx we have

Pr(B) = /// Xy X, X0 (X1, X2, o oy Xn)dX1dXa - - - dXp

(x1,X2,...,Xn)EB
)dx

fx(X

xEB

o Note that the probability of event B is given by the n-dimensional volume
contained under the density in set B.

Christ D. Richmond (Duke) Random Vectors and Multivariate Probability October 3, 2024



Multivariate Joint PMF, CDF, and PDF

Multivariate Joint PMF, CDF, and PDF Cont.

@ The joint CDF for a set of n random variables represented collectively as the
vector X = [Xi, Xz, ... ,X,,]T is defined as

Pr(Xi < xi, X0 < xo,..., X0 < xn) = Fx;,%,...%(X1,%2, ..., Xn) (1)
Pr(X<x) = Fx(x).

@ It is noteworthy that (1) is the definition of the CDF whether any, or all of
the X; are discrete, continuous, or even mixed/hybrid.

@ If X; are all continuous random variables, then

X1 Xo Xn
Fxi X, 5, (X1, X250y Xn) = / / / X, %,...x, (a1, @2, . .., ap)darday - - - dap,
— 00 — 00 — 00

and by the fundamental theorem of calculus we know

n
e x X (Xl X0 Xn) _ 0 FX17X27~~7Xn(X17X27 s aX")
DA An A e Ox10x2 - - - Oxp

@ By the axioms of probability we obtain for discrete r.v.'s
Q Pxix,. x(x1,%2, ..., %) = Px(x) >0,

9 > > Y Pl x) =D Px(x) =1

x1 ESx; X2 €Sx, xn€Sx,, xESx
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Multivariate Joint PMF, CDF, and PDF Cont.

@ By the axioms of probability we obtain for continous r.v.'s:

Q 4. %..x(x,%,...,x) = fx(x) > 0,
(oo} [e o] oo
e thxzwwxn(al,az,...,an)da1d32~'dan = fx(X)dX: 1.
—o00 J —oo — 00 x€E Sx
@ For variables X = [X1, Xz, ..., Xa]7, if we choose any partition such that
Xi = [Xy, Xs, .-, Xip] T and Xg = [Xini1s Xinsos - - > Xi]T where each
ik € {1,2,...,n} is unique, then the marginals can be obtained via
Px,(x1) = D Pryxa(x1,%2), i (x1) :/ Fr1 o (X1, X2) dx2
X2 €5x, x2€5x,

for discrete and continuous r.v.'s respectively where it is implicit that Px = Px, x,
and fx = fx, x,, i.e. the concatenation of X; and X, constitutes the same set of
random variables present in X.

@ As an example, if X = [W, X, Y, Z]T, then some marginals are given by

Px,v.z(x,y,z) = Z Pwxy.z(w,x,y,2), Pwz(w,z)= Z Z Pw.x,v,z(w,x,y, 2)
weSy XESx yESy
for discrete r.v.'s; and
fxv,z(x,y,z) = / fwx,v,z(w,x,y,z)dw, fw z(w,z)= / X/fWX v,z(w, x,y, z)dxdy.
wESy cSx/yeSy
for continuous r.v.’s.

Christ D. Richmond (Duke) Random Vectors and Multivariate Probability October 3, 2024



Multivariate Joint PMF, CDF, and PDF Cont.

@ Consider the pair of random vectors X and Y where X = [X1, Xa, . .. ,Xn]T and
Y =[Yy,Ys..., Ym]T and note the following:

@ The joint PMF of X and Y is given by

Px.y(X,¥) = PXy X X Y1, Yoo Yoo (XL, X250 Xy Y1, Y2, - o Yim)-
@ The joint PDF of X and Y is given by

Y (X, Y) = F1, X, X0, Y1, Yoo, Yo (XL X2, + ooy Xy Y1, Y2y e e vy Yim)-
@ The joint CDF of X and Y is given by

Fx,y (%, ) = Fxq,%, 0, X0, Y1, Yoy, Yo (X1, X2, + + o5 Xy Y1, Y255 Yim)-
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Independence of Random Variables

@ Random variables Xi, Xz, ..., X, are said to be independent if
Pxy Xo .o %o (X1, X2y« o, Xn) = Pxy(x1) © Px, (x2) - - - Px, (xn)
B0 Xo o X (XL X2, -y Xn) = Fx (x1) - By (X2) - - - Fx, (Xn)

for all x1,x2, ..., xn, for discrete r.v.'s and continuous r.v.’s respectively.
@ Random variables Xi, Xz, ..., X, are said to be independent identically distributed
(i.i.d.) if
Px, X, ... %0 (X1, X2, .. ., Xa) = Px(x1) - Px(x2) - - - Px(xn)
XX, X0 (X1 X2y - ooy Xn) = Fx(x1) - Fx(x2) -+ - Fx(xn)
for all x1, x2, ..., xs, for discrete r.v.'s and continuous r.v.’s respectively.
o Note that Px, = Px for all Xi, i =1,2,...,n for the discrete r.v.’s.
o Note that fx, = fx for all Xi, i =1,2,...,n for the continuous r.v.'s.
@ A pair of random vectors X and Y is said to be independent if

Pxy(x,y) = Px(x) - Pv(y), fxy(x,y) = fx(x) -~ (y),
for discrete r.v.’s and continuous r.v.'s respectively.

