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Remarks

Remarks

So far we’ve considered probability models that allow us to characterize one or two
(i.e. a pair of) random variables, e.g. the pair (X ,Y ).

We now consider probability theory to handle multivariable observations for more
than two random variables, e.g. a random vector X = [X1,X2, . . . ,Xn]

T of n
variables.

The theory presented will be seen to be straightforward extensions of ideas we’ve
already developed for joint PMFs, PDFs, and CDFs.
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Multivariate Joint PMF, CDF, and PDF

Multivariate Joint PMF, CDF, and PDF

The joint PMF for a set of n discrete random variables represented collectively as
the vector X = [X1,X2, . . . ,Xn]

T is defined as

Pr(X1 = x1,X2 = x2, . . . ,Xn = xn) = PX1,X2,...,Xn (x1, x2, . . . , xn)
Pr(X = x) = PX(x),

and the probability of event B ⊆ RN in the support of PX, i.e. SX, is given by

Pr(B) =
∑

(x1,x2,...,xn)∈B

PX1,X2,...,Xn (x1, x2, . . . , xn) =
∑
x∈B

PX(x).

The joint PDF for a set of n continuous random variables represented collectively
as the vector X = [X1,X2, . . . ,Xn]

T is a function fX1,X2,...,Xn (x1, x2, . . . , xn) = fX(x)
defined such that for any subset B ⊆ RN in SX the support fX we have

Pr(B) =

∫ ∫
· · ·
∫
(x1,x2,...,xn)∈B

fX1,X2,...,Xn (x1, x2, . . . , xn)dx1dx2 · · · dxn

=

∫
x∈B

fX(x)dx.

Note that the probability of event B is given by the n-dimensional volume

contained under the density in set B.
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Multivariate Joint PMF, CDF, and PDF

Multivariate Joint PMF, CDF, and PDF Cont.
The joint CDF for a set of n random variables represented collectively as the
vector X = [X1,X2, . . . ,Xn]

T is defined as

Pr(X1 ≤ x1,X2 ≤ x2, . . . ,Xn ≤ xn) = FX1,X2,...,Xn (x1, x2, . . . , xn)
Pr(X ≤ x) = FX(x).

(1)

It is noteworthy that (1) is the definition of the CDF whether any, or all of

the Xi are discrete, continuous, or even mixed/hybrid.

If Xi are all continuous random variables, then

FX1,X2,...,Xn (x1, x2, . . . , xn) =

∫ x1

−∞

∫ x2

−∞
· · ·
∫ xn

−∞
fX1,X2,...,Xn (a1, a2, . . . , an)da1da2 · · · dan,

and by the fundamental theorem of calculus we know

fX1,X2,...,Xn (x1, x2, . . . , xn) =
∂nFX1,X2,...,Xn (x1, x2, . . . , xn)

∂x1∂x2 · · · ∂xn
.

By the axioms of probability we obtain for discrete r.v.’s

1 PX1,X2,...,Xn (x1, x2, . . . , xn) = PX(x) ≥ 0,
2

∑
x1∈SX1

∑
x2∈SX2

· · ·
∑

xn∈SXn

PX1,X2,...,Xn (x1, x2, . . . , xn) =
∑
x∈SX

PX(x) = 1.
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Multivariate Joint PMF, CDF, and PDF

Multivariate Joint PMF, CDF, and PDF Cont.
By the axioms of probability we obtain for continous r.v.’s:

1 fX1,X2,...,Xn (x1, x2, . . . , xn) = fX(x) ≥ 0,

2

∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
fX1,X2,...,Xn (a1, a2, . . . , an)da1da2 · · · dan =

∫
x∈SX

fX(x)dx = 1.

For variables X = [X1,X2, . . . ,Xn]
T , if we choose any partition such that

X1 = [Xi1 ,Xi2 , . . . ,Xim ]
T and X2 = [Xim+1 ,Xim+2 , . . . ,Xin ]

T where each
ik ∈ {1, 2, . . . , n} is unique, then the marginals can be obtained via

PX1(x1) =
∑

x2∈SX2

PX1,X2(x1, x2), fX1(x1) =

∫
x2∈SX2

fX1,X2(x1, x2)dx2

for discrete and continuous r.v.’s respectively where it is implicit that PX = PX1,X2

and fX = fX1,X2 , i.e. the concatenation of X1 and X2 constitutes the same set of
random variables present in X.

As an example, if X = [W ,X ,Y ,Z ]T , then some marginals are given by

PX ,Y ,Z (x , y , z) =
∑

w∈SW

PW ,X ,Y ,Z (w , x , y , z), PW ,Z (w , z) =
∑
x∈SX

∑
y∈SY

PW ,X ,Y ,Z (w , x , y , z)

for discrete r.v.’s; and

fX ,Y ,Z (x , y , z) =

∫
w∈SW

fW ,X ,Y ,Z (w , x , y , z)dw , fW ,Z (w , z) =

∫
x∈SX

∫
y∈SY

fW ,X ,Y ,Z (w , x , y , z)dxdy .

for continuous r.v.’s.
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Multivariate Joint PMF, CDF, and PDF

Multivariate Joint PMF, CDF, and PDF Cont.

Consider the pair of random vectors X and Y where X = [X1,X2, . . . ,Xn]
T and

Y = [Y1,Y2, . . . ,Ym]
T and note the following:

The joint PMF of X and Y is given by

PX,Y(x, y) = PX1,X2,...,Xn,Y1,Y2,...,Ym (x1, x2, . . . , xn, y1, y2, . . . , ym).

The joint PDF of X and Y is given by

fX,Y(x, y) = fX1,X2,...,Xn,Y1,Y2,...,Ym (x1, x2, . . . , xn, y1, y2, . . . , ym).

The joint CDF of X and Y is given by

FX,Y(x, y) = FX1,X2,...,Xn,Y1,Y2,...,Ym (x1, x2, . . . , xn, y1, y2, . . . , ym).
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Independence of Random Variables

Independence of Random Variables
Random variables X1,X2, . . . ,Xn are said to be independent if

PX1,X2,...,Xn (x1, x2, . . . , xn) = PX1(x1) · PX2(x2) · · ·PXn (xn)

fX1,X2,...,Xn (x1, x2, . . . , xn) = fX1(x1) · fX2(x2) · · · fXn (xn)

for all x1, x2, . . . , xn, for discrete r.v.’s and continuous r.v.’s respectively.

