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1 Descriptive Statistics: Definitions and Examples

1.1 Introduction

Definition 1.1 (Population, Sample, and Statistic). A population is the complete collection of all
possible observations of interest. A sample is a subset of observations drawn from the population.
A statistic is a numerical summary computed from sample data and will be defined formally later.

population

sample
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Descriptive statistics help to summarize and visualize data without assuming any probabilistic
model. They describe features such as the center, spread, and shape of the sample distribution. For
a sample x1, x2, . . . , xn ∈ R, consider the following statistics and visualizations.

Example 1.2 (Descriptive Summary). Consider the data set

D = {0, 1, 1, 2, 3, 3, 4, 4, 5, 5, 6, 8, 9, 10, 13}

Then, we have the following statistics (see below)

x̄ ≈ 4.93, S2 ≈ 13.64, Q1 = 2, Q2 = 4, Q3 = 8, IQR = 6.

Measures of Central Tendency.

• Sample Mean:

x̄ =
1

n

n∑
i=1

xi.

It represents the arithmetic average of the data points.

• Median: The value separating the higher half from the lower half when the data are sorted.

• Mode: The most frequently occurring value in the sample.

• Trimmed Mean: The mean computed after removing a fixed proportion (say 5%) of the
smallest and largest values to reduce the effect of outliers.

Measures of Variability.

• Range: max(xi)−min(xi).

• Sample Variance:

S2 =
1

n− 1

n∑
i=1

(xi − x̄)2,

which estimates the population variance σ2.

• Standard Deviation: S =
√
S2.

• Quartiles: The first (Q1), second (Q2), and third (Q3) quartiles are the 25th, 50th, and 75th
percentiles respectively. The median is Q2.

• Interquartile Range (IQR): Q3 −Q1, representing the spread of the middle 50% of data.
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1.2 Visualization

For visualization, we provide a histogram and a box plot. The histogram groups observations into
contiguous bins along the horizontal axis and displays their frequencies as bars; with equal-width
bins, the area of each bar is proportional to the number of observations in that bin. This reveals
the sample’s shape (modality, skew, and potential outliers). In the figure, we also overlay a normal
curve scaled to the total count so you can compare the empirical shape to a Gaussian reference.

The box plot summarizes the distribution of D using quartiles and potential outliers. The box
spans from the first quartile Q1 = 2 to the third quartile Q3 = 8 with interquartile range IQR = 6,
and the line inside the box marks the median Q2 = 4. Whiskers extend to the most extreme points
not beyond 1.5 IQR from the quartiles; any observations beyond the whiskers are flagged as outliers.
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2 Statistical Models and Sufficiency

A statistical model specifies a family of distributions that could generate the observed data. Here,
we use uppercase Xi for random variables and lowercase xi for their realized values.

Definition 2.1 (Statistical Model). A statistical model is a collection of distributions

P = {p(x; θ) : θ ∈ Θ}

on X ⊆ Rd, where θ denotes a vector of unknown parameters and p is a PMF if X is countable and
a PDF if X ⊆ Rd is a nice set such as [a, b]d.

Definition 2.2 (Likelihood Function). Given an i.i.d. sample x1, . . . , xn drawn from p(x; θ), the
likelihood function is

L(θ;x1, . . . , xn) =
n∏

i=1

p(xi; θ),

representing the joint probability mass (in the discrete case) or joint density (in the continuous
case) of the observed data as a function of θ. The log-likelihood is ℓ(θ) = lnL(θ;x1, . . . , xn).

Definition 2.3 (Statistic). Given a sample X1, . . . , Xn, a statistic is any function T (X1, . . . , Xn).
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Definition 2.4 (Sufficient Statistic). A statistic T (X1, . . . , Xn) is sufficient for parameter θ if the
conditional distribution p(x1, . . . , xn | T = t; θ) does not depend on θ.

Theorem 2.5 (Factorization Theorem). A statistic T (X1, . . . , Xn) is sufficient for θ if and only if
the joint pdf/pmf can be factored as

p(x1, . . . , xn; θ) = h(x1, . . . , xn) g(T (x1, . . . , xn); θ),

where h does not depend on θ.

