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1 Descriptive Statistics: Definitions and Examples

1.1 Introduction

Definition 1.1 (Population, Sample, and Statistic). A population is the complete collection of all
possible observations of interest. A sample is a subset of observations drawn from the population.
A statistic is a numerical summary computed from sample data and will be defined formally later.

population



Descriptive statistics help to summarize and visualize data without assuming any probabilistic
model. They describe features such as the center, spread, and shape of the sample distribution. For
a sample x1,2o,...,z, € R, consider the following statistics and visualizations.

Ezample 1.2 (Descriptive Summary). Consider the data set
D=1{0,1,1,2,3,3,4,4,5,5,6,8,9, 10,13}
Then, we have the following statistics (see below)
T~4.93, S?~1364, Q1 =2, Q2=4, Q3=8, IQR=6.
Measures of Central Tendency.

e Sample Mean:

xr =

n
E XI;.
i=1

It represents the arithmetic average of the data points.

SR

e Median: The value separating the higher half from the lower half when the data are sorted.
e Mode: The most frequently occurring value in the sample.

e Trimmed Mean: The mean computed after removing a fixed proportion (say 5%) of the
smallest and largest values to reduce the effect of outliers.

Measures of Variability.
e Range: max(x;) — min(x;).

e Sample Variance:

n—1

§2= 1S (wi— 5,
=1

which estimates the population variance o2.

Standard Deviation: S = v.S2.

Quartiles: The first (Q1), second (Q2), and third (Q3) quartiles are the 25th, 50th, and 75th
percentiles respectively. The median is Q)s.

Interquartile Range (IQR): Q3 — @1, representing the spread of the middle 50% of data.



1.2 Visualization

For visualization, we provide a histogram and a box plot. The histogram groups observations into
contiguous bins along the horizontal axis and displays their frequencies as bars; with equal-width
bins, the area of each bar is proportional to the number of observations in that bin. This reveals
the sample’s shape (modality, skew, and potential outliers). In the figure, we also overlay a normal
curve scaled to the total count so you can compare the empirical shape to a Gaussian reference.
The box plot summarizes the distribution of D using quartiles and potential outliers. The box
spans from the first quartile Q1 = 2 to the third quartile Q3 = 8 with interquartile range IQR = 6,
and the line inside the box marks the median ()2 = 4. Whiskers extend to the most extreme points
not beyond 1.5 IQR from the quartiles; any observations beyond the whiskers are flagged as outliers.
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2 Statistical Models and Sufficiency

A statistical model specifies a family of distributions that could generate the observed data. Here,
we use uppercase X; for random variables and lowercase x; for their realized values.

Definition 2.1 (Statistical Model). A statistical model is a collection of distributions
P ={p(z;0):0 € O}

on X C R? where 6 denotes a vector of unknown parameters and p is a PMF if X is countable and
a PDF if X C R? is a nice set such as [a, b]°.

Definition 2.2 (Likelihood Function). Given an i.i.d. sample z1,...,z, drawn from p(z;0), the

likelihood function is

L(H;(L‘l, s 7xn) = Hp(xu 9)5
=1

representing the joint probability mass (in the discrete case) or joint density (in the continuous
case) of the observed data as a function of 6. The log-likelihood is £(0) = In L(0; 1, ..., xy).

Definition 2.3 (Statistic). Given a sample X1,..., X, a statistic is any function T'(X71,..., X,).



Definition 2.4 (Sufficient Statistic). A statistic T'(X1, ..., X,,) is sufficient for parameter 6 if the
conditional distribution p(x1,...,z, | T = t;0) does not depend on 6.

Theorem 2.5 (Factorization Theorem). A statistic T(X1,...,Xy) is sufficient for 0 if and only if
the joint pdf/pmf can be factored as

p(x1,. . xn;0) = h(z, ..., 20) g(T (21, ..., 2);0),

where h does not depend on 6.