Random variables X1,X2, . . . ,Xn are said to be independent identically distributed
(i.i.d.) if

PX1,X2,...,Xn (x1, x2, . . . , xn) = PX (x1) · PX (x2) · · ·PX (xn)

fX1,X2,...,Xn (x1, x2, . . . , xn) = fX (x1) · fX (x2) · · · fX (xn)
for all x1, x2, . . . , xn, for discrete r.v.’s and continuous r.v.’s respectively.

Note that PXi = PX for all Xi , i = 1, 2, . . . , n for the discrete r.v.’s.

Note that fXi = fX for all Xi , i = 1, 2, . . . , n for the continuous r.v.’s.

A pair of random vectors X and Y is said to be independent if

PX,Y(x, y) = PX(x) · PY(y), fX,Y(x, y) = fX(x) · fY(y),

for discrete r.v.’s and continuous r.v.’s respectively.

Quiz 5.10 Yates/Goodman

To be discussed in class
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Quiz 5.10

The random variables Y1, . . . , Y4 have the joint PDF

fY1,...,Y4(y1, . . . , y4) =

8
<
:
4 0  y1  y2  1,0  y3  y4  1,

0 otherwise.
(1)

Let C denote the event that maxi Yi  1/2. Find P[C].



Mean of Scalar Valued Function

Mean of Scalar Valued Function
We can define scalar valued functions of multiple random variables, i.e. functions

of vectors, as g(X1,X2, . . . ,Xn) = g(X).

Because g(X) is a function of random variables, it is itself a random variable.

An example of such a function is g(X) = aTX = a1X1 + a2X2 + · · ·+ anXn.

The random variable g(X) has expected value defined as

E{g(X)} =
∑

x1∈SX1

∑
x2∈SX2

· · ·
∑

xn∈SXn

g(x1, x2, . . . , xn)PX(x1, x2, . . . , xn) =
∑
x∈SX

g(x)PX(x).

E{g(X)} =
∫
x1∈SX1

∫
x2∈SX2

· · ·
∫
xn∈SXn

g(x1, x2, . . . , xn)fX(x1, x2, . . . , xn)dx1dx2 · · · dxn

=

∫
x∈SX

g(x)fX(x)dx for discrete r.v.’s and continuous r.v.’s respectively.

(2)

Of course, there is an alternative way to find E{g(X)}.
If we let W = g(X) and we can find its PDF fW (w) (or PMF PW (w)), then
note that

E{g(X)} = E{W } =


∫
w∈SW

w · fW (w)dw , (continuous r.v.)∑
w∈SW

w · PW (w), (discrete r.v.).
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Mean of Scalar Valued Function

Mean of Scalar Valued Function Cont.

If g(X) = g1(X1)g2(X2) · · · gn(Xn) and X1,X2, . . . ,Xn are independent continuous
r.v.’s, then

E [g(X)] =

∫
x∈SX

g(x)fX(x)dx

=

∫
x1∈SX1

∫
x2∈SX2

· · ·
∫
xn∈SXn

g1(x1)g2(x2) · · · gn(xn)fX1(x1)fX2(x2) · · · fXn (xn)dx1dx2 · · · dxn

=

∫
x1∈SX1

g1(x1)fX1(x1)dx1

∫
x2∈SX2

g2(x2)fX2(x2)dx2 · · ·
∫
xn∈SXn

gn(xn)fXn (xn)dxn

= E [g1(X1)] · E [g2(X2)] · · ·E [gn(Xn)].

(3)
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Mean Vector and Covariance/Correlation Matrix

Expected Value of a Vector and Matrix
The expected value of the random vector X = [X1,X2, . . . ,Xn]

T is the vector of
expected values:

E [X] = [E [X1],E [X2], . . . ,E [Xn]]
T △
= µX.

Expectation is a linear operator. Note that for g(X) = aTX

E [g(X)] = E [aTX]
= E [a1X1 + a2X2 + · · ·+ anXn] = a1E [X1] + a2E [X2] + · · ·+ anE [Xn]
= a1µX1 + a2µX2 + · · ·+ anµXn

= aTµX.

Similarly, if An×n = [a1|a2| · · · |an], then n× 1 vector ATX has rows aTi X and mean
vector

E [ATX] = [E [aT1 X],E [a
T
2 X], . . . ,E [a

T
n X]]

T = [aT1 µX, a
T
2 µX, . . . , a

T
n µX]

T = ATµX.

The expected value of a random n ×m matrix G is the matrix of expected values:

G =


G1,1 G1,2 . . . G1,m

G2,1 G2,2 . . . G2,m

...
...

...
...

Gn,1 Gn,2 . . . Gn,m

 =⇒ E [G] =


E [G1,1] E [G1,2] . . . E [G1,m]
E [G2,1] E [G2,2] . . . E [G2,m]

...
...

...
...

E [Gn,1] E [Gn,2] . . . E [Gn,m]

 . (4)
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Mean Vector and Covariance/Correlation Matrix

Expected Value of a Vector and Matrix Cont.

Recall that for a matrix transpose [GT ]i,k = [G]k,i .

By the above definition it follows that

E [GT ] =


E [G1,1] E [G2,1] . . . E [Gn,1]
E [G1,2] E [G2,2] . . . E [Gn,2]

...
...

...
...

E [G1,m] E [G2,m] . . . E [Gn,m]

 = (E [G])T , (5)

an m × n matrix.

This shows that the expected value of the transpose of a matrix is the

transpose of the expected value of said matrix.

Consider the random n × n matrix G̃ and note for vector a = [a1, a2, . . . , an]
T that

aT G̃a =
n∑

i=1

n∑
k=1

aiak · G̃i,k . Similarly, by (4) we have aTE [G̃]a =
n∑

i=1

n∑
k=1

aiak · E [G̃i,k ].

Thus, by linearity of expectation we see that

aTE [G̃]a = E [aT G̃a]. (6)
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Mean Vector and Covariance/Correlation Matrix

Correlation Matrix

The correlation matrix of a random vector X = [X1,X2, . . . ,Xn]
T is defined as

n × n matrix

RX = E [XXT ] =


E [X1X1] E [X1X2] . . . E [X1Xn]
E [X2X1] E [X2X2] . . . E [X2Xn]

...
...