Proof. Assume a dominated model with joint density/pmf p(x1, . . . , xn; θ). If there exist functions
h and g such that p(x; θ) = h(x) g(T (x); θ), then for any value t in the range of T ,

p(x | T = t, θ) =
p(x; θ)∫

T (y)=t p(y; θ) dy
=

h(x) g(t; θ)

g(t; θ)
∫
T (y)=t h(y) dy

=
h(x)∫

T (y)=t h(y) dy
,

which does not depend on θ. Hence T is sufficient.
Conversely, suppose T is sufficient, so that the conditional density p(x | T = t, θ) does not

depend on θ. Define

g(t; θ) =

∫
T (y)=t

p(y; θ) dy = Pθ(T = t), h(x) = p(x | T = T (x), θ0),

where θ0 is any fixed value in Θ. Then, for all θ ∈ Θ,

p(x; θ) = p(x | T = T (x), θ)Pθ(T = T (x)) = h(x) g(T (x); θ)

which yields the desired factorization.

Example 2.6 (Sufficiency in Bernoulli and Poisson Families). If Xi ∼ Bernoulli(p), then T =
∑

iXi

is sufficient for p. Similarly, if Xi ∼ Poisson(λ) independently, then T =
∑

iXi is sufficient for λ.

The notion of sufficiency underlies data reduction and is fundamental for defining exponential
families and efficient estimators.

Proof of Sufficiency for Bernoulli Model. Let X1, . . . , Xn
iid∼ Bernoulli(p) with joint pmf

p(x1, . . . , xn; p) =
n∏

i=1

pxi(1− p)1−xi = p
∑

i xi(1− p)n−
∑

i xi .

Let T (x1, . . . , xn) =
∑n

i=1 xi. Then

p(x1, . . . , xn; p) = h(x1, . . . , xn) g(T (x1, . . . , xn); p),

with h(x1, . . . , xn) = 1 and g(t; p) = pt(1− p)n−t, which satisfies the factorization theorem.
Alternatively, we can obtain the factorization by conditioning on T = t. For sequences with

exactly t ones, symmetry gives

P
(
(X1, . . . , Xn) = (x1, . . . , xn) | T = t

)
=

1(
n
t

) ,
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which does not depend on p. Choosing h(x) = 1/
(

n
T (x1,...,xn)

)
shows that

p(x1, . . . , xn; p) =
1(
n

T (x1,...,xn)

) ( n

T (x1, . . . , xn)

)
pT (x1,...,xn)(1− p)n−T (x1,...,xn)︸ ︷︷ ︸
g(T (x1,...,xn);p)

.

Thus, this choice of T is sufficient for p.

Proof of Sufficiency for Poisson Model. Let X1, . . . , Xn ∼ Poisson(λ). Then

p(x1, . . . , xn;λ) =
n∏

i=1

e−λλ
xi

xi!
=

(
n∏

i=1

1

xi!

)
e−nλλ

∑
i xi .

Define T =
∑

iXi. We can write

p(x1, . . . , xn;λ) = h(x1, . . . , xn)g(T ;λ),

where h(x1, . . . , xn) =
∏

i(1/xi!) and g(T ;λ) = e−nλλT . Thus, by the factorization theorem,
T =

∑
iXi is sufficient for λ.

Definition 2.7 (Minimal Sufficient Statistic). A sufficient statistic T (X1, . . . , Xn) is minimal suf-
ficient if, for any other sufficient statistic S, there exists a function f such that T = f(S) almost
surely. Minimality captures the maximal reduction of the data without losing information about θ.

Definition 2.8 (Maximum Likelihood Estimator). Given a statistical model P = {p(x; θ) : θ ∈ Θ}
and data x1, . . . , xn, the likelihood L and log-likelihood ℓ are

L(θ;x1, . . . , xn) =
n∏

i=1

p(xi; θ), ℓ(θ) = lnL(θ;x1, . . . , xn).

Any maximizer
θ̂ ∈ argmax

θ∈Θ
L(θ;x1, . . . , xn)

is called a maximum likelihood estimator (MLE).

