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Chapter 1

Mathematical Review

Set theory is now generally accepted as the foundation of modern mathemat-

ics, and it plays an instrumental role in the treatment of probability. Un-

fortunately, a simple description of set theory can lead to paradoxes, while a

rigorous axiomatic approach is quite tedious. In these notes, we circumvent

these difficulties and assume that the meaning of a set as a collection of objects

is intuitively clear. This standpoint is known as naive set theory. We proceed

to define relevant notation and operations.
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Figure 1.1: This is an illustration of a generic set and its elements.

A set is a collection of objects, which are called the elements of the set. If

an element x belongs to a set S, we express this fact by writing x ∈ S. If x

does not belong to S, we write x /∈ S. We use the equality symbol to denote

logical identity. For instance, x = y means that x and y are symbols denoting

the same object. Similarly, the equation S = T states that S and T are two

symbols for the same set. In particular, the sets S and T contain precisely the

1



2 CHAPTER 1. MATHEMATICAL REVIEW

same elements. If x and y are different objects then we write x 6= y. Also, we

can express the fact that S and T are different sets by writing S 6= T .

A set S is a subset of T if every element of S is also contained in T . We

express this relation by writing S ⊂ T . Note that this definition does not

require S to be different from T . If S ⊂ T and S is different from T , then S

is a proper subset of T , which we indicate by S ( T . Moreover, S = T if and

only if S ⊂ T and T ⊂ S. In fact, this latter statement outlines a methodology

to show that two sets are equal.

There are many ways to specify a set. If the set contains only a few

elements, one can simply list the objects in the set;

S = {x1, x2, x3}.

The content of a set can also be enumerated whenever S has a countable

number of elements,

S = {x1, x2, . . .}.

Usually, the way to specify a set is to take some collection T of objects and

some property that elements of T may or may not possess, and to form the

set consisting of all elements of T having that property. For example, starting

with the integers Z, we can form the subset S consisting of all even numbers,

S = {x ∈ Z|x is an even number}.

More generally, we denote the set of all elements that satisfy a certain property

P by S = {x|x satisfies P}. The braces are to be read as “the set of” while

the symbol | stands for the words “such that.”

It is convenient to introduce two special sets. The empty set, denoted by

∅, is a set that contains no elements. The universal set is the collection of all

objects of interest in a particular context, and it is represented by Ω. Once a

universal set Ω is specified, we need only consider sets that are subsets of Ω. In

the context of probability, Ω is often called the sample space. The complement

of a set S, relative to the universal set Ω, is the collection of all objects in Ω

that do not belong to S,

Sc = {x ∈ Ω|x /∈ S}.

For example, we have Ωc = ∅.
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1.1 Elementary Set Operations

The field of probability makes extensive use of set theory. Below, we review

elementary set operations, and we establish basic terminology and notation.

Consider two sets, S and T .

S T

Figure 1.2: This is an abstract representation of two sets, S and T . Each con-

tains the elements in its shaded circle and the overlap corresponds to elements

that are in both sets.

The union of sets S and T is the collection of all elements that belong to

S or T (or both), and it is denoted by S ∪ T . Formally, we define the union

of these two sets by S ∪ T = {x|x ∈ S or x ∈ T}.

S T

S ∪ T

Figure 1.3: The union of sets S and T consists of all elements that are contained

in S or T .

The intersection of sets S and T is the collection of all elements that

belong to both S and T . It is denoted by S ∩ T , and it can be expressed

mathematically as S ∩ T = {x|x ∈ S and x ∈ T}.
When S and T have no elements in common, we write S ∩ T = ∅. We

also express this fact by saying that S and T are disjoint. More generally, a

collection of sets is said to be disjoint if no two sets have a common element.
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S T

S ∩ T

Figure 1.4: The intersection of sets S and T only contains elements that are

both in S and T .

A collection of sets is said to form a partition of S if the sets in the collection

are disjoint and their union is S.

Figure 1.5: A partition of S is a collection of sets that are disjoint and whose

union is S.

The difference of two sets, denoted by S−T , is defined as the set consisting

of those elements of S that are not in T , S − T = {x|x ∈ S and x /∈ T}. This
set is sometimes called the complement of T relative to S, or the complement

of T in S.