...
...

E [XnX1] E [XnX2] . . . E [XnXn]

 . (7)

Note (7) is obtained with G = XXT in (4), i.e. where [G]i,k = Gi,k = XiXk .
It follows from definition of expected value for a matrix.
[RX]i,k is the correlation between the pair of random variables Xi and Xk .

RX is sometimes called the autocorrelation matrix, since the correlation of X

with itself is being determined.
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Mean Vector and Covariance/Correlation Matrix

Correlation Matrix Cont.

Properties of a correlation matrix include:

(i) Symmetric, i.e. RX = RT
X .

This follows from RT
X = (E [XXT ])T = E [(XXT )T ] = E [(XT )T (X)T ]

= E [XXT ] = RX where we’ve used (5).

(ii) Positive semi-definite, i.e. aTRXa ≥ 0 for all vectors a ∈ RN , a ̸= 0.

Note aTRXa = aTE [XXT ]a = E [aTXXTa] = E [(aTX)2] by (6).
Let W = aTX, a real scalar random variable, and note that

E [(aTX)2] = E [W 2] =


∫
SW

w 2fW (w)dw ≥ 0, (continuous r.v.)∑
SW

w 2PW (w) ≥ 0, (discrete r.v.)

since sum of real non-negative terms yields a non-negative real number.

(iii) Eigenvalues are real and non-negative, i.e. λi (RX) ≥ 0.

If qi is an eigenvector, then RXqi = λiqi .

Let a = qi/∥qi∥ in (ii) above; note aTRXa =
qT
i RXqi

∥qi∥2
=

qT
i qiλi

∥qi∥2
= λi .

Thus, by same arguments in (ii), it follows that λi is real and λi ≥ 0.
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Mean Vector and Covariance/Correlation Matrix

Covariance Matrix
Properties of a correlation matrix cont.:

(iv) Eigenvectors are orthonormal, i.e. RX = QΛQT where
Λ = diag(λ1, λ2, . . . , λn), Q = [q1|q2| · · · |qn] with

1 qT
i qk = δi,k .

The proof of this is involved. See Chapter 8 in [4] for details.

The covariance matrix of a random vector X = [X1,X2, . . . ,Xn]
T is defined as

n × n matrix
CX = E [(X− µX)(X− µX)

T ] =
E [(X1 − µX1

)(X1 − µX1
)] E [(X1 − µX1

)(X2 − µX2
)] . . . E [(X1 − µX1

)(Xn − µXn )]
E [(X2 − µX2

)(X1 − µX1
)] E [(X2 − µX2

)(X2 − µX2
)] . . . E [(X2 − µX2

)(Xn − µXn )]
...

...
...

...
E [(Xn − µXn )(X1 − µX1

)] E [(Xn − µXn )(X2 − µX2
)] . . . E [(Xn − µXn )(Xn − µXn )]

 .
(8)

The covariance matrix can also be expressed as

CX = E [(X− µX)(X− µX)
T ] = E [XXT − XµT

X − µXX
T + µXµ

T
X ]

= E [XXT ]− E [XµT
X ]− E [µXX

T ] + E [µXµ
T
X ]

= E [XXT ]− E [X]µT
X − µXE [X

T ] + µXµ
T
X

= RX − µXµ
T
X − µXµ

T
X + µXµ

T
X

= RX − µXµ
T
X .

(9)

1
δi,k is the discrete delta function defined to equal 1 when i = k and 0 when i ̸= k.
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Mean Vector and Covariance/Correlation Matrix

Covariance Matrix Cont.
This n × n matrix is the multivariate generalization of the univariate
Var[X ] = E [X 2]− E 2[X ] and bivariate Cov[Xi ,Xk ] = E [XiXk ]− E [Xi ]E [Xk ].

Clearly, [CX]i,i = Var[Xi ] = σ2
Xi
, and [CX]i,k = Cov[Xi ,Xk ] = σXi ,Xk .

CX is sometimes called the autocovariance matrix, since the covariance of X with
itself is being determined.

Note from (9) that RX = CX + µXµ
T
X , and if E [X] = µX = 0, then RX = CX.

Properties of the covariance matrix are the same as the correlation matrix:
(i) Symmetric, i.e. CX = CT

X .
(ii) Positive semi-definite, i.e. aTCXa ≥ 0 for all vectors a ∈ RN , a ̸= 0.
(iii) Eigenvalues are real and non-negative, i.e. λ̃i (CX) ≥ 0.
(iv) Eigenvectors are orthonormal, i.e. CX = Q̃Λ̃Q̃T where

Λ̃ = diag(λ̃1, λ̃2, . . . , λ̃n), Q̃ = [q̃1|q̃2| · · · |q̃n] with q̃T
i q̃k = δi,k .

Note vector X0 = X− µX has correlation matrix

RX0 = E [X0X
T
0 ] = E [(X− µX)(X− µX)

T ] = CX.

Thus, a covariance matrix is a special case of a correlation matrix, i.e. a

covariance matrix is the correlation matrix for centered variables (i.e. having

zero mean).
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Mean Vector and Covariance/Correlation Matrix

Cross Correlation Matrix

The cross correlation matrix between vectors X = [X1,X2, . . . ,Xn]
T and

Y = [Y1,Y2, . . . ,Ym]
T is defined as the n ×m matrix

RXY = E [XYT ] =


E [X1Y1] E [X1Y2] . . . E [X1Ym]
E [X2Y1] E [X2Y2] . . . E [X2Ym]

...
...

...
...

E [XnY1] E [XnY2] . . . E [XnYm]

 . (10)

Note (10) is obtained with G = XYT in (4), i.e. where [G]i,k = Gi,k = XiYk .
It follows from definition of expected value for a matrix.

[RXY]i,k is the correlation between the pair of random variables Xi and Yk .

Note that RYX = RT
XY, i.e. E [YX

T ] = E [(XYT )T ] = (E [XYT ])T where (5) is used.