Proof. Assume a dominated model with joint density /pmf p(x1,...,z,;0). If there exist functions
h and g such that p(z;0) = h(z) g(T(x); ), then for any value ¢ in the range of T,
oz | T =1.0) p(x;0) _ h(z) g(t; 0) h(z)

" S PO dy — 9(:0) iy W) Ay fry— h(y) dy’

which does not depend on 6. Hence T is sufficient.
Conversely, suppose T' is sufficient, so that the conditional density p(z | T = t,60) does not
depend on #. Define

o(t:0) = /T PO =BT =0, A= ple | T=T),00),
y)=t

where 6 is any fixed value in ©. Then, for all § € O,

p(x;0) =p(z | T =T(2),0)Po(T = T(z)) = h(z) 9(T(x);0)
which yields the desired factorization. O
Ezxample 2.6 (Sufficiency in Bernoulli and Poisson Families). If X; ~ Bernoulli(p), then T'= ). X;
is sufficient for p. Similarly, if X; ~ Poisson(\) independently, then T' = ). X; is sufficient for A.

The notion of sufficiency underlies data reduction and is fundamental for defining exponential
families and efficient estimators.

Proof of Sufficiency for Bernoulli Model. Let X1,..., X, o Bernoulli(p) with joint pmf

n

p(z1,...,T;p) = pri(l — )T = pTi(1 — p)r T2 i

=1

Let T(z1,...,25) = Y iy x;. Then

p(xla .. 7xn7p) = h(fL’l, cee 7xn) g(T(l'l, cee 7xn)7p)7

with h(x1,...,7,) = 1 and g(t;p) = p*(1 — p)" ¢, which satisfies the factorization theorem.
Alternatively, we can obtain the factorization by conditioning on T' = ¢t. For sequences with
exactly ¢ ones, symmetry gives

P((Xl,...,Xn):(xl,...,xn)yT:t):L

()



which does not depend on p. Choosing h(x) =1/ (T( " )) shows that

L1y Tn

. _ n T(z1,,%n) 1_ n—=T(21,....Tn)

g(T(-Tlv---vxn);p)
Thus, this choice of T' is sufficient for p. ]

Proof of Sufficiency for Poisson Model. Let X1, ..., X, ~ Poisson(\). Then

n

ATi a |
. _ Y _ - —nAy\ >, T
p(xly-.-,xTw)\)_He [L‘z' = (1:[ :L.Z'>€ A .

=1

Define T'= ), X;. We can write
p(xla <oy g )‘) = h(xla s ,.’En)g(T, )‘)7

where h(zy,...,z,) = [[;(1/x;!) and g(T;\) = e ™AT. Thus, by the factorization theorem,
T =), X, is sufficient for A. O

Definition 2.7 (Minimal Sufficient Statistic). A sufficient statistic T(X1, ..., X,) is minimal suf-
ficient if, for any other sufficient statistic S, there exists a function f such that T = f(.S) almost
surely. Minimality captures the maximal reduction of the data without losing information about 6.

Definition 2.8 (Maximum Likelihood Estimator). Given a statistical model P = {p(x;0) : 6 € O}
and data x1,...,x,, the likelihood L and log-likelihood ¢ are

n

L(Q;;Ul, cee 7xn) = Hp(xzae)v 5(0) = lnL(Q;xla s >$n)'
i=1

Any maximizer

0 e L(B;x, ...
a‘rg%lea@x (7‘,1717 ,$n)

is called a mazimum likelihood estimator (MLE).

3 Exponential Families

3.1 Definition and Structure

Definition 3.1 (Exponential Family). Let X C R? be the sample space and © C R™ the parameter
space. A family of distributions is called an exponential family if its pdf/pmf can be expressed as

p(x;0) = h(x) exp (n(@)TT(m) — A(O)) , where
e h: X — [0,00) is the base measure that does not depend on 6,

o T : X — RFis the sufficient statistic,



e 7: O — R* is the natural parameter map where n(0) C Q with natural parameter space
Q= {77 € RF: /X h(z)exp(n' T(x))dx < oo},
e A:0 — Ris the log partition function ensuring normalization over x for all § € © via
A(9) = ln/X h(z)exp(n(0) " T(z)) dz.
e Since A(f) only depends on 6 through 7(0), it is standard to reparameterize by n and this gives

plain) = hia)exp(n"T) = A) . Al =1 [ ha)exp(n" (@) do

Examples. The exponential family includes many common distributions: Bernoulli, Poisson,
Gaussian (with known variance), and Exponential.