So far, we have looked at the definition of the union and the intersection of

two sets. We can also form the union or the intersection of arbitrarily many

sets. This is defined in a straightforward way,

⋃

i∈I
Si = {x|x ∈ Si for some i ∈ I}

⋂

i∈I
Si = {x|x ∈ Si for all i ∈ I}.

The index set I can be finite or infinite.
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S T

S − T

Figure 1.6: The complement of T relative to S contains all the elements of S

that are not in T .

1.2 Additional Rules and Properties

Given a collection of sets, it is possible to form new ones by applying elemen-

tary set operations to them. As in algebra, one uses parentheses to indicate

precedence. For instance, R ∪ (S ∩ T ) denotes the union of two sets R and

S ∩ T , whereas (R ∪ S) ∩ T represents the intersection of two sets R ∪ S and

T . The sets thus formed are quite different.

T T

R S R S

R ∪ (S ∩ T )

(R ∪ S) ∩ T

Figure 1.7: The order of set operations is important; parentheses should be

employed to specify precedence.

Sometimes, different combinations of operations lead to a same set. For

instance, we have the following distributive laws

R ∩ (S ∪ T ) = (R ∩ S) ∪ (R ∩ T )

R ∪ (S ∩ T ) = (R ∪ S) ∩ (R ∪ T ).

Two particularly useful equivalent combinations of operations are given by
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De Morgan’s laws, which state that

R− (S ∪ T ) = (R− S) ∩ (R− T )

R− (S ∩ T ) = (R− S) ∪ (R− T ).

These two laws can also appear in different forms,
(

⋃

i∈I
Si

)c

=
⋂

i∈I
Sc
i

(

⋂

i∈I
Si

)c

=
⋃

i∈I
Sc
i

when multiple sets are involved. To establish the first equality, suppose that

x belongs to
(
⋃

i∈I Si

)c
. Then x is not contained in

⋃

i∈I Si. That is, x is not

an element of Si for any i ∈ I. This implies that x belongs to Sc
i for all i ∈ I,

and therefore x ∈ ⋂i∈I S
c
i . We have shown that

(
⋃

i∈I Si

)c ⊂ ⋂

i∈I S
c
i . The

converse inclusion is obtained by reversing the above argument. The second

law can be obtained in a similar fashion.

1.3 Cartesian Products

There is yet another way to create new sets from existing ones. It involves the

notion of an ordered pair of objects. Given sets S and T , the cartesian product

S × T is the set of all ordered pairs (x, y) for which x is an element of S and

y is an element of T , S × T = {(x, y)|x ∈ S and y ∈ T}.

1

11 2

2

2

3

3

3

a

a

a

a

b

b

b

b

Figure 1.8: Cartesian products can be used to create new sets. In this example,

the sets {1, 2, 3} and {a, b} are employed to create a cartesian product with

six elements.
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1.4 Functions

A function is a special type of relation that assigns exactly one value to each

input. A common representation for a function is f(x) = y, where f denotes

the rule of correspondence. The domain of a function is the set over which

this function is defined; that is, the collection of arguments that can be used

as input. The codomain is the set into which all the outputs of the function

are constrained to lie. To specify these sets explicitly, the notation

f : X → Y

is frequently used, where X indicates the domain and Y is the codomain. In

these notes, we adopt an intuitive point of view, with the understanding that

a function maps every argument to a unique value in the codomain. However,

a function can be defined formally as a triple (X, Y, F ) where F is a structured

subset of the Cartesian product X × Y .

Example 1. Consider the function f : R → R where f(x) = x2. In this case,

the domain R and the codomain R are identical. The rule of correspondence

for this function is x 7→ x2, which should be read “x maps to x2.”

Example 2. An interesting function that plays an important role in probability

is the indicator function. Suppose S is a subset of the real numbers. We define

the indicator function of set S, denoted 1S : R → {0, 1}, by

1S(x) =







1, x ∈ S

0, x /∈ S.

In words, the value of the function 1S(·) indicates whether its argument belongs

to S or not. A value of one represents inclusion of the argument in S, whereas

a zero signifies exclusion.