3 Exponential Families

3.1 Definition and Structure

Definition 3.1 (Exponential Family). Let X ⊆ Rd be the sample space and Θ ⊆ Rm the parameter
space. A family of distributions is called an exponential family if its pdf/pmf can be expressed as

p(x; θ) = h(x) exp
(
η(θ)⊤T (x)−A(θ)

)
, where

• h : X → [0,∞) is the base measure that does not depend on θ,

• T : X → Rk is the sufficient statistic,
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• η : Θ → Rk is the natural parameter map where η(Θ) ⊆ Ω with natural parameter space

Ω =
{
η ∈ Rk :

∫
X
h(x) exp(η⊤T (x)) dx < ∞

}
,

• A : Θ → R is the log partition function ensuring normalization over x for all θ ∈ Θ via

A(θ) = ln

∫
X
h(x) exp

(
η(θ)⊤T (x)

)
dx.

• Since A(θ) only depends on θ through η(θ), it is standard to reparameterize by η and this gives

p(x; η) = h(x) exp
(
η⊤T (x)−A(η)

)
, A(η) = ln

∫
X
h(x) exp

(
η⊤T (x)

)
dx.

Examples. The exponential family includes many common distributions: Bernoulli, Poisson,
Gaussian (with known variance), and Exponential.

(a) Bernoulli(p): p(x; p) = px(1− p)1−x,

η(p) = ln
p

1− p
, T (x) = x, h(x) = 1, A(p) = ln

(
1 +

p

1− p

)
.

(b) Poisson(λ): p(x;λ) = e−λλx/x!, η(λ) = lnλ, T (x) = x, h(x) = 1/x!, A(λ) = λ.

(c) Exponential(λ): p(x;λ) = λe−λx 1{x>0} for λ > 0, with

h(x) = 1{x>0}, T (x) = x, η(λ) = −λ, A(λ) = − lnλ.

(d) Normal(θ=µ,σ2 fixed): p(x;µ) = 1√
2πσ2

e−(x−µ)2/(2σ2), η(µ) = µ/σ2, T (x) = x, A(µ) = µ2

2σ2 .

Proposition 3.2 (Normalization implies the log-partition formula). For any θ such that η(θ) ∈ Ω
and

p(x; θ) = h(x) exp
(
η(θ)⊤T (x)−A(θ)

)
is a valid pdf/pmf, the normalizing constant must be

A(θ) = ln

∫
X
h(x) exp

(
η(θ)⊤T (x)

)
dx.

Proof. Integrating p(x; θ) over X and using Fubini’s theorem yields

1 =

∫
X
p(x; θ) dx = e−A(θ)

∫
X
h(x) exp

(
η(θ)⊤T (x)

)
dx.

Solving for A(θ) gives the stated identity whenever the integral is finite.
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Proposition 3.3 (Log-MGF of T (X) in an exponential family). Let X ∼ p(x; θ) in an exponential
family and let u ∈ Rk be such that η(θ) + u ∈ Ω. The log moment generating function of T (X)
under parameter θ is

KT (u; θ) := lnEθ

[
eu

⊤T (X)
]
= A

(
η(θ) + u

)
−A

(
η(θ)

)
,

where A is treated here as a function of η. Equivalently, the MGF is MT (u; θ) = exp
(
A(η(θ)+u)−

A(η(θ))
)
.

Proof. Write p(x; η) = h(x) exp{η⊤T (x)−A(η)} and let

Z(η) =

∫
h(x) exp{η⊤T (x)} dx,

so that A(η) = lnZ(η) and

p(x; η) =
h(x) exp{η⊤T (x)}

Z(η)
.

Then, for θ with natural parameter η(θ),

Eθ

[
eu

⊤T (X)
]
=

∫
eu

⊤T (x) p(x; η(θ)) dx

=
1

Z(η(θ))

∫
h(x) exp{(η(θ) + u)⊤T (x)} dx

=
Z(η(θ) + u)

Z(η(θ))
= exp

(
A(η(θ) + u)−A(η(θ))

)
.