(a) Bernoulli(p): p(z;p) = p*(1 —p)'~7,

x|
=
I

z, h(z) =1, A(p)—1n<1+1fp>.

(b) Poisson()\): p(z;\) = e A% /z!, n(A) =In ), T(z) =z, h(z) = 1/z!, A(\) = A\
(c) Exponential(\): p(z;A) = Ae™** 1y,~0y for A > 0, with

h(z) =150y, T(x) =z, nA)=-A A =-In\

(d) Normal(0=p,0? fixed): p(w; p) = —s—e™ =M@ () = p/o?, T(x) =, Aln) = 4.

Proposition 3.2 (Normalization implies the log-partition formula). For any 0 such that n(0) € Q
and

p(z;6) = h(z) exp (1(0) " T(x) — A(6))

is a valid pdf/pmf, the normalizing constant must be

A(9) = ln/X h(z) exp(n(0) " T(z)) du.

Proof. Integrating p(x;6) over X and using Fubini’s theorem yields

1= /Xp(x; 0)dx = eA(e)/X h(z) exp(n(@)TT(x)) dz.

Solving for A(f) gives the stated identity whenever the integral is finite. O



Proposition 3.3 (Log-MGF of T'(X) in an exponential family). Let X ~ p(x;8) in an exponential
family and let w € R* be such that n(0) + u € Q. The log moment generating function of T(X)
under parameter 0 is

Kop(u; 0) o= By [ TN | = A(5(0) + u) — A(n(9)),

where A is treated here as a function of 1. Equivalently, the MGF is My (u;6) = exp(A(n(6) +u) —
An(9)))-

Proof. Write p(x;1) = h(z) exp{n' T(z) — A(n)} and let

2() = / h(x) exp{n T(x)} dr,

so that A(n) = In Z(n) and
h(z) exp{n"T(x)}
Z(n)

p(x;n) =

Then, for § with natural parameter n(6),

By 7] = / 1) p(a; n(6) da

= 1 T)ex u) T(z €z
Z00(0)) h(z)exp{(n(0) +u) T(x)}d
2(77<9) +“) _

= Z(n(@)) exp (A(U(9)+U) —A(U(Q)))

as claimed. O

Definition 3.4 (Expectation and covariance notation). For a parameter value 6, we write Eg|]
for expectation with respect to p(x;6) and Covy(Y') for the covariance of a random vector Y under

p(:;0):
Cove(Y) = Eg[ (Y — Eg[Y])(Y —Eg[Y]) ], Varg(Y) = Covg(Y) for scalar Y.

Similarly, when the family is written in terms of the natural parameter 7, we may use the subscript
7. When unambiguous, we may omit the subscript and write E[-], Cov(-), and Var(+).

Lemma 3.5 (Log-Partition Function Generates Moments). For the exponential family p(xz;n) =
h(z)exp{n"T(x) — A(n)}, the gradient and Hessian with respect to the natural parameter n satisfy

VyA(n) = Ey[T(X)],  V3A(n) = Covy(T(X).