@ Quiz 5.10 Yates/Goodman

@ To be discussed in class
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Quiz 5.10

The random variables Yi,...,Y, have the joint PDF

4 0<y1<y2<1,0<y3<ys <1,
0 otherwise.

v vais - ya) = { (1)

Let C denote the event that max; ¥; < 1/2. Find P[C].



Mean of Scalar Valued Function

Mean of Scalar Valued Function

@ We can define scalar valued functions of multiple random variables, i.e. functions
of vectors, as g(X1, Xz, ..., Xs) = g(X).
@ Because g(X) is a function of random variables, it is itself a random variable.
@ An example of such a function is g(X) = a'X=aiXi+aX+ -+ anXs.
@ The random variable g(X) has expected value defined as

E{g(X)} = Z Z Z g(x1,x2, ..., %) Px(x1, X2, ..., Xn) = Zg(x)Px(x).

X1 €5x; X2 €Sx, Xn€Sx, X€E Sx

E{g(x)} = / / g(X17X27~--,Xn)fX(Xl,Xz,.,.,Xn)dxldX2~~~dX,,
x1€5x; / x2€5x, Xn€S5x,,

= / g(x)x(x)dx for discrete r.v.'s and continuous r.v.’s respectively.
XESx

o Of course, there is an alternative way to find E{g(X)}.
o If we let W = g(X) and we can find its PDF fiw(w) (or PMF Py /(w)), then
note that
/ w - fw(w)dw, (continuous r.v.)
wESy

Ee() = EW) = 3, 4 )

(discrete r.v.).
wESy
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Mean of Scalar Valued Function

Mean of Scalar Valued Function Cont.

@ If g(X) = g1(X1)&2(X2) - - - gn(Xn) and X1, X, ..., X, are independent continuous
r.v.'s, then

/ (x) & (x)dx

= / 81 X1)g2 X2 n(Xn)le (Xl)fX2 (Xz) ce fxn(Xn)Xmdxz e dXp
)<1€SX )QESXZ X

2€5x,

Elg(X)]

130 e (1) / 2(x2) ey () -+ / (0 ey (30 e

x1E€Sx X2 €Sy, ”ESX,,

= E[s(X)]- E[ga(X2)] - - - E[gn(Xn)].
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Expected Value of a Vector and Matrix

@ The expected value of the random vector X = [Xi, Xz, .. ., Xn]T is the vector of
expected values: N
E[X] = [E[X1]7 E[XQ]v (R E[X"]]T = HKx-

@ Expectation is a linear operator. Note that for g(X) = a’X

Elg(X)] = E[a’X]
= ElaXi+ aXo+ -+ anXn] = a1E[X1] + &2E[X2] + - - - + anE[X)]
= aipx, + apx, + -+ anpx,
= a'puy.
@ Similarly, if Ay, = [a1]az]- - |an], then n x 1 vector AT X has rows a/ X and mean
vector

E[ATX] = [E[aIXL E[a;—XL o E[aIZ—X”T = [airl'l/Xv ag-ll/Xa AR al;rll’X]T = AT/’LX'

@ The expected value of a random n x m matrix G is the matrix of expected values:

G1,1 G1,2 . G1,m E[Gl,l] E[Gl,z] - E[Gl,m]

Gi Gop ... Gom E[Go1] E[Gaz] ... E[Ganm]
G= . . : = E[G] = . . . :

Ghi Gno ... Gom E[Gn1] E[Gn2] ... E[Gnm]
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Mean Vector and Covariance/Correlation Matrix

Expected Value of a Vector and Matrix Cont.

@ Recall that for a matrix transpose [G”]ix = [G].;.
@ By the above definition it follows that

E[Gia] E[Ga] ... E[Gni]
_ E[Gia] E[Goa] ... E[Gna] )
BT =| P T e (5)
E[Gim] E[Gom] ... E[Grnml

an m X n matrix.

@ This shows that the expected value of the transpose of a matrix is the
transpose of the expected value of said matrix.
@ Consider the random n x n matrix G and note for vector a = [a1,a2,...,as]" that

a'Ga= Z Z aiax - Gix. Similarly, by (4) we have a’ E[G]a = Z Z aiay - E[Gix].
i=1 k=1 i=1 k=1
Thus, by linearity of expectation we see that

a' E[Gla = E[a’ Ga]. (6)
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Mean Vector and Covariance/Correlation Matrix

Correlation Matrix

@ The correlation matrix of a random vector X = [Xi, Xa, . .. ,X,,]T is defined as
n X n matrix

EXuxi] EXX] ... E[XuXo]
EPeX] EDGXa] ... E[XeX.]

Rx = E[XX'] = : : : : (7)
EXoX] EPXoXo] ... E[XaXo]

Note (7) is obtained with G = XX in (4), i.e. where [G]; x = Gjx = XiXx.
It follows from definition of expected value for a matrix.
[Rx]i« is the correlation between the pair of random variables X; and Xx.

Rx is sometimes called the autocorrelation matrix, since the correlation of X
with itself is being determined.
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Correlation Matrix Cont.