Taking logarithms gives

KT (u; θ) = lnEθ

[
eu

⊤T (X)
]
= A(η(θ) + u)−A(η(θ)),

as claimed.

Definition 3.4 (Expectation and covariance notation). For a parameter value θ, we write Eθ[·]
for expectation with respect to p(x; θ) and Covθ(Y ) for the covariance of a random vector Y under
p(·; θ):

Covθ(Y ) = Eθ

[
(Y − Eθ[Y ])(Y − Eθ[Y ])⊤

]
, Varθ(Y ) = Covθ(Y ) for scalar Y.

Similarly, when the family is written in terms of the natural parameter η, we may use the subscript
η. When unambiguous, we may omit the subscript and write E[·], Cov(·), and Var(·).

Lemma 3.5 (Log-Partition Function Generates Moments). For the exponential family p(x; η) =
h(x) exp{η⊤T (x)−A(η)}, the gradient and Hessian with respect to the natural parameter η satisfy

∇ηA(η) = Eη[T (X)], ∇2
ηA(η) = Covη(T (X)).

7



Proof. Let Z(η) =
∫
h(x) exp{η⊤T (x)} dx so that A(η) = lnZ(η). Under standard regularity

(allowing differentiation under the integral sign), for each component j we have

∂Z

∂ηj
=

∫
h(x)Tj(x) e

η⊤T (x) dx.

By the chain rule,

∂A

∂ηj
=

1

Z(η)

∂Z

∂ηj
=

∫
Tj(x)

h(x)eη
⊤T (x)

Z(η)
dx = Eη[Tj(X)].

For the Hessian H, the (j, k) entry is given by

∂2A

∂ηj ∂ηk
=

∂

∂ηk
Eη[Tj(X)] = Eη[Tj(X)Tk(X)]− Eη[Tj(X)]Eη[Tk(X)] = Covη

(
Tj(X), Tk(X)

)
,

where we used that ∇η lnZ(η) = 1
Z∇ηZ and the product rule. Stacking components yields the

stated vector and matrix identities.

3.2 Maximum-Likelihood Estimation for Exponential Families

Maximizing the likelihood is equivalent to maximizing the log-likelihood due to the monotonicity
of the logarithm. In exponential families, first-order conditions reduce to matching the expectation
of the statistics T (X) to their empirical averages.

Definition 3.6 (Log-Likelihood in an Exponential Family). For i.i.d. samples x1, . . . , xn from
p(x; θ) = h(x) exp(η(θ)⊤T (x)−A(θ)), the log-likelihood is

ℓ(θ) =
n∑

i=1

[
η(θ)⊤T (xi)−A(θ)

]
+

n∑
i=1

lnh(xi).

Definition 3.7 (Score Function). The score is U(θ) = ∇θℓ(θ), the gradient of the log-likelihood
with respect to the parameter θ.

Lemma 3.8 (Score in Exponential Families). For an exponential family,

U(θ) = ∇θℓ(θ) =

n∑
i=1

Jη(θ)
⊤ (T (xi)− Eθ[T (X)]) ,

where Jη(θ) = ∇θη(θ) is the Jacobian of the map η : Θ → Rk with elements [Jη(θ)]j,k = ∂ηj/∂θk.

Proof. From the definition of ℓ(θ) and linearity of differentiation,

∇θℓ(θ) =
n∑

i=1

Jη(θ)
⊤T (xi)− n∇θA(θ).

By the chain rule and the moment identity for exponential families, ∇θA(θ) = Jη(θ)
⊤∇ηA(θ) =

Jη(θ)
⊤Eθ[T (X)]. Substituting yields the stated form.
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Lemma 3.9 (Score Vanishes at the MLE). If θ̂ is an interior maximizer of ℓ(θ) and regularity
conditions hold, then U(θ̂) = ∇θℓ(θ̂) = 0.

Proof. First-order optimality for a differentiable function on an open set implies the gradient is
zero at any interior maximizer.

Lemma 3.10 (Moment Matching at the MLE). Under mild conditions, the MLE θ̂ satisfies

Eθ̂[T (X)] =
1

n

n∑
i=1

T (xi).