Note also if Y = X, then RXX = RX.
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Mean Vector and Covariance/Correlation Matrix

Cross Covariance Matrix

The cross covariance matrix between vectors X = [X1,X2, . . . ,Xn]
T and

Y = [Y1,Y2, . . . ,Ym]
T is defined as the n ×m matrix

CXY = E [(X− µX)(Y − µY)
T ] =

E [(X1 − µX1)(Y1 − µY1)] E [(X1 − µX1)(Y2 − µY2)] . . . E [(X1 − µX1)(Ym − µYm )]
E [(X2 − µX2)(Y1 − µY1)] E [(X2 − µX2)(Y2 − µY2)] . . . E [(X2 − µX2)(Ym − µYm )]

...
...

...
...

E [(Xn − µXn )(Y1 − µY1)] E [(Xn − µXn )(Y2 − µY2)] . . . E [(Xn − µXn )(Ym − µYm )]

 .

This matrix is the multivariate generalization of the bivariate
Cov[X ,Y ] = E [XY ]− E [X ]E [Y ].

Clearly, [CXY]i,k = Cov[Xi ,Yk ] = σXi ,Yk = E [XiYk ]− E [Xi ]E [Yk ].

Note that CYX = CT
XY.

Note also if Y = X, then CXX = CX.

Vectors X and Y are said to be uncorrelated if CXY = 0n×m.
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Correlated Random Vector Pair

Linear Function of Correlated Random Vector Pair

Given pair of random vectors X and Y, consider Z = AX+ BY + d:

Z has mean

E{Z} = E{AX+ BY + d} = AE{X}+ BE{Y}+ d
△
= AµX + BµY + d

△
= µZ.

Noting Z− µZ = A(X− µX) + B(Y − µY) =⇒

(Z− µZ)(Z− µZ)
T = A(X− µX)(X− µX)

TAT + A(X− µX)(Y − µY)
TBT

+B(Y − µY)(X− µX)
TAT + B(Y − µY)(Y − µY)

TBT .

Thus, Z has covariance

CZ = E{(Z− µZ)(Z− µZ)
T} = ACXA

T + ACXYB
T + BCYXA

T + BCYB
T .

If X and Y are uncorrelated, then CZ = ACXA
T + BCYB

T .

If B = 0, then Z = AX+ d, µZ = AµX + d, and CZ = ACXA
T .
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Correlated Random Vector Pair

Mean of Scalar Valued Function of Random Vector Pair

Given pair [X;Y] ∼ fX,Y the expected value of a scalar valued function g(X,Y) is

E{g(X,Y)} =
x

[x;y]∈SX,Y

g(x, y) · fX,Y(x, y)dxdy

E{g(X,Y)} =
∑

[x;y]∈SX,Y

g(x, y) · PX,Y(x, y)

for continuous and discrete r.v.’s respectively.

Thus, we can find mean of W = g(X,Y) without knowing PDF fW (w) or PMF
PW (w).

Note if we choose g(X,Y) = g0(X), i.e. strictly a function of X =⇒

E{g0(X)} =
x

[x;y]∈SX,Y

g0(x) · fX,Y(x, y)dxdy

=

∫
x∈SX

g0(x) ·
[∫

y∈SY

fX,Y(x, y)dy

]
dx =

∫
x∈SX

g0(x) · fX(x)dx

Similarly, we can choose g(X,Y) = g0(Y) to obtain E{g0(Y)}.
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Correlated Random Vector Pair

Chain Rule of Expectation: Random Vector Pair

Recall from Bayes theorem that fX,Y = fX · fY|X = fY · fX|Y =⇒

EX,Y{g(X,Y)} =
∫∫

g(x, y) · fY(y)fX|Y(x|y)dxdy =

∫
fY(y)

[∫
g(x, y) · fX|Y(x|y)dx

]
dy

=

∫
fY(y) · E{g(X,Y)|Y = y}dy = EY

{
EX|Y{g(X,Y)|Y}

}
Similarly, EX,Y{g(X,Y)} = EX

{
EY|X{g(X,Y)|X}

}
.

These are multivariate extensions of the chain rule of expectation, or

sometimes called the law of total expectation.
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Multivariate Moment Generating Function

On Multivariate Moment Generating Function

The MGF for a random vector X = [X1,X2, . . . ,Xn]
T is defined as2

ϕX(s) = E{es
TX} = E

{
exp

(
n∑

i=1

siXi

)}
=



∫
x∈SX

es
T xfX(x)dx, (continuous r.v.)

=
∑
x∈SX

es
T xPX(x), (discrete r.v.).

Note ϕX(0) =

∫
x∈SX

fX(x)dx = 1, ϕX(0) =
∑
x∈SX

PX(x) = 1 for continuous/discrete case.

Mixed m−th moments can be obtained for arbitrary indices im ∈ {1, 2, . . . , n} :

E {Xi1Xi2 · · ·Xim} =
∂mϕX(s)

∂si1∂si2 · · · ∂sim

∣∣∣∣
s=0

. (11)

2
The MGF is essentially the n-dimensional Laplace transform for the multivariate joint PDF fX of n random variables Xi ,

i = 1, 2, . . . , n.
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The Multivariate Gaussian Distribution

The Multivariate Gaussian Distribution
A very widely used model for random multivariate data is the multivariate
Gaussian PDF (sometimes referred as the Normal distribution).

Recall that the PDF and MGF for a Gaussian scalar random variable are given by

fX (x) =
1√
2πσ2

e
−(x−µ)2

2σ2
L←→ esµ+ 1

2
s2σ2

= ϕX (s).

The multivariate extension to an n × 1 vector X = [X1,X2, . . . ,Xn]
T is given by

fX(x) = |2πCX|−1/2 exp

[
−1

2
(x− µX)

TC−1
X (x− µX)

]
(12)

where x = [x1, x2, . . . , xn]
T , µX = E [X], and CX = E [(X− µX)(X− µX)

T ]. The
support is SX = {x|x ∈ Rn}, i.e. all of Euclidean n-space.

The multivariate Gaussian PDF has an analogous form to the univariate Gaussian

PDF and similar interpretations:

n × 1 vector µX is the mean vector for random vector X = [X1,X2, . . . ,Xn]
T .

n × n matrix CX is the covariance matrix of random vector
X = [X1,X2, . . . ,Xn]

T .