Proof. Let Z(n) = [h(x)exp{n'T(x)}dx so that A(n) = InZ(n). Under standard regularity
(allowing dlﬁerentlatlon under the integral sign), for each component j we have

aZ / TT
2 — [ W) Ti(z) e T@ g,
5 = [ M) @)

By the chain rule,

OA B 1 07 _/ j( )Md;{;:En[TJ(X)]

on; — Z(n)onj Z(n)
For the Hessian H, the (j, k) entry is given by

0?A 0
oy om. %En[Tj(X)] = B [T (X) T (X)] — By [T3(X)] By [T (X)) = Covy(T;(X), Ti(X)),

where we used that V,InZ(n) = %VnZ and the product rule. Stacking components yields the
stated vector and matrix identities. O
3.2 Maximum-Likelihood Estimation for Exponential Families

Maximizing the likelihood is equivalent to maximizing the log-likelihood due to the monotonicity
of the logarithm. In exponential families, first-order conditions reduce to matching the expectation
of the statistics T(X) to their empirical averages.

Definition 3.6 (Log-Likelihood in an Exponential Family). For i.i.d. samples z1,...,z, from
p(z;0) = h(z) exp(n(0) T T(z) — A(H)), the log-likelihood is

n

10y =3 [n(0) " T(@:) — A©0)] + Y- mh(w).
=1

i=1

Definition 3.7 (Score Function). The score is U(0) = Vyf(0), the gradient of the log-likelihood
with respect to the parameter 6.

Lemma 3.8 (Score in Exponential Families). For an exponential family,
U(0) = Vol(0 Z In( — Eo[T(X)]) .

where J,(0) = Vgn(0) is the Jacobian of the map n: © — R* with elements [J,(0)];x = On;/00).

Proof. From the definition of ¢(6) and linearity of differentiation,
Vol (6 Z Ju(0)TT(x;) — n Vo A().

By the chain rule and the moment identity for exponential families, VoA(0) = J,(0)"V,A(0) =
Jy(0) "Ep[T(X)]. Substituting yields the stated form. O



Lemma 3.9 (Score Vanishes at the MLE). If 0 is an interior mazimizer of £(0) and regularity

conditions hold, then U(6) = Vl(0) = 0.

Proof. First-order optimality for a differentiable function on an open set implies the gradient is
zero at any interior maximizer. ]

Lemma 3.10 (Moment Matching at the MLE). Under mild conditions, the MLE 0 satisfies
1 n
EglT(X)] = > T(x).
i=1

Proof. Set the score to zero: 0 = Vgl(0) = J, ()T 3, (T'(x;) —E4[T(X)]). If Jn(é) has full column
rank, then the bracketed sum must vanish, giving the stated equality. O

Ezample 3.11 (Exponential Distribution). For X; ~ Exp(}\),
n

2T

The score equation predicts moment matching for T'(x) = z: since EA[X] = 1/, the condition
E{[X] = X yields A\ =1/X =n/ >, x; as above.

Ezample 3.12 (Bernoulli Distribution). If X; ~ Bernoulli(p), then p(z;p) = p®(1 — p)!=% is an
exponential family with T'(z) = x. The likelihood L(p) = p2:®i (1 — p)»~2i% is maximized at

n
E ZT;.
1=1

This agrees with moment matching since E,[X] = p.

L(\) = Ate A Ximi N =

p=

S

4 Hypothesis Testing

4.1 Frequentist Approach

Definition 4.1 (Null and Alternative Hypotheses). A null hypothesis Hy specifies a set of param-
eter values (e.g., 0 = 6p). An alternative hypothesis Hy represents competing values (e.g., 8 > 6y
or 0 75 90).

Definition 4.2 (Test Statistic and Rejection Region). A test statistic T(X) is a function of the
data used to decide whether to reject Hy. The rejection region R is the set of values for which Hy
is rejected.

Ezample 4.3 (Gaussian Mean Test). Assume X;,..., X, i N(p,0?) with ¢ known. Under Hy :
= g, the standardized statistic ~

_ X — o

4= i

has the standard normal distribution.
One-sided upper-tail test (Hy : p > po): reject Hy at level a if Z > z1_,; the p-value is
p=1—®(2obs)-



One-sided lower-tail test (Hy : p < pp): reject Hy at level aif Z < z,; the p-value is p = ®(2ops)-
Two-sided test (Hiy : p # pio): reject Ho at level avif [Z] > z;_ 9; the p-value is

p= 2(1 - ®(|zobs|))'

Equivalently, the two-sided level-a test rejects Hy iff o lies outside the (1 — a) x 100% confidence
interval

X+z i.