@ Properties of a correlation matrix include:
@ Symmetric, i.e. Rx = RY.
e This follows from Ry = (E[XX"])" = E[(XX")"] = E[(X")"(X)"]
= E[XX"] = Rx where we've used (5).
@ Positive semi-definite, i.e. a’ Rxa > 0 for all vectors a € R", a #0.
o Note a’Rxa=a' E[XX']a= E[a’XX"a] = E[(a” X)?] by (6).
o Let W =a'X, a real scalar random variable, and note that

/ w’fw(w)dw >0, (continuous r.v.)
s

E[(a"X)?] = E[W?] = WW2PW(W) >0 (discrete r.v.)

Sw

since sum of real non-negative terms yields a non-negative real number.
@ Eigenvalues are real and non-negative, i.e. Aj(Rx) > 0.
o If q; is an eigenvector, then Rxq; = \iq;.
a/Rxai _ a/qi\

laill2 el
@ Thus, by same arguments in (ii), it follows that \; is real and \; > 0.

o Let a=q;/||q:|| in (ii) above; note a’ Rxa =

i
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Mean Vector and Covariance/Correlation Matrix

Covariance Matrix

@ Properties of a correlation matrix cont.:

@ Eigenvectors are orthonormal, i.e. Rx = QAQ7 where
A = diag(A1, X2, .-, An), Q = [Q1]az] - - - [qn] with' @/ qx = i x.
@ The proof of this is involved. See Chapter 8 in [4] for details.

@ The covariance matrix of a random vector X = [X1, Xz, ..
n X n matrix

Cx = E[(X — px)(X — px) "] =

EI(G — 1x )% — )] EI(X — i) (X2 — )] - E[(X = jax, )Xo — pix,)]
E[(X2 — ) (X1 — px)] - E[(X2 — ) (X2 — )] oo E[(X2 — o ) (Xn — pix,)]
EI(Xn — 1x,) (%1 — )] ELXn — 1) (X = )] oo EL(Xn — 11, ) (X — p1x,)]

@ The covariance matrix can also be expressed as

Cx =

E[(X — py)(X — puy) '] = E[XXT — Xpayg — py X + py pix |
E[XXT] — E[Xpx] — E[puxX"] + E[pypix]

E[XXT] — E[X]px — pxEIXT] + pxpx

Rx — pxbix — Bxix + HxHx

Rx — pixpx -

1 . . .
d; k is the discrete delta function defined to equal 1 when i = k and 0 when i # k.

., Xa]" is defined as

(®)

(9)
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Covariance Matrix Cont.

This n X n matrix is the multivariate generalization of the univariate

Var[X] = E[X?] — E?[X] and bivariate Cov[X;, Xi] = E[XiXk] — E[Xi|E[Xk].
Clearly, [Cx],',,' = Var[X,-] = Uif, and [CX]i,k = COV[X;,Xk] = 0X;,X-

Cx is sometimes called the autocovariance matrix, since the covariance of X with
itself is being determined.

@ Note from (9) that Rx = Cx + piyptx, and if E[X] = uy = 0, then Rx = Cx.

@ Properties of the covariance matrix are the same as the correlation matrix:

@ Symmetric, i.e. Cx = Cy.
@ Positive semi-definite, i.e. a’ Cxa > 0 for all vectors a € R", a #0.
@ Eigenvalues are real and non-negative, i.e. 5\,-(Cx) > 0.
@ Eigenvectors are orthonormal, i.e. Cx = QAQ” where
A = diag(A1, Ao, ... M), Q = [@1]62] - - - |Gn] with @/ Gk = dix.
Note vector Xo = X — puy has correlation matrix

Rx, = E[XoXJ] = E[(X — px)(X — )] = Cx.
@ Thus, a covariance matrix is a special case of a correlation matrix, i.e. a

covariance matrix is the correlation matrix for centered variables (i.e. having
zero mean).
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Mean Vector and Covariance/Correlation Matrix

Cross Correlation Matrix

@ The cross correlation matrix between vectors X = [Xi, Xo, . . ., Xn]T and
Y =[Y1,Ys,..., Yn]" is defined as the n x m matrix

Epavi] EXYs] ... E[XYal
EPevi] EDYs] ... E[XeYal

Rxy = EIXY'] = : : : : (10)
EX.Yi] EPXoYs] ... E[XoYn]

o Note (10) is obtained with G = XY in (4), i.e. where [G]; x = Gix = X Yx.
o It follows from definition of expected value for a matrix.
@ [Rxv]i« is the correlation between the pair of random variables X; and Y.