Proof. Set the score to zero: 0 = ∇θℓ(θ̂) = Jη(θ̂)
⊤∑

i

(
T (xi)−Eθ̂[T (X)]

)
. If Jη(θ̂) has full column

rank, then the bracketed sum must vanish, giving the stated equality.

Example 3.11 (Exponential Distribution). For Xi ∼ Exp(λ),

L(λ) = λne−λ
∑

i xi , λ̂ =
n∑
i xi

.

The score equation predicts moment matching for T (x) = x: since Eλ[X] = 1/λ, the condition
Eλ̂[X] = X̄ yields λ̂ = 1/X̄ = n/

∑
i xi as above.

Example 3.12 (Bernoulli Distribution). If Xi ∼ Bernoulli(p), then p(x; p) = px(1 − p)1−x is an
exponential family with T (x) = x. The likelihood L(p) = p

∑
i xi(1− p)n−

∑
i xi is maximized at

p̂ =
1

n

n∑
i=1

xi.

This agrees with moment matching since Ep[X] = p.

4 Hypothesis Testing

4.1 Frequentist Approach

Definition 4.1 (Null and Alternative Hypotheses). A null hypothesis H0 specifies a set of param-
eter values (e.g., θ = θ0). An alternative hypothesis H1 represents competing values (e.g., θ > θ0
or θ ̸= θ0).

Definition 4.2 (Test Statistic and Rejection Region). A test statistic T (X) is a function of the
data used to decide whether to reject H0. The rejection region R is the set of values for which H0

is rejected.

Example 4.3 (Gaussian Mean Test). Assume X1, . . . , Xn
iid∼ N(µ, σ2) with σ known. Under H0 :

µ = µ0, the standardized statistic

Z =
X̄ − µ0

σ/
√
n

has the standard normal distribution.
One-sided upper-tail test (H1 : µ > µ0): reject H0 at level α if Z > z1−α; the p-value is

p = 1− Φ(zobs).
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One-sided lower-tail test (H1 : µ < µ0): reject H0 at level α if Z < zα; the p-value is p = Φ(zobs).
Two-sided test (H1 : µ ̸= µ0): reject H0 at level α if |Z| > z1−α/2; the p-value is

p = 2
(
1− Φ(|zobs|)

)
.

Equivalently, the two-sided level-α test rejects H0 iff µ0 lies outside the (1− α)× 100% confidence
interval

X̄ ± z1−α/2
σ√
n
.

Definition 4.4 (Type-I and Type-II Errors). A Type-I error occurs when H0 is rejected although
true. A Type-II error occurs when H0 is not rejected although false. The probability of Type-I
error is denoted by α and called the significance of the test. The probability of Type-II error is
denoted by β and the quantity 1− β is called the power of the test.

Definition 4.5 (Likelihood Ratio Test (LRT)). Given hypotheses H0 : θ ∈ Θ0, H1 : θ ∈ Θ1, and
an observed sample x, one rejects the hypothesis H0 if the likelihood ratio (LR) statistic

Λ(x) =
supθ∈Θ0

L(θ;x)

supθ∈Θ1
L(θ;x)

is less than some threshold c (e.g., 1/10). In that case, the likelihood of the most likely explanation
of x under H0 is smaller than c times the likelihood of the most likely explanation of x under H1.

Remark 4.6. For a LRT, applying a strictly monotone function to both the likelihood-ratio Λ(x)
and the threshold c gives an equivalent test where the direction of the inequality is flipped if the
function is decreasing. Thus, any such function can be used to simplify the test expression in terms
of x without loss in performance.

Definition 4.7 (p-value). The p-value for observed data x is the smallest level of significance α at
which H0 would be rejected by the test, equivalently the tail probability under H0 of obtaining a
test statistic that is more extreme than observed.

Theorem 4.8 (Neyman–Pearson Lemma). For testing simple hypotheses H0 : θ = θ0 vs. H1 : θ =
θ1, the test that rejects H0 when

L(θ0;x)

L(θ1;x)
< cα

has the highest power among all tests of significance α.