We denote this distribution as X ∼ N(µX,CX), and sometimes as

X ∼ Nn×1(µX,CX) where dimensions of X are specified.
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The Multivariate Gaussian Distribution MGF for Multivariate Gaussian

MGF for Multivariate Gaussian

The MGF for X = [X1,X2, . . . ,Xn]
T ∼ N(µX,CX) is ϕX(s) = E{es

TX} =
E{es1X1+s2X2+···+snXn} and is given by

ϕX(s) = exp

[
sTµX +

1

2
sTCXs

]
for all s ∈ Cn including each real axis −∞ < si <∞, i = 1, 2, . . . , n.

(13)

The proof of this resulting MGF is exactly the same as the one given for the
bivariate Gaussian case given in Lecture Notes 5.
All the 2× 1 vector quantities appearing in the proof of the bivariate
Gaussian MGF simply can be replaced with n × 1 vector quantities:

fX −→ fW
X −→W and x −→ w
µX −→ µW and CX −→ CW

s = [s1, s2, . . . , sn]
T −→ s = [sx , sy ]

T .

and the proof follows exactly the same steps.

Note that the multivariate Gaussian distribution is completely specified by its mean
µX and covariance CX.
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The Multivariate Gaussian Distribution Gaussians Regenerate Under Linear Transformations

Gaussians Regenerate Under Linear Transformations
Recall if univariate r.v. X ∼ N(µ, σ2), then Y = aX + b ∼ N(aµ+ b, a2σ2).

Let X ∼ N(µX,CX) and consider the affine (linear) transformation Y = AX+ b.

Note that the MGF of the random vector Y is given by

ϕY(sy ) = E{es
T
y Y} = E{es

T
y (AX+b)} = E{es

T
y AX · es

T
y b} = es

T
y b · E{es

T
y AX}

= es
T
y b · ϕX(sx)|sx=AT sy

= es
T
y b · exp

[
sTy AµX +

1

2
sTy ACXA

T sy

]

= exp

[
sTy (AµX + b) +

1

2
sTy ACXA

T sy

]
△
= exp

[
sTy µY +

1

2
sTy CYsy

]
= ϕY(sy ).

The Laplace transform is a unique one-to-one transformation.
Hence, we have that

Y = AX+ b =⇒ Y ∼ N(AµX + b,ACXA
T ). (14)

i.e. affine/linear transformations of Gaussian random vectors result in

Gaussian distributed random vectors.
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The Multivariate Gaussian Distribution Standardized Multivariate Gaussian

Standardized Multivariate Gaussian
If Z = [Z1,Z2, . . . ,Zn]

T ∼ N(0, In), i.e. where µZ = 0 and CZ = In, then Z is said
to be a n × 1 standardized multivariate Gaussian random vector.

Note from (12) that the PDF of Z is given by

fZ(z) = |2πIn|−1/2 exp

[
−1

2
(z− 0)T I−1

n (z− 0)

]
= (2π)−n/2|In|−1/2 exp

[
−1

2
∥z∥2

]
= (2π)−n/2 exp

[
−1

2

n∑
i=1

z2i

]
=

n∏
i=1

1√
2π

e−
1
2
z2i = fZ1(z1) · fZ2(z2) · · · fZn (zn)

(15)

where Zi ∼ fZi (zi ) = fZ (zi ) =
1√
2π
e−

1
2
z2i ,

i.e. each Zi ∼ N(0, 1) is i.i.d. standardized univariate normal.

Z ∼ N(0, In) is sometimes called a white Gaussian random vector.

When covariance is CZ ̸= In, then Z is described as colored Gaussian.

Note that if Z̃ = QZ (linear transformation of Z) where Q is a n × n orthogonal
matrix, i.e. QTQ = QQT = In, then Z̃ is also Gaussian. Specifically, by (14) we
know that

Z̃ ∼ N(Q0,QInQ
T ) = N(0,QQT ) = N(0, In).

Note that Z and Z̃ have the same PDF.
We say that Z and Z̃ are identically distributed.

We sometimes denote this as Z
d
= Z̃.

Christ D. Richmond (Duke) Random Vectors and Multivariate Probability Models October 3, 2024 26 / 42



The Multivariate Gaussian Distribution Standardized Multivariate Gaussian

Standardized Multivariate Gaussian Cont.

This demonstrates that white Gaussian random vectors have PDFs that are

invariant to orthogonal linear transformation.

If Z ∼ N(0, In), then QZ ∼ N(0, In) for any n × n orthogonal matrix Q.

Consider n × 1 vector X ∼ N[0, diag(σ2
1 , σ

2
2 , . . . , σ

2
n)].

This is not standardized Gaussian nor white in general.
Each element Xi , however, is uncorrelated with Xj for i ̸= j .
Note by (12) the PDF of this X is given by

fX(x) = |2πdiag(σ2
1 , σ

2
2 , . . . , σ

2
n)|−1/2 exp

[
−1

2
(x− 0)Tdiag(1/σ2

1 , 1/σ
2
2 , . . . , 1/σ

2
n)(x− 0)

]
= (2π)−n/2

(
n∏

i=1

σ2
i

)−1/2

exp

[
−1

2

n∑
i=1

1

σ2
i

x2
i

]

=
n∏

i=1

1√
2πσ2

i

e
−

x2i
2σ2

i = fX1(x1) · fX2(x2) · · · fXn (xn)

(16)

where Xi ∼ fXi (xi ) =
1√
2πσ2

i

e
−

x2i
2σ2

i , i = 1, 2, . . . , n are clearly independent

random variables.
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The Multivariate Gaussian Distribution A Transformation Resulting in Uncorrelated R.V.’s

A Transformation Resulting in Uncorrelated R.V.’s

Let X ∼ N(0,CX) where CX = QΛQT and consider Y = QTX, i.e. a linear
transformation.

We know that Y is also a Gaussian random vector.

Specifically, we note by (14) that

Y ∼ N(QT0,QTCXQ) = N(0,QTQΛQTQ) = N(0, IΛI) = N(0,Λ). (17)

Hence, Y ∼ N[0, diag(λ1, λ2, . . . , λn)].

Similar to analysis of (16) it follows that the elements of Y = [Y1,Y2, . . . ,Yn]
T are

all uncorrelated and independent where Yi ∼ N(0, λi ), i = 1, 2, . . . , n.
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The Multivariate Gaussian Distribution A Transformation Resulting in Uncorrelated R.V.’s

Uncorrelated Gaussian R.V.’s are Independent

Let n × 1 vector X ∼ N(µX,CX) and consider the partition

X =

[
(X1)m×1

(X2)(n−m)×1

]
, µX =

[
µ1

µ2

]
, CX =

[
C11 C12

C21 C22

]
.