@ Note that Ryx = Ry, i.e. E[YX"] = E[(XY")"] = (E[XYT])" where (5) is used.
@ Note also if Y = X, then Rxx = Rx.
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Mean Vector and Covariance/Correlation Matrix

Cross Covariance Matrix

@ The cross covariance matrix between vectors X = [Xi, Xa, . . ., Xn]T and
Y=[Y,Y..., Ym]T is defined as the n X m matrix
Cov = EI(X — ix)(Y — piy) ] =
E[(Xe — o )(Y1 — pwy)] - E[(X2 — px )(Y2 — pvy)] - E[(X2 — i )(Yim — v,
E[(X2 — ) (Yo — )] E[(X2 — ) (Yo —pv)] -0 E[(X2 = p ) (Ym = v, )]
E(Xe — 1)V — )] DX — i) (Vo — )] v EL(X — 11x,)(Yon = 2]

e This matrix is the multivariate generalization of the bivariate
Cov[X, Y] = E[XY] — E[X]E[Y].
] Clearly, [CXY]i,k = COV[)(,‘7 Yk] =0X;,Y, = E[X,' Yk] — E[X,]E[Yk]
@ Note that Cyx = Cxy.
@ Note also if Y = X, then Cxx = Cx.

@ Vectors X and Y are said to be uncorrelated if Cxy = 0pxm.
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Correlated Random Vector Pair

Linear Function of Correlated Random Vector Pair

@ Given pair of random vectors X and Y, consider Z = AX + BY + d:

@ Z has mean
E{Z} = E{AX + BY +d} = AE{X} + BE{Y} +d = Ay + By +d = pu5.
e Noting Z — pu, = A(X — py) + B(Y — py) =

(Z - p)(Z -~ HZ)T =A(X — px)(X — NX)TAT + AX — py)(Y — HY)TBT
+B(Y — py)(X — NX)TAT +B(Y — py)(Y — NY)TBT~

@ Thus, Z has covariance
Cz=E{(Z—-puy)(Z—-p;)"} =ACxA” + ACxyB" + BCyxA” + BCyB'.

e If X and Y are uncorrelated, then Cz = ACxA”™ + BCyB.
o IfB=0, thenZ=AX+d, p; = Apy +d, and Cz = ACxAT.

Christ D. Richmond (Duke) Random Vectors and Multivariate Probability October 3, 2024



Correlated Random Vector Pair

Mean of Scalar Valued Function of Random Vector Pair

@ Given pair [X; Y] ~ fx,y the expected value of a scalar valued function g(X,Y) is

EgX.Y)} = [[ &(xy):fuv(x,y)dxdy
[x:iyl€Sx,y

E{g(X7Y)} = Z g(X7 y) . PX,Y(xv y)
[xiyl€Sx,y

for continuous and discrete r.v.'s respectively.

@ Thus, we can find mean of W = g(X,Y) without knowing PDF fw(w) or PMF

Pw(w).
@ Note if we choose g(X,Y) = go(X), i.e. strictly a function of X =
EloX)} = [[ &) fv(x y)dxdy

[xiyl€Sx, v

/xesx 8o(x) - {/yesy fx,v (X, y)dy} dx = /Xesx go(x) - fx(x)dx

@ Similarly, we can choose g(X,Y) = go(Y) to obtain E{go(Y)}.
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Correlated Random Vector Pair

Chain Rule of Expectation: Random Vector Pair

@ Recall from Bayes theorem that fxy = fx - fyx = v - fixy =

Exv {8(X,Y)} = //'g(x,yyfy(y)fxw(x\y)dxdy: / f(y) [ / g(x.y) - fv (xly)dx| dy
_ / f(y) - E{g(X, Y)Y = y}dy = By {Exv{g(X, Y)|Y}}
o Similarly, Exy{g(X,Y)} = Ex {Evix{g(X,Y)|X}}.

@ These are multivariate extensions of the chain rule of expectation, or
sometimes called the law of total expectation.
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Multivariate Moment Generating Function

On Multivariate Moment Generating Function

@ The MGF for a random vector X = [X1, Xa, ..., Xn]T is defined as?

-
/ e® *fx(x)dx, (continuous r.v.)
xESx

ox(s) = E{eSTX} =E {exp (i s,-X,-> } = ;
i=1 = Z €® *Px(x), (discrete r.v.).

XESx

@ Note ¢x(0) :/ fx(x)dx =1, ¢x(0) = ZP)((X) =1 for continuous/discrete case.

XE Sy xE S
@ Mixed m—th moments can be obtained for arbitrary indices i, € {1,2,...,n} :
9" $x(s)
E{XiXi, - Xi,} = . 11
{Xi X, m} Osi,Osi, - - - Osi,, o0 (11)

The MGF is essentially the n-dimensional Laplace transform for the multivariate joint PDF fx of n random variables Xj,
i=1,2,...,n
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The Multivariate Gaussian Distribution

The Multivariate Gaussian Distribution

@ A very widely used model for random multivariate data is the multivariate
Gaussian PDF (sometimes referred as the Normal distribution).