1—a/2 \/ﬁ

Definition 4.4 (Type-I and Type-1I Errors). A Type-I error occurs when Hj is rejected although
true. A Type-II error occurs when Hj is not rejected although false. The probability of Type-I
error is denoted by « and called the significance of the test. The probability of Type-II error is
denoted by 8 and the quantity 1 — 3 is called the power of the test.

Definition 4.5 (Likelihood Ratio Test (LRT)). Given hypotheses Hy : 6 € ©g, H; : 6 € O1, and
an observed sample x, one rejects the hypothesis Hy if the likelihood ratio (LR) statistic
_ supyeo, L(0:7)
Supgeo, L(6;x)

is less than some threshold ¢ (e.g., 1/10). In that case, the likelihood of the most likely explanation
of x under Hj is smaller than ¢ times the likelihood of the most likely explanation of x under H;.

Remark 4.6. For a LRT, applying a strictly monotone function to both the likelihood-ratio A(x)
and the threshold ¢ gives an equivalent test where the direction of the inequality is flipped if the
function is decreasing. Thus, any such function can be used to simplify the test expression in terms
of x without loss in performance.

Definition 4.7 (p-value). The p-value for observed data x is the smallest level of significance « at
which Hy would be rejected by the test, equivalently the tail probability under Hy of obtaining a
test statistic that is more extreme than observed.

Theorem 4.8 (Neyman—Pearson Lemma). For testing simple hypotheses Hy : 0 = 0y vs. Hy : 6 =
01, the test that rejects Hy when
L(6y; ) -
c
L(6y;z) “

has the highest power among all tests of significance o.

Lemma 4.9 (Gaussian Mean Test). For Xi,..., X, ~ N(u,0?) with known o, the two-sided test
for Hy : p = po vs. Hy : pu # po using the likelihood ratio test reduces to computing the classical
Z-statistic _

_ X — o

~a/vn

and rejecting if |Z| > z1_q /2, where z1_q /9 = ®~1(1 — a/2) and ® is the standard Gaussian CDF.

Z

Proof. For Xq,...,Xn, i N(u,0?) with known o, the sample mean X is a sufficient statistic for

p and X is also Gaussian with mean g and variance o2/n. Thus, the likelihood ratio test for
Hy: = pg vs. Hy : pu # g, in terms of the sample mean z, is given by

L(po; ) _ g~ wo)’/ @) o—nlz—p0)?/(20%)

A xXr) = = =
) = P i150) — 5Dy gy e/

10



To find the classical Z-test, we apply the strictly decreasing function \/— In(z) to A(x). This gives

vV—2InA(z) = n(X _2'%)2 =

g

X — po
a/v/n
Since we applied a decreasing function, the test rejects if |Z| > ¢. Choosing the threshold ¢ to

achieve significance a gives ¢ = ®71(1 — a/2) = 2z;_, /2 and results in the classical two-sided Z-test
that rejects if [Z] > 2z;_q /9. O

= |Z|.

Ezample 4.10 (Practical Illustration). Suppose o = 10, n = 25, and the observed mean is z = 53
with pg = 50. Then Z = (53 — 50)/(10/v/25) = 1.5. At a = 0.05, 2;_,/2 = 1.96, so we do not
reject Hy.

4.2 Bayesian Approach

While the frequentist approach makes no assumptions about 6, the Bayesian approach treats 6
as a random variable with prior 7(6). Consider testing Hp (no disease) versus H; (disease) with
prior probabilities Pr(Hy) = mg and Pr(H;) = m; = 1 — mp where typically 7y > 71. Given a test
outcome X, the posterior odds are

Pr(di | X)) m " p(X | Hy)
Pr(Hy | X) 0 p(X | Ho)
~ N——

prior odds  Bayes factor Big

Even with a positive test, a small prior m; can keep the posterior probability of disease low unless Big
is large. Decision thresholds follow from comparing posterior odds to the loss-weighted threshold.
Ezample 4.11 (COVID testing example). Suppose the disease prevalence is 1 = 0.01 (so w9 = 0.99),
a test has sensitivity Pr(+ | H;) = 0.90 and specificity Pr(— | Hy) = 0.95 (so Pr(+ | Hy) = 0.05).