If C12 = CT
21 = 0, i.e. X1 and X2 are uncorrelated, then

C−1
X =

[
C−1

11 0
0 C−1

22

]
, and |CX| = |C11| · |C22| =⇒ (12) becomes

fX = (2π)−n/2|C11| · |C22| exp
[
−1

2
(x1 − µ1)

TC−1
11 (x1 − µ1)−

1

2
(x2 − µ2)

TC−1
22 (x2 − µ2)

]
= (2π)−m/2|C11| exp

[
−1

2
(x1 − µ1)

TC−1
11 (x1 − µ1)

]
×

(2π)−(n−m)/2|C22| exp
[
−1

2
(x2 − µ2)

TC−1
22 (x2 − µ2)

]
= fX1 · fX2 .

Thus, if Gaussian X1 and X2 are uncorrelated, then they are also independent.
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The Multivariate Gaussian Distribution A Transformation Resulting in Uncorrelated R.V.’s

Uncorrelated Gaussian R.V.’s are Independent Cont.
Consider the bivariate Gaussian case, i.e. where n = 2 and m = 1. Recall from
equation (17) in Lecture Notes 5 that [CW ]1,2 = C12 = 0 means ρX ,YσXσY = 0, or
simply that ρX ,Y = 0. The joint bivariate Gaussian on slide 29 of Lecture Notes 5
becomes

fW(w) = fX ,Y (x , y) =

exp

[
− 1

2

(
x−µX
σX

)2
− 1

2

(
y−µY
σY

)2]
2πσXσY

=
1√
2πσ2

X

e
−(x−µX )2

2σ2
X · 1√

2πσ2
Y

e
−(y−µY )2

2σ2
Y = fX · fY .

In general, however, when C12 = CT
21 ̸= 0, i.e. X1 and X2 correlated, it follows that

The marginal joint PDF for X1 is N(µ1,C11).
The marginal joint PDF for X2 is N(µ2,C22).
The conditional distribution of X1 given X2 is given by

X1|X2 ∼ N[µ1 + C12C
−1
22 (X2 − µ2),C11.2]

where C11.2
△
= C11 − C12C

−1
22 C21.

(18)

You will prove this in your homework.
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The Multivariate Gaussian Distribution Transformation to a Standardized Gaussian

Transformation to a Standardized Gaussian

Recall if univariate X ∼ N(µ, σ2), then Z = (X − µ)/σ ∼ N(0, 1), i.e.
standardized normal.

Let X ∼ N(µX,CX) and consider Z = C−1/2
X (X− µX).

Note that Z = AX+ b where A = C−1/2
X and b = −C−1/2

X µX.

Thus, we know from property of Gaussians under linear transformations that

Z ∼ N(AµX + b,ACXA
T ) = N(C−1/2

X µX − C−1/2
X µX,C

−1/2
X CXC

−1/2
X ) = N(0, In),

i.e. Z is a multivariate normal with zero mean and identity covariance.

Clearly, subtracting µX from X (i.e. centering it) yields a zero mean vector.

Multiplication by C−1/2
X is often referred to as a whitening transformation.

If X0 ∼ N(0,CX), then by (14) =⇒
C−1/2

X X0 ∼ N(0,C−1/2
X CXC

−1/2
X ) = N(0, In).

i.e. multiplication by C−1/2
X transform vector X0 into a white Gaussian.
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The Multivariate Gaussian Distribution A Stochastic Representation of Multivariate Gaussian

A Stochastic Representation of Multivariate Gaussian

Recall if univariate r.v. Z ∼ N(0, 1), then X
d
= σ · Z + µ ∼ N(µ, σ2).

Let Z ∼ N(0, In) and consider H = C1/2
X Z+ µX, i.e. a linear transformation.

We know that H is also a Gaussian random vector.

Specifically, note by (14) that

H ∼ N(C1/2
X 0+ µX,C

1/2
X InC

1/2
X ) = N(0+ µX,C

1/2
X C1/2

X ) = N(µX,CX).

Clearly, H
d
= X where X ∼ N(µX,CX), i.e. X

d
= C1/2

X Z+ µX where Z ∼ N(0, In).

This is a very useful way of numerically simulating an arbitrary multivariate

Gaussian random vector; namely, if a sample vector from distribution N(µX,CX) is

desired, then:

Generate a sample of a standardized Gaussian random vector Z ∼ N(0, In).

Use it to form H = C1/2
X Z+ µX.

This vector H is now a sample vector from PDF N(µX,CX).
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The Multivariate Gaussian Distribution A Stochastic Representation of Multivariate Gaussian

Useful Moment Theorem for Zero Mean Gaussians

Let X ∼ N(0,CX) and note useful moment theorem for zero mean Gaussians:

E{X1 · X2 · · ·Xm} =



0, m odd∑
All

distinct
pairs

∏
E{XiXj}, m even

For example, if m = 4 =⇒

E{X1X2X3X4} = E{X1X2}E{X3X4}+ E{X1X3}E{X2X4}+ E{X1X4}E{X2X3}
= [CX]1,2[CX]3,4 + [CX]1,3[CX]2,4 + [CX]1,4[CX]2,3.

(19)

For proof see [2] page 258.
This can likewise be established via MGF as described in (11).
Note that if we choose X1 = X2 = X3 = X4 =⇒ E{X 4

1 } = 3[CX]
2
1,1 = 3σ4

X1
.

This is consistent with HW3 problem 12-A.
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The Multivariate Gaussian Distribution A Stochastic Representation of Multivariate Gaussian

Useful Integral Theorem for Norm Squared of R.V.

Next we present a multivariate integral theorem that is often useful when dealing
with spherically symmetric distributions.

If a PDF is strictly a function of the norm squared of it’s argument, then it is
said to be spherically symmetric.
For example, in (15) note that for Z ∼ N(0, In) = fZ(z) = g(∥z∥2) = g(zT z).

Thus, the PDF of Z ∼ N(0, In) is spherically symmetric.

A proof of the following theorem can be found in [5].