@ Recall that the PDF and MGF for a Gaussian scalar random variable are given by

2
1 —(x=p) C sutls?o?

fx(x) = e 22 e = ¢x(s).
(x) Noroes ox(s)
@ The multivariate extension to an n x 1 vector X = [X1, Xz, .. ., X,,]T is given by
_ 1 _
fx(x) = |27 Cx| vz exp _E(X - Nx)Tcxl(X - px) (12)

where x = [x1,x2,...,%n]", px = E[X], and Cx = E[(X — py)(X — px)"]. The
support is Sx = {x|x € R"}, i.e. all of Euclidean n-space.
@ The multivariate Gaussian PDF has an analogous form to the univariate Gaussian
PDF and similar interpretations:
@ n X 1 vector py is the mean vector for random vector X = [X1, Xz, ..., Xn]T.
@ n x n matrix Cx is the covariance matrix of random vector
X =[Xi, X, ..., X:]".
@ We denote this distribution as X ~ N(py, Cx), and sometimes as
X ~ Npx1(px, Cx) where dimensions of X are specified.
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MGF for Multivariate Gaussian
@ The MGF for X = [Xy, Xa, ..., Xa] " ~ N(py, Cx) is ¢x(s) = E{e*' X} =
E{e51X1+52X2+”‘+5"X"} and is given by

dx(s) = exp [sTuX + %STCx5:|

for all s € C" including each real axis —oco < s; < 00, i =1,2,...,n.

(13)

@ The proof of this resulting MGF is exactly the same as the one given for the
bivariate Gaussian case given in Lecture Notes 5.
@ All the 2 x 1 vector quantities appearing in the proof of the bivariate
Gaussian MGF simply can be replaced with n x 1 vector quantities:
e fx — fw
e X—Wandx —w
@ py — pyy and Cx — Cyy
o s=[s1,%,...,5] —s=][s,s]".
and the proof follows exactly the same steps.

@ Note that the multivariate Gaussian distribution is completely specified by its mean
Uy and covariance Cx.
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The Multivariate Gaussian Distribution Gaussians Regenerate Under Linear Transformations

Gaussians Regenerate Under Linear Transformations
@ Recall if univariate r.v. X ~ N(u,0?), then Y = aX + b ~ N(au + b, a°c?).

@ Let X ~ N(py,Cx) and consider the affine (linear) transformation Y = AX + b.
o Note that the MGF of the random vector Y is given by

¢Y(5y) _ E{es;Y} _ E{eSyT(AX+b } E{es T'ax esyTb} — es;b . E{eSyTAX}

1
— b ¢X(SX)|SX:ATsy — b exp [syTAp,X + EsyTACxATsy

= exp { (Apg +b)+ = TACXATsy}

1>

exp {s By + s Cysy} = ¢v(sy).

27

@ The Laplace transform is a unique one-to-one transformation.
@ Hence, we have that

Y =AX+b=Y ~ N(Auy + b,ACxA"). (14)

i.e. affine/linear transformations of Gaussian random vectors result in
Gaussian distributed random vectors.
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The Multivariate Gaussian Distribution Standardized Multivariate Gaussian

Standardized Multivariate Gaussian

@ fZ=[Zi,2,...,Z,)" ~ N(0,1,), i.e. where i, = 0 and Cz = l,,, then Z is said
to be a n x 1 standardized multivariate Gaussian random vector.

@ Note from (12) that the PDF of Z is given by

_ 1 _ n _ 1
f2(2) = |27, " exp [—E(Z—O)Tlnl(z—()):| = (27) |1, exp {—Enzn?]

" " 15)
—n 1 2 1 _1p (
= (n) e [z} ST e = ) fale) R fe)
2 i=1 i=1 \/ﬂ
o where Z ~ fz,(z) = fz(z) = ﬁef%zﬁ

@ i.e. each Z; ~ N(0,1) is i.i.d. standardized univariate normal.

@ Z ~ N(0,1,) is sometimes called a white Gaussian random vector.

@ When covariance is Cz # |I,,, then Z is described as colored Gaussian.

@ Note that if Z = QZ (linear transformation of Z) where Q is a n x n orthogonal
matrix, i.e. Q"Q = QQ" =1, then Z is also Gaussian. Specifically, by (14) we
know that 7 . N(QO, QI,,QT) - N(o, QQT) — N(O,1,).

o Note that Z and Z have the same PDF.
o We say that Z and Z are identically distributed.
o We sometimes denote this as Z < Z.
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The Multivariate Gaussian Distribution Standardized Multivariate Gaussian

Standardized Multivariate Gaussian Cont.

@ This demonstrates that white Gaussian random vectors have PDFs that are
invariant to orthogonal linear transformation.

e If Z~ N(0,1,), then QZ ~ N(0,1,) for any n x n orthogonal matrix Q.
@ Consider n x 1 vector X ~ N[0, diag(c%, 03, ...,02)].

e This is not standardized Gaussian nor white in general.

o Each element X;, however, is uncorrelated with Xj for i # j.

o Note by (12) the PDF of this X is given by

fx(x) = |2ndiag(o?, 03, . ..,02)| "/ exp [—%(x —0)"diag(1/03,1/03,...,1/02)(x — 0)}

n 71/2 n
— (9r)-n/2 2 IS e
_ 2n) (H ) o { 23 ] 16)

n X

1
=11 e T = fiy(a) - o) -+ fi, (x0)
1\ 2mo? ,
e where X ~ fx;(x;) = \/Leiﬁ, i=1,2,...,n are clearly independent

271'(7",2

random variables.
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The Multivariate Gaussian Distribution A Transformation Resulting in Uncorrelated R.V.'s

A Transformation Resulting in Uncorrelated R.V.'s

@ Let X ~ N(0,Cx) where Cx = QAQT and consider Y = Q7 X, i.e. a linear
transformation.