For a positive test,
Pr(+ | Hi) 090

Big = = =18.
"7 Pr(+ [Hy)  0.05
The posterior odds are
PI‘(Hl ’ +) m 0.01
— = —Bjg=—— x 18~ 0.1818
Pr(Ho | +)  m 7 0.99 ’

so Pr(Hy | +) = 01818~ ().154 is not even greater than 0.5. But, two independent positive tests

1+0.1818
would yield Byg = 182 = 324 and posterior probability ~ % ~ 0.77.

Definition 4.12 (Posterior and Bayes Factor). Let P(H;) = m; denote the prior probability of
hypothesis H; for j = 0,1, and let 7;(#) be the prior density of # under H; on ©; (so fej mj(0) df =
1). The posterior satisfies p(0 | ) oc L(6; x) w(0). Then, the marginal likelihoods under Hy and H;
are
p(z | Hj) = / L(0;x)m;(0)do, j=0,1

i
The Bayes factor in favor of Hy over Hy is
p(z | Hy)

Bio = —F———-
p(x | Ho)

11



The posterior odds equal prior odds times the Bayes factor:

Pr(Hy|z) m

s = — Bio-

Pr(Hy|z) mo
Ezample 4.13 (Gaussian Mean with Conjugate Prior). Let X; & N(p,0?) with known o2. Test
Ho:p=povs H:p~N (po,72). Then under both hypotheses the joint density factors into a
term in X and an ancillary term in the residuals. Thus, we can derive a closed-form Bayes factor
by integrating out u to get X | Hy ~ N(uo, 0?/n + 7%). Evaluating the two Normal densities at
the observed z and taking their ratio yields

_p@|H) o(Z; po, o?/n+71%)
p(z | Ho) &(%; po, o2/n)

where ¢(-;m,v) is the Normal pdf with mean m and variance v.

Bio

5 Summary

Descriptive statistics summarize observed data, while inferential statistics use probabilistic models
to draw conclusions about parameters. Exponential families unify many common models through
sufficient statistics and log-partition functions, leading naturally to the likelihood principle and
MLEs. Hypothesis testing formalizes decision-making under uncertainty through one-sided, two-
sided, and likelihood ratio tests. Frequentist testing focuses on long-run error rates, while Bayesian
testing incorporates prior beliefs via the Bayes factor.

6 Exercises

1. Unbiasedness of the sample variance. Let Xi,..., X, be i.i.d. with mean p and variance 0% < oo.
Show that 5% = —L- 3" | (X; — X)? satisfies E[S?] = o>

Solution: We use the variance-decomposition identity

n n
SO = X)2 = S0 — ) — (X — o)
i=1 i=1
Taking expectations on both terms and using independence,
n 2
2 2 % 2 % o 2
E[Z(Xi—,u) ] =n Var(X;) = no”, E[n(X —p)?] =n Var(X) =n-— =0".
n
i=1
Hence
n
E Z(XZ — X)2] =no? —o? = (n—1)o?,
i=1
and therefore
R .
27 _ 2| 2
E[SY] =E n—lZ(XZ ) ] =




For completeness, the identity follows by expanding and simplifying:

X=X = (Xi—p)? 20X — ) Yy (X —p) +n(X - p)?,

and noting that the middle term vanishes because > ,(X; — u) = n(X — p).

. Exponential MLE and confidence interval. Let X; ~ Exp()) i.i.d. Given data (0.7,1.2,0.4,2.0,1.5),
compute the MLE X and an approximate 95% confidence interval using the asymptotic normal
approximation.