Lemma 4.9 (Gaussian Mean Test). For X1, . . . , Xn ∼ N(µ, σ2) with known σ, the two-sided test
for H0 : µ = µ0 vs. H1 : µ ̸= µ0 using the likelihood ratio test reduces to computing the classical
Z-statistic

Z =
X̄ − µ0

σ/
√
n

and rejecting if |Z| > z1−α/2, where z1−α/2 = Φ−1(1− α/2) and Φ is the standard Gaussian CDF.

Proof. For X1, . . . , Xn
i.i.d.∼ N(µ, σ2) with known σ, the sample mean X is a sufficient statistic for

µ and X is also Gaussian with mean µ and variance σ2/n. Thus, the likelihood ratio test for
H0 : µ = µ0 vs. H1 : µ ̸= µ0, in terms of the sample mean x, is given by

Λ(x) =
L(µ0;x)

supµ1 ̸=µ0
L(µ1;x)

=
e−n(x−µ0)2/(2σ2)

supµ1 ̸=µ0
e−n(x−µ1)2/(2σ2)

= e−n(x−µ0)2/(2σ2).
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To find the classical Z-test, we apply the strictly decreasing function
√
− ln(x) to Λ(x). This gives

√
−2 lnΛ(x) =

√
n(X̄ − µ0)2

σ2
=

∣∣∣∣X̄ − µ0

σ/
√
n

∣∣∣∣ = |Z|.

Since we applied a decreasing function, the test rejects if |Z| > c. Choosing the threshold c to
achieve significance α gives c = Φ−1(1−α/2) = z1−α/2 and results in the classical two-sided Z-test
that rejects if |Z| > z1−α/2.

Example 4.10 (Practical Illustration). Suppose σ = 10, n = 25, and the observed mean is x̄ = 53
with µ0 = 50. Then Z = (53 − 50)/(10/

√
25) = 1.5. At α = 0.05, z1−α/2 ≈ 1.96, so we do not

reject H0.

4.2 Bayesian Approach

While the frequentist approach makes no assumptions about θ, the Bayesian approach treats θ
as a random variable with prior π(θ). Consider testing H0 (no disease) versus H1 (disease) with
prior probabilities Pr(H0) = π0 and Pr(H1) = π1 = 1 − π0 where typically π0 ≫ π1. Given a test
outcome X, the posterior odds are

Pr(H1 | X)

Pr(H0 | X)
=

π1
π0︸︷︷︸

prior odds

× p(X | H1)

p(X | H0)︸ ︷︷ ︸
Bayes factor B10

.

Even with a positive test, a small prior π1 can keep the posterior probability of disease low unless B10

is large. Decision thresholds follow from comparing posterior odds to the loss-weighted threshold.

Example 4.11 (COVID testing example). Suppose the disease prevalence is π1 = 0.01 (so π0 = 0.99),
a test has sensitivity Pr(+ | H1) = 0.90 and specificity Pr(− | H0) = 0.95 (so Pr(+ | H0) = 0.05).
For a positive test,

B10 =
Pr(+ | H1)

Pr(+ | H0)
=

0.90

0.05
= 18.

The posterior odds are

Pr(H1 | +)

Pr(H0 | +)
=

π1
π0

B10 =
0.01

0.99
× 18 ≈ 0.1818,

so Pr(H1 | +) = 0.1818
1+0.1818 ≈ 0.154 is not even greater than 0.5. But, two independent positive tests

would yield B10 = 182 = 324 and posterior probability ≈ (0.01/0.99)×324
1+(0.01/0.99)×324 ≈ 0.77.

Definition 4.12 (Posterior and Bayes Factor). Let P (Hj) = πj denote the prior probability of
hypothesis Hj for j = 0, 1, and let πj(θ) be the prior density of θ under Hj on Θj (so

∫
Θj

πj(θ) dθ =

1). The posterior satisfies p(θ | x) ∝ L(θ;x)π(θ). Then, the marginal likelihoods under H0 and H1

are

p(x | Hj) =

∫
Θj

L(θ;x)πj(θ) dθ, j = 0, 1.

The Bayes factor in favor of H1 over H0 is

B10 =
p(x | H1)

p(x | H0)
.