@ We know that Y is also a Gaussian random vector.

@ Specifically, we note by (14) that
Y ~ N(Q70,Q"CxQ) = N(0,Q"QAQ’ Q) = N(0, IAI) = N(O, A). (17)

@ Hence, Y ~ N[0, diag(A1, A2, ..., An)]-

@ Similar to analysis of (16) it follows that the elements of Y = [Y1, Ya,..., Y,]” are
all uncorrelated and independent where Y; ~ N(0, \;), i =1,2,...,n.
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The Multivariate Gaussian Distribution A Transformation Resulting in Uncorrelated R.V.'s

Uncorrelated Gaussian R.V.'s are Independent

@ Let n x 1 vector X ~ N(py,Cx) and consider the partition
(X1)mx1 My Cu Con
[ X)oomr |7 T Ly |7 T G G
e IfCip = C2Tl =0, i.e. X1 and X, are uncorrelated, then

—1
C;l _ [ C(1]1 qu } , and |Cx| = |C11| - |C22| = (12) becomes
22

_n 1 _ 1 _
fx = (2m)"*|Cu1| - |Caz| exp {*ﬁ(n — ) Ch' (xa — ) — 50— 1) €' (%2 — 1)
_m 1 _
— )Gl |- 0 ) it — )| x
—(n—m 1 _
(2) Gl xp | 0 1) €~ )|

= fx,  fxy.

@ Thus, if Gaussian X; and Xz are uncorrelated, then they are also independent.
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The Multivariate Gaussian Distribution A Transformation Resulting in Uncorrelated R.V.'s

Uncorrelated Gaussian R.V.'s are Independent Cont.

@ Consider the bivariate Gaussian case, i.e. where n =2 and m = 1. Recall from
equation (17) in Lecture Notes 5 that [Cw]1,2 = Ci2 = 0 means px,yoxoy =0, or
simply that px,y = 0. The joint bivariate Gaussian on slide 29 of Lecture Notes 5

becomes
1 x—p 2 1 (y—n 2
— = — KX _ 1 (YZkYy
e |3 (5) -1 (%)

fw(w) = fx,v(x,y) =

2Tox0Oy
—(x—nx)? —(y—ny)?
1 2 1 2
= e %7x e 2%y = fx - fy.

\/271'0'3( . \/27rc7§,
@ In general, however, when Ci» = CJ; # 0, i.e. X; and X; correlated, it follows that
@ The marginal joint PDF for Xy is N(p,, C11).
@ The marginal joint PDF for X5 is N(p,, C2).
@ The conditional distribution of X; given X is given by
X1| X2 ~ N[y + C12C3' (X2 — p,), Cua 2]
where C11_2 é C11 — C12C2_21C21.

@ You will prove this in your homework.
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The Multivariate Gaussian Distribution Transformation to a Standardized Gaussian

Transformation to a Standardized Gaussian

@ Recall if univariate X ~ N(u,c?), then Z = (X — u)/o ~ N(0,1), i.e
standardized normal.

@ Let X ~ N(uy,Cx) and consider Z = Cx/*(X — py).
@ Note that Z = AX + b where A = C;/* and b = —C; /*puy.

@ Thus, we know from property of Gaussians under linear transformations that
Z ~ N(Apx +b,ACxAT) = N(Cx iy — €2y, € /2CxC5M2) = (D, 1),

i.e. Z is a multivariate normal with zero mean and identity covariance.
@ Clearly, subtracting py from X (i.e. centering it) yields a zero mean vector.
@ Multiplication by C;1/2 is often referred to as a whitening transformation.

o If Xo ~ N(0,Cx), then by (14) =
Cy /*Xo ~ N(0, Cx />CxCx /%) = N(0,1,).
@ i.e. multiplication by Cx 1/2 transform vector Xo into a white Gaussian.
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The Multivariate Gaussian Distribution A Stochastic Representation of Multivariate Gaussian

A Stochastic Representation of Multivariate Gaussian

Recall if univariate r.v. Z ~ N(0, 1), then X Lo Z+pn~ N(u,o?).
Let Z ~ N(0,1,) and consider H = C}/*Z 4 puy, i.e. a linear transformation.

We know that H is also a Gaussian random vector.

Specifically, note by (14) that

H ~ N(CY*0 + iy, € *1,CY%) = N(0 + sy, € *C?) = N(pax, Cx).

@ Clearly, H < X where X ~ N(py,Cx), i.e. X £ C;/ZZ + px where Z ~ N(0,1,).

@ This is a very useful way of numerically simulating an arbitrary multivariate
Gaussian random vector; namely, if a sample vector from distribution N(py, Cx) is
desired, then:

@ Generate a sample of a standardized Gaussian random vector Z ~ N(0,1,).
o Use it to form H = C}/°Z + puy.
@ This vector H is now a sample vector from PDF N(py, Cx).
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The Multivariate Gaussian Distribution A Stochastic Representation of Multivariate Gaussian

Useful Moment Theorem for Zero Mean Gaussians

@ Let X ~ N(0,Cx) and note useful moment theorem for zero mean Gaussians:

0, m odd
E{X:X;},
E{Xi- X - Xm} = Z H {XiXj}, m even
All
distinct
pairs

For example, if m =4 —-

E{XiXoXsXs} = E{Xi Xo} E{XsXa} + E{Xi Xs} E{XoXa} + E{Xi Xs} E{Xo Xz}

= [Cx]1,2[Cx]3,4 + [Cx]1,3[Cx]2.4 + [Cx]1,4[Cx]2,3- (19)

e For proof see [2] page 258.