Solution: MLE derivation:

n

dar n N n
(A) = (InA = Az;) =nlni— )\sz A:A_;xi:0:>)‘zz.

i=1 i i

Numerics: S a; = 5.8, n =5, so A = 5/5.8 ~ 0.8621.

Asymptotic standard error: the Fisher information for a single observation is I;(\) = 1/)2, so
I,(\) = n/\? and
. 1 A 0.8621
SEN)~ | ——=—~=~ ~ 0.3855.
Li(N) Vi Vb

A 95% Wald CI around an estimate equals the estimated value plus or minus 1.96 standard
deviations because that would imply 95% confidence if the posterior distribution was Gaussian.
Thus, we have

A+ 1.96SE ~ 0.8621 & 1.96 x 0.3855 ~ (0.1065, 1.6177).

Exact CI (recommended for small n): using 2A ", X; ~ x3,,, invert to get

2 2 2 2
X0.025, 2n X0.975, 2n _ X0.025,10  X0.975,10
23w T 2w 116 * 116

using X%.025,10 ~ 3.246 and X3,975,10 ~ 20.483.

] ~ (0.279, 1.765),

. Sufficiency in the Normal model with known variance. Let X; ~ N(u,0?) i.i.d. with known o2.

Show T' = ). X; is sufficient for p via factorization.
Solution: Start from the joint density

p(x; p) = le \/2;7 exp (—W) :

Expand the square: (z; — )% = x? —2ux; + 2. Then

_ 1 « T nu
p(w; ) = (2m0”) " exp (—202 Zx?) exp <02 dori—5g )
i—1 i—1

This factors as h(z) g(T'; ) with
1< n
— 2\—n/2 - 2 o A
h(x) = (2r0%) exp< - }Hjxi>, Zml, (T; ) _exp< T )

13




which does not depend on p except through 7. By the factorization theorem, T' = ) . X;
(equivalently X) is sufficient for p.

. Z-test with known variance (numerical). Suppose o = 12, n = 36, z = 205, and we test
Hy: =200 vs. Hy : p # 200 at o = 0.05. Compute the test statistic, p-value, and decision.
Solution: Compute the standardized statistic

_T—pp 205-—200 5

Z_a/\/ﬁ_ 12/\/% —522.5.

Two-sided p-value:
p=2(1—®(2.5)) ~2(1 —0.9938) = 0.0124.

Decision at a = 0.05: since p < 0.05 (equivalently, |Z| = 2.5 > 1.96), reject Hy.

Cross-check via confidence interval: a 95% CI is

T+ 20975 —— = 205 £ 1.96 - 2 = (201.08, 208.92),

Vn
which does not contain pg = 200, so we again reject Hyp.

. Likelihood-ratio test for a Poisson mean. Let X1,..., X, ~ Poisson(\) i.i.d. Test Hy : A = Ao
vs. Hy : X # Ag. Derive the LRT in terms of 7' = ). X; and express the p-value in terms of a
Poisson CDF. Evaluate the decision for n = 10, observed T = 18, and A\g = 1.2 at a = 0.05.

Solution: By sufficiency, the likelihood depends on the sample only through 7" =), X;. Under
Hy, T ~ Poisson(n)o) with mean n)g. The LRT for a two-sided alternative rejects for values of
T in the tails (far from n\g). The corresponding two-sided p-value is

p= 2min {]PHO (T < tobs)y PH@ (T > tobs)} = 2min {FT(tobs)7 1- FT(tobs - 1)}7

where Fr(k) =Py, (T < k) and we used P(T" > t) =1 — Fr(t — 1) for integer .

Numerics: with n = 10, A\p = 1.2, we have T ~ Poisson(12) and t,ps = 18, so
p=2min{Fr(18), 1 — Fr(17)}.

Using the normal approximation with continuity correction gives

,_ 18512
/12

so p =~ 2 x 0.030 = 0.060. Exact computation yields p =~ 0.067. Decision: since p > 0.05, do not
reject Hy.

~ 1.88, P(T" > 18)~ 0.030,

14
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