Theorem (Real Random Variables): Integrating a well-behaved function q(aTa)
over all a ∈ Rn has the equivalent integral representation∫

a∈Rn

q(aTa)da =
πn/2

Γ(n/2)

∫ ∞

0

r
n
2
−1q(r)dr (20)

where Γ(z) is the univariate Gamma function that has the property that
Γ(n + 1) = n! for n that is a non-negative integer.

Generally speaking, the proof is established by a change of variables to polar
coordinates, and then simply integrating over all the angle variables. See [5]
for details.

We will prove this for the simpler n = 2 case later.
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The Multivariate Gaussian Distribution A Stochastic Representation of Multivariate Gaussian

PDF of Norm Squared of Spherically Symmetric R.V.

Consider any random vector Z = [Z1,Z2, . . . ,Zn]
T ∼ fZ(z) = g(∥z∥2), i.e. any

random vector with a spherically symmetric distribution.

Define r.v. ρ = ∥Z∥2 =
∑n

i=1 Z
2
i and note mean of function h(ZTZ) is

E{h(ZTZ)} =

∫
z∈Rn

h(zT z)g(zT z)dz =
πn/2

Γ(n/2)

∫ ∞

0

r
n
2
−1h(r)g(r)dr

= E{h(ρ)} =
∫ ∞

0

h(r)fρ(r)dr
(21)

where first equality is by definition of expectation;
second equality follows from (20);
the third equality must hold from basic probability, i.e. treating h(·) as
function of ρ ∼ fρ;

and the last equality is by definition of expectation (averaging over ρ ∼ fρ).

Comparing last two integrals in (21), we can conclude that the pdf of ρ must be

fρ(r) =
πn/2

Γ(n/2)
r

n
2
−1g(r), r ≥ 0.
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The Multivariate Gaussian Distribution Central Chi-Squared Distribution

Central Chi-Squared Distribution
Consider Z ∼ N(0, In), i.e. a standardized multivariate Gaussian vector.

The PDF of ρ = ∥Z∥2 =
n∑

i=1

Z 2
i is given by a central chi-squared of n

degrees-of-freedom:
ρ ∼ fρ(r) =

1

2n/2Γ(n/2)
r

n
2
−1e−r/2, r ≥ 0. (22)

Proof: Note that if fρ is pdf of ρ = ∥Z∥2, then any function h(ρ) has average
value

E{h(ρ)} =
∫ ∞

0

h(a)fρ(a)da. (23)

This average likewise follows when h(·) is treated as a function of Z, i.e.

E{h(∥Z∥2)} =
∫
Rn

h(∥b∥2)fz(b)db =

∫
Rn

h(∥b∥2)(2π)−(n/2) exp

[
−1

2
∥b∥2

]
db

=
πn/2

Γ(n/2)

∫ ∞

0

a
n
2
−1h(a)(2π)−(n/2) exp

[
−1

2
a

]
da

(24)

where the last equality follows from the previously discussed integral theorem.

Comparing (23) and (24) that must be equal, it follows that fρ is given by

(22). ■

Central chi-squared distribution of n dofs sometimes denoted by notation ρ
d
= χ2

n.
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The Multivariate Gaussian Distribution Central Chi-Squared Distribution

Moments of a Central Chi-Squared Random Variable

Since (22) is a pdf, it has unit area:∫ ∞

0

fρ(r)dr = 1 =⇒
∫ ∞

0

1

2n/2Γ(n/2)
r

n
2
−1e−r/2dr = 1 =⇒∫ ∞

0

r
n
2
−1e−r/2dr = 2n/2Γ(n/2)

(25)

where last equality is a useful integral identity.

(25) can be used to find the m-th moment of χ2
n:

E{(χ2
n)

m} =
∫ ∞

0

1

2n/2Γ(n/2)
rm · r

n
2
−1e−r/2dr =

1

2n/2Γ(n/2)

∫ ∞

0

r(m+ n
2 )−1e−r/2dr

=⇒ E{(χ2
n)

m} =
2(m+ n

2 )Γ
(
m + n

2

)
2n/2Γ(n/2)

=
2mΓ

(
m + n

2

)
Γ(n/2)

.

(26)

Since Γ(z +m) = (z +m − 1)(z +m − 2) · · · (z + 1)zΓ(z) for positive integers m
[6], it follows that Γ

(
m + n

2

)
=
(
n
2
+m − 1

) (
n
2
+m − 2

)
· · ·
(
n
2
+ 1
)

n
2
Γ(n/2) =⇒

E{(χ2
n)

m} = 2m
(n
2
+m − 1

)(n
2
+m − 2

)
· · ·
(n
2
+ 1
) n

2
. (27)
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The Multivariate Gaussian Distribution Central Chi-Squared Distribution

Moments of a Central Chi-Squared Random Variable Cont.

Thus, the mean and variance of χ2
n are given by

E{χ2
n} = 2 · n

2
= n

E{(χ2
n)

2} = 22
(n
2
+ 1
) n

2
= (n + 2)n

 =⇒
σ2
χ2
n

= E{(χ2
n)

2} − E 2{χ2
n}

= (n + 2)n − n2

= 2n.

(28)

Note from mean and variance that PDF is more concentrated near origin for small
n, and moves away from origin and spreads out as n increases.

The mean and variance of χ2
n can also be found by recalling χ2

n
d
=
∑n

i=1 Z
2
i where

Zi ∼ N (0, 1). The Gaussian fourth order moment formula (19) would have to be
used.

Interestingly, we can likewise find the inverse m-th moment of χ2
n:

E

{
1

(χ2
n)m

}
=

∫ ∞

0

1

2n/2Γ(n/2)
r−m · r

n
2
−1e−r/2dr =

1

2n/2Γ(n/2)

∫ ∞

0

r(
n
2
−m)−1e−r/2dr

=⇒ E

{
1

(χ2
n)m

}
=

2(
n
2
−m)Γ

(
n
2
−m

)
2n/2Γ(n/2)

=
Γ
(
n
2
−m

)
2mΓ(n/2)

(29)

where again (25) has been used. This is valid for n
2
−m ≥ 1.