11



The posterior odds equal prior odds times the Bayes factor:

Pr(H1 | x)
Pr(H0 | x)

=
π1
π0

B10.

Example 4.13 (Gaussian Mean with Conjugate Prior). Let Xi
iid∼ N(µ, σ2) with known σ2. Test

H0 : µ = µ0 vs H1 : µ ∼ N(µ0, τ
2). Then under both hypotheses the joint density factors into a

term in X̄ and an ancillary term in the residuals. Thus, we can derive a closed-form Bayes factor
by integrating out µ to get X̄ | H1 ∼ N(µ0, σ2/n + τ2). Evaluating the two Normal densities at
the observed x̄ and taking their ratio yields

B10 =
p(x̄ | H1)

p(x̄ | H0)
=

ϕ
(
x̄;µ0, σ2/n+ τ2

)
ϕ(x̄;µ0, σ2/n)

,

where ϕ(·;m, v) is the Normal pdf with mean m and variance v.

5 Summary

Descriptive statistics summarize observed data, while inferential statistics use probabilistic models
to draw conclusions about parameters. Exponential families unify many common models through
sufficient statistics and log-partition functions, leading naturally to the likelihood principle and
MLEs. Hypothesis testing formalizes decision-making under uncertainty through one-sided, two-
sided, and likelihood ratio tests. Frequentist testing focuses on long-run error rates, while Bayesian
testing incorporates prior beliefs via the Bayes factor.

6 Exercises

1. Unbiasedness of the sample variance. Let X1, . . . , Xn be i.i.d. with mean µ and variance σ2 < ∞.
Show that S2 = 1

n−1

∑n
i=1(Xi − X̄)2 satisfies E[S2] = σ2.

Solution: We use the variance-decomposition identity

n∑
i=1

(Xi − X̄)2 =

n∑
i=1

(Xi − µ)2 − n(X̄ − µ)2.

Taking expectations on both terms and using independence,

E

[
n∑

i=1

(Xi − µ)2

]
= n Var(X1) = nσ2, E

[
n(X̄ − µ)2

]
= n Var(X̄) = n · σ

2

n
= σ2.

Hence

E

[
n∑

i=1

(Xi − X̄)2

]
= nσ2 − σ2 = (n− 1)σ2,

and therefore

E[S2] = E

[
1

n− 1

n∑
i=1

(Xi − X̄)2

]
= σ2.
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For completeness, the identity follows by expanding and simplifying:∑
i

(Xi − X̄)2 =
∑
i

(Xi − µ)2 − 2(X̄ − µ)
∑
i

(Xi − µ) + n(X̄ − µ)2,

and noting that the middle term vanishes because
∑

i(Xi − µ) = n(X̄ − µ).

2. Exponential MLE and confidence interval. LetXi ∼ Exp(λ) i.i.d. Given data (0.7, 1.2, 0.4, 2.0, 1.5),
compute the MLE λ̂ and an approximate 95% confidence interval using the asymptotic normal
approximation.

Solution: MLE derivation:

ℓ(λ) =
n∑

i=1

(
lnλ− λxi

)
= n lnλ− λ

∑
i

xi ⇒ dℓ

dλ
=

n

λ
−
∑
i

xi = 0 ⇒ λ̂ =
n∑
i xi

.

Numerics:
∑

xi = 5.8, n = 5, so λ̂ = 5/5.8 ≈ 0.8621.

Asymptotic standard error: the Fisher information for a single observation is I1(λ) = 1/λ2, so
In(λ) = n/λ2 and

SE(λ̂) ≈
√

1

In(λ̂)
=

λ̂√
n
≈ 0.8621√

5
≈ 0.3855.

A 95% Wald CI around an estimate equals the estimated value plus or minus 1.96 standard
deviations because that would imply 95% confidence if the posterior distribution was Gaussian.
Thus, we have

λ̂± 1.96 SE ≈ 0.8621± 1.96× 0.3855 ≈ (0.1065, 1.6177).