@ This can likewise be established via MGF as described in (11).

o Note that if we choose X; = Xo = X3 = X4y = E{X{} = 3[Cx]i1 = 302.
e This is consistent with HW3 problem 12-A.
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Useful Integral Theorem for Norm Squared of R.V.

@ Next we present a multivariate integral theorem that is often useful when dealing
with spherically symmetric distributions.
o If a PDF is strictly a function of the norm squared of it's argument, then it is
said to be spherically symmetric.
o For example, in (15) note that for Z ~ N(0,1,) = fz(z) = g(||z||*) = g(z"2).
@ Thus, the PDF of Z ~ N(0,1,) is spherically symmetric.
@ A proof of the following theorem can be found in [5].

@ Theorem (Real Random Variables): Integrating a well-behaved function g(a’a)
over all a € R" has the equivalent integral representation

- 7_l_n/2 oo 1

qaadazi/ r2 " q(r)dr 20
a7 = o [ a0 (20)

where I'(z) is the univariate Gamma function that has the property that

I'(n+ 1) = n! for n that is a non-negative integer.

o Generally speaking, the proof is established by a change of variables to polar
coordinates, and then simply integrating over all the angle variables. See [5]
for details.

o We will prove this for the simpler n = 2 case later.
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PDF of Norm Squared of Spherically Symmetric R.V.

@ Consider any random vector Z = [Z1, 2>, ..., Z,]" ~ f2(2) = g(||z]|?), i.e. any
random vector with a spherically symmetric distribution.

o Define r.v. p = ||Z||*> = 327, Z? and note mean of function h(Z' Z) is

7Tn/2

/zean h(z z)go(oz z)dz = F(n/2)

E{h(p)} = / h(r)f,(r)dr

E{n(Z7Z)} /Ooo r2 " h(r)g(r)dr

(21)

@ where first equality is by definition of expectation;

@ second equality follows from (20);

o the third equality must hold from basic probability, i.e. treating h(-) as
function of p ~ f,;

@ and the last equality is by definition of expectation (averaging over p ~ f,).

@ Comparing last two integrals in (21), we can conclude that the pdf of p must be
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The Multivariate Gaussian Distribution Central Chi-Squared Distribution

Central Chi-Squared Distribution

@ Consider Z ~ N(0,1,), i.e. a standardized multivariate Gaussian vector.

@ The PDF of p = ||Z|* = ZZ,-2 is given by a central chi-squared of n

degrees-of-freedom: = 1

p fp(r) = mrj—le—r/27 r>0. (22)

Proof: Note that if f, is pdf of p = ||Z||?, then any function h(p) has average

value o0
E{h(p)} = / h(a)f, (a)da. (23)

This average likewise follows when h(-) is treated as a function of Z, i.e.

EZI)} = [ nIBIPYE®)aD = [ (IbIP)En) " esp |1 bl ab
n/2

_ T © pa ~(n/2) L

= ——= 27 "h(a)(2 —=a| d.

F(n/2)/0 a (a)(2n) exp{ 23} a

@ where the last equality follows from the previously discussed integral theorem.

o Comparing (23) and (24) that must be equal, it follows that f, is given by
(22). m

. s . . d
@ Central chi-squared distribution of n dofs sometimes denoted by notation p = x2.

(24)
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The Multivariate Gaussian Distribution Central Chi-Squared Distribution

Moments of a Central Chi-Squared Random Variable

@ Since (22) is a pdf, it has unit area:

o o 1 21 _—r/2
frdr:1:>/ ———r2 e dr=1—
fi w0 0 27T (n]2)
/ r2 te " dr = 2"/2|'(n/2)
0

where last equality is a useful integral identity.

@ (25) can be used to find the m-th moment of x2:

2\my __ o 1 m 21 _—r/2 _ m+ -1 _—r/2
{(xn) }*/0 72"/2|—(n/2)r -r2 e dr = 2n/2[_ n/2)/ 5) e dr

. 2('"*3)F(m+ 3) _ 2" (m+3)
= E{(x»)"} = 22T (n/2)  —  T(n/2)

@ SincelN(z+m)=(z+m—1)(z4+ m—2)---(z+ 1)zl[(z) for positive integers m
6], it follows that T (m+ 2) = (2 +m—1) (2+m—2)--- (2 +1) 2[(n/2) =

E{(xa)"} =2" ( +m—1>(g+m—2>---(g+1>g. (27)
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The Multivariate Gaussian Distribution Central Chi-Squared Distribution

Moments of a Central Chi-Squared Random Variable Cont.

@ Thus, the mean and variance of x? are given by

E{xi} =23 = o = E{03)Y-E{x)
N = = (n4+2)n—n? (28)
E(0G) =2 (5 + )57n+2) = 2n

@ Note from mean and variance that PDF is more concentrated near origin for small
n, and moves away from origin and spreads out as n increases.