Christ D. Richmond (Duke) Random Vectors and Multivariate Probability Models October 3, 2024 38 / 42



The Multivariate Gaussian Distribution Confidence Ellipse for Multivariate Gaussian

Confidence Ellipse for Multivariate Gaussian
Recall from (12) that the multivariate Gaussian has elliptical symmetry.

Indeed, recall in our discussions of the bivariate Gaussian we plotted lines of
constant density and observed these to be given by ellipses in the (X ,Y ) plane.

If we repeat this exercise for the multivariate Gaussian in (12) then we’d find that

regions of constant density are given by ellipsoids in n-dimensions.

It is interesting to ask what is the probability that a random observation

X = [X1,X2, . . . ,Xn]
T ∼ N(µX,CX) will fall within a specific ellipsoidal region of

constant density?

Specifically what is Pr[(X− µX)
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X (X− µX) ≤ ζ] ?
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(30)

where γ(m,w) =

∫ w

0

tm−1e−tdt is lower incomplete Gamma function [6]; change

of variables u = r/2, du = dr/2 was used.
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where γ(m,w) =

∫ w

0

tm−1e−tdt is lower incomplete Gamma function [6]; change

of variables u = r/2, du = dr/2 was used.

Christ D. Richmond (Duke) Random Vectors and Multivariate Probability Models October 3, 2024 39 / 42



The Multivariate Gaussian Distribution Confidence Ellipse for Multivariate Gaussian

Confidence Ellipse for Multivariate Gaussian
Recall from (12) that the multivariate Gaussian has elliptical symmetry.

Indeed, recall in our discussions of the bivariate Gaussian we plotted lines of
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where γ(m,w) =

∫ w

0

tm−1e−tdt is lower incomplete Gamma function [6]; change

of variables u = r/2, du = dr/2 was used.
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where γ(m,w) =

∫ w

0

tm−1e−tdt is lower incomplete Gamma function [6]; change

of variables u = r/2, du = dr/2 was used.
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where γ(m,w) =

∫ w

0

tm−1e−tdt is lower incomplete Gamma function [6]; change

of variables u = r/2, du = dr/2 was used.
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(30)

where γ(m,w) =

∫ w

0

tm−1e−tdt is lower incomplete Gamma function [6]; change

of variables u = r/2, du = dr/2 was used.
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where γ(m,w) =

∫ w

0

tm−1e−tdt is lower incomplete Gamma function [6]; change

of variables u = r/2, du = dr/2 was used.
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where γ(m,w) =

∫ w

0

tm−1e−tdt is lower incomplete Gamma function [6]; change

of variables u = r/2, du = dr/2 was used.
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where γ(m,w) =

∫ w

0

tm−1e−tdt is lower incomplete Gamma function [6]; change

of variables u = r/2, du = dr/2 was used.
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where γ(m,w) =

∫ w

0

tm−1e−tdt is lower incomplete Gamma function [6]; change

of variables u = r/2, du = dr/2 was used.
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where γ(m,w) =

∫ w

0

tm−1e−tdt is lower incomplete Gamma function [6]; change

of variables u = r/2, du = dr/2 was used.
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where γ(m,w) =

∫ w

0

tm−1e−tdt is lower incomplete Gamma function [6]; change

of variables u = r/2, du = dr/2 was used.
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where γ(m,w) =

∫ w

0

tm−1e−tdt is lower incomplete Gamma function [6]; change

of variables u = r/2, du = dr/2 was used.
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where γ(m,w) =
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tm−1e−tdt is lower incomplete Gamma function [6]; change

of variables u = r/2, du = dr/2 was used.
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where γ(m,w) =
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0

tm−1e−tdt is lower incomplete Gamma function [6]; change

of variables u = r/2, du = dr/2 was used.
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where γ(m,w) =
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0

tm−1e−tdt is lower incomplete Gamma function [6]; change

of variables u = r/2, du = dr/2 was used.
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where γ(m,w) =

∫ w

0

tm−1e−tdt is lower incomplete Gamma function [6]; change

of variables u = r/2, du = dr/2 was used.
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where γ(m,w) =

∫ w

0

tm−1e−tdt is lower incomplete Gamma function [6]; change

of variables u = r/2, du = dr/2 was used.
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where γ(m,w) =

∫ w

0

tm−1e−tdt is lower incomplete Gamma function [6]; change

of variables u = r/2, du = dr/2 was used.
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where γ(m,w) =

∫ w

0

tm−1e−tdt is lower incomplete Gamma function [6]; change

of variables u = r/2, du = dr/2 was used.
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where γ(m,w) =

∫ w

0

tm−1e−tdt is lower incomplete Gamma function [6]; change

of variables u = r/2, du = dr/2 was used.
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where γ(m,w) =

∫ w

0

tm−1e−tdt is lower incomplete Gamma function [6]; change

of variables u = r/2, du = dr/2 was used.
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where γ(m,w) =

∫ w

0

tm−1e−tdt is lower incomplete Gamma function [6]; change

of variables u = r/2, du = dr/2 was used.
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where γ(m,w) =

∫ w

0

tm−1e−tdt is lower incomplete Gamma function [6]; change

of variables u = r/2, du = dr/2 was used.
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tm−1e−tdt is lower incomplete Gamma function [6]; change

of variables u = r/2, du = dr/2 was used.
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Γ(n/2)
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(30)

where γ(m,w) =

∫ w

0

tm−1e−tdt is lower incomplete Gamma function [6]; change

of variables u = r/2, du = dr/2 was used.
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Confidence Ellipse for Multivariate Gaussian Cont.

Note that when n = 2 we have that

γ(n/2, ζ/2)

Γ(n/2)

=
γ(1, ζ/2)

Γ(1)
=

γ(1, ζ/2)

0!
=

∫ ζ/2

0

e−tdt = 1− e−ζ/2.

Thus, recall first bivariate example we considered when plotting regions of
constant density:

µW =

[
3
1

]
, CW =

[
5 −10.4013

−10.4013 30

]
, where ρX ,Y = −0.85.

We can compute these probability for ζ = −2 ln
[
|2πCW |1/2 · A

]
=⇒:

Pr
[
(w − µW )TC−1

W (w − µW ) ≤ ζ
]
= 1− exp

[
ln
(
|2πCW |1/2 · A

)]
= 0.9, 0.5, and 0.1 for A = 0.0025, 0.0123, and 0.0222 respectively.
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