Exact CI (recommended for small n): using 2λ
∑

iXi ∼ χ2
2n, invert to get[

χ2
0.025, 2n

2
∑

i xi
,
χ2
0.975, 2n

2
∑

i xi

]
=

[
χ2
0.025,10

11.6
,
χ2
0.975,10

11.6

]
≈ (0.279, 1.765),

using χ2
0.025,10 ≈ 3.246 and χ2

0.975,10 ≈ 20.483.

3. Sufficiency in the Normal model with known variance. Let Xi ∼ N(µ, σ2) i.i.d. with known σ2.
Show T =

∑
iXi is sufficient for µ via factorization.

Solution: Start from the joint density

p(x;µ) =
n∏

i=1

1√
2πσ2

exp

(
−(xi − µ)2

2σ2

)
.

Expand the square: (xi − µ)2 = x2i − 2µxi + µ2. Then

p(x;µ) = (2πσ2)−n/2 exp

(
− 1

2σ2

n∑
i=1

x2i

)
exp

(
µ

σ2

n∑
i=1

xi −
nµ2

2σ2

)
.

This factors as h(x) g(T ;µ) with

h(x) = (2πσ2)−n/2 exp

(
− 1

2σ2

n∑
i=1

x2i

)
, T (x) =

n∑
i=1

xi, g(T ;µ) = exp

(
µ

σ2
T − nµ2

2σ2

)
,
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which does not depend on µ except through T . By the factorization theorem, T =
∑

iXi

(equivalently X̄) is sufficient for µ.

4. Z-test with known variance (numerical). Suppose σ = 12, n = 36, x̄ = 205, and we test
H0 : µ = 200 vs. H1 : µ ̸= 200 at α = 0.05. Compute the test statistic, p-value, and decision.

Solution: Compute the standardized statistic

Z =
x̄− µ0

σ/
√
n

=
205− 200

12/
√
36

=
5

2
= 2.5.

Two-sided p-value:
p = 2

(
1− Φ(2.5)

)
≈ 2(1− 0.9938) = 0.0124.

Decision at α = 0.05: since p < 0.05 (equivalently, |Z| = 2.5 > 1.96), reject H0.

Cross-check via confidence interval: a 95% CI is

x̄± z0.975
σ√
n
= 205± 1.96 · 2 = (201.08, 208.92),

which does not contain µ0 = 200, so we again reject H0.

5. Likelihood-ratio test for a Poisson mean. Let X1, . . . , Xn ∼ Poisson(λ) i.i.d. Test H0 : λ = λ0

vs. H1 : λ ̸= λ0. Derive the LRT in terms of T =
∑

iXi and express the p-value in terms of a
Poisson CDF. Evaluate the decision for n = 10, observed T = 18, and λ0 = 1.2 at α = 0.05.

Solution: By sufficiency, the likelihood depends on the sample only through T =
∑

iXi. Under
H0, T ∼ Poisson(nλ0) with mean nλ0. The LRT for a two-sided alternative rejects for values of
T in the tails (far from nλ0). The corresponding two-sided p-value is

p = 2min
{
PH0

(
T ≤ tobs

)
, PH0

(
T ≥ tobs

)}
= 2min

{
FT (tobs), 1− FT (tobs − 1)

}
,

where FT (k) = PH0(T ≤ k) and we used P(T ≥ t) = 1− FT (t− 1) for integer t.

Numerics: with n = 10, λ0 = 1.2, we have T ∼ Poisson(12) and tobs = 18, so

p = 2min
{
FT (18), 1− FT (17)

}
.

Using the normal approximation with continuity correction gives

Z =
18.5− 12√

12
≈ 1.88, P(T ≥ 18) ≈ 0.030,

so p ≈ 2× 0.030 = 0.060. Exact computation yields p ≈ 0.067. Decision: since p > 0.05, do not
reject H0.

14


	Descriptive Statistics: Definitions and Examples
	Introduction
	Visualization

	Statistical Models and Sufficiency
	Exponential Families
	Definition and Structure
	Maximum-Likelihood Estimation for Exponential Families

	Hypothesis Testing
	Frequentist Approach
	Bayesian Approach

	Summary
	Exercises