@ The mean and variance of x? can also be found by recalling x?2 2 > Z? where
Z; ~ N(0,1). The Gaussian fourth order moment formula (19) would have to be
used.

@ Interestingly, we can likewise find the inverse m-th moment of y?:

£ {ﬁ} - /o‘x’ 2n/2r1(n/2) P o = 2n/2rl(n/2) ,/OOO AEm) e e
1 }: 2 (3 —m) _T(3-m)
7

6%

= E{ 2072 (nf2) 27[(n)2)

where again (25) has been used. This is valid for § —m > 1.
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The Multivariate Gaussian Distribution Confidence Ellipse for Multivariate Gaussian

Confidence Ellipse for Multivariate Gaussian

@ Recall from (12) that the multivariate Gaussian has elliptical symmetry.
@ Indeed, recall in our discussions of the bivariate Gaussian we plotted lines of
constant density and observed these to be given by ellipses in the (X, Y) plane.

@ If we repeat this exercise for the multivariate Gaussian in (12) then we'd find that
regions of constant density are given by ellipsoids in n-dimensions.
@ It is interesting to ask what is the probability that a random observation
X = [X1,Xa,...,Xa]" ~ N(x, Cx) will fall within a specific ellipsoidal region of
constant density?
o Specifically what is Pr[(X — px)"Cx (X — py) < (] ?

Christ D. Richmond (Duke) Random Vectors and Multivariate Probability October 3, 2024



The Multivariate Gaussian Distribution Confidence Ellipse for Multivariate Gaussian

Confidence Ellipse for Multivariate Gaussian

@ Recall from (12) that the multivariate Gaussian has elliptical symmetry.
@ Indeed, recall in our discussions of the bivariate Gaussian we plotted lines of
constant density and observed these to be given by ellipses in the (X, Y) plane.

@ If we repeat this exercise for the multivariate Gaussian in (12) then we'd find that
regions of constant density are given by ellipsoids in n-dimensions.
@ It is interesting to ask what is the probability that a random observation
X = [X1,Xa,...,Xa]" ~ N(x, Cx) will fall within a specific ellipsoidal region of
constant density?
o Specifically what is Pr[(X — px)"Cx (X — py) < (] ?

Christ D. Richmond (Duke) Random Vectors and Multivariate Probability October 3, 2024



The Multivariate Gaussian Distribution Confidence Ellipse for Multivariate Gaussian

Confidence Ellipse for Multivariate Gaussian

@ Recall from (12) that the multivariate Gaussian has elliptical symmetry.
@ Indeed, recall in our discussions of the bivariate Gaussian we plotted lines of
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X = [X1,Xa,...,Xa]" ~ N(x, Cx) will fall within a specific ellipsoidal region of
constant density?
o Specifically what is Pr[(X — px)"Cx (X — py) < (] ?
o Consider that X < pu, + C¥?Z where Z ~ N(0,1,)
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Confidence Ellipse for Multivariate Gaussian
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Confidence Ellipse for Multivariate Gaussian

@ Recall from (12) that the multivariate Gaussian has elliptical symmetry.
@ Indeed, recall in our discussions of the bivariate Gaussian we plotted lines of
constant density and observed these to be given by ellipses in the (X, Y) plane.

@ If we repeat this exercise for the multivariate Gaussian in (12) then we'd find that
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@ It is interesting to ask what is the probability that a random observation
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¢ ; n
Fal©) = PG <O = [ syt te 2 = RS2,

Ye~'dt is lower incomplete Gamma function [6]; change

w
m—

where y(m, w) = / t

0
of variables u = r/2, du = dr/2 was used.
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@ Note that when n = 2 we have that

1(n/2,¢/2)

r(n/2)
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@ Note that when n = 2 we have that

Wn/2.6/2) _ A1L.¢/2) _AL.¢/2) /4/26_%“:1_6_«;
0

r(n/2) r(1) 0!

@ Thus, recall first bivariate example we considered when plotting regions of
constant density:

3 ] Cy = [ 5 —10.4013

Hw = [ 1 ~104013 30 } , where px,y = —0.85.
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@ Note that when n = 2 we have that

Wn/2.6/2) _ A1L.¢/2) _AL.¢/2) /we_z 1o
0

r(n/2) r(1) 0!

@ Thus, recall first bivariate example we considered when plotting regions of
constant density:

3 5 ~10.4013
Hy = [ 1 ] , Cw = [ —10.4013 30 } , where px y = —0.85.
@ We can compute these probability for ( = —21In [|27TCW\1/2 . A} .

Pr [(w — ) Ct (W — ) < (} =1—exp [In <|271'CW|1/2 . A)]
= 0.9, 0.5, and 0.1 for A = 0.0025, 0.0123, and 0.0222 respectively.
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@ See figure below copied from Lecture Notes 5

fw(w)=A
—— A =0.00247
10 A=0.0123
— A =0.0222
5 mu=
3
1
Yo
Cw =
5 5.0000 -10.4103
-10.4103 30.0000
rhoXY --0.8500
-10
-10 5 0 5 10 15
T
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