The image of function is the set of all objects of the form f(x), where x

ranges over the elements of X ,

{f(x) ∈ Y |x ∈ X}.
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The image of f : X → Y is sometimes denoted by f(X) and it is, in general,

a subset of the codomain. Similarly, the preimage of a set T ⊂ Y under

f : X → Y is the subset of X defined by

f−1(T ) = {x ∈ X|f(x) ∈ T}.

It may be instructive to point out that the preimage of a singleton set can

contain any number of elements,

f−1({y}) = {x ∈ X|f(x) = y}.

This set, f−1({y}), is sometimes called the level set of y.

A function is injective or one-to-one if it preserves distinctness; that is, dif-

ferent elements from the domain never map to a same element in the codomain.

Mathematically, the function f : X → Y is injective if f(x1) = f(x2) implies

x1 = x2 for all x1, x2 ∈ X . The function f is surjective or onto if its image is

equal to its codomain. More specifically, a function f : X → Y is surjective if

and only if, for every y ∈ Y , there exists x ∈ X such that f(x) = y. Finally, a

function that is both one-to-one and onto is called a bijection. A function f is

bijective if and only if its inverse relation f−1 is itself a function. In this case,

the preimage of a singleton set is necessarily a singleton set. The inverse of f

is then represented unambiguously by f−1 : Y → X , with f−1(f(x)) = x and

f(f−1(y)) = y.

1.5 Set Theory and Probability

Set theory provides a rigorous foundation for modern probability and its ax-

iomatic basis. It is employed to describe the laws of probability, give meaning

to their implications and answer practical questions. Becoming familiar with

basic definitions and set operations is key in understanding the subtleties of

probability; it will help overcome its many challenges. A working knowledge

of set theory is especially critical when modeling measured quantities and

evolving processes that appear random, an invaluable skill for engineers.



1.5. SET THEORY AND PROBABILITY 9

Further Reading

1. Bertsekas, D. P., and Tsitsiklis, J. N., Introduction to Probability, Athena

Scientific, 2002: Section 1.1.

2. Gubner, J. A., Probability and Random Processes for Electrical and Computer

Engineers, Cambridge, 2006: Section 1.2.
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Chapter 2

Combinatorics and Intuitive

Probability

The simplest probabilistic scenario is perhaps one where the set of possible

outcomes is finite and these outcomes are all equally likely. In such cases,

computing the probability of an event amounts to counting the number of

elements comprising this event and then dividing the sum by the total number

of admissible outcomes.

Example 3. The rolling of a fair die is an experiment with a finite number

of equally likely outcomes, namely the different faces labeled one through six.

The probability of observing a specific face is equal to

1

Number of faces
=

1

6
.

Similarly, the probability of an arbitrary event can be computed by counting the

number of distinct outcomes included in the event. For instance, the probability

of rolling a prime number is

Pr({2, 3, 5}) = Number of outcomes in event

Total number of outcomes
=

3

6
.

While counting outcomes may appear intuitively straightforward, it is in

many circumstances a daunting task. Calculating the number of ways that

certain patterns can be formed is part of the field of combinatorics. In this

chapter, we introduce useful counting techniques that can be applied to situ-

ations pertinent to probability.

11



12 CHAPTER 2. COMBINATORICS

2.1 The Counting Principle

The counting principle is a guiding rule for computing the number of elements

in a cartesian product. Suppose that S and T are finite sets with m and n

elements, respectively. The cartesian product of S and T is given by

S × T = {(x, y)|x ∈ S and y ∈ T}.

The number of elements in the cartesian product S × T is equal to mn. This

is illustrated in Figure 2.1.

1

1

1

1

2

2

22

3

3

3

3
a

a

a

a

b

b

bb

Figure 2.1: This figure provides a graphical interpretation of the cartesian

product of S = {1, 2, 3} and T = {a, b}. In general, if S has m elements and T

contains n elements, then the cartesian product S×T consists of mn elements.

Example 4. Consider an experiment consisting of flipping a coin and rolling

a die. There are two possibilities for the coin, heads or tails, and the die has

six faces. The number of possible outcomes for this experiment is 2× 6 = 12.

That is, there are twelve different ways to flip a coin and roll a die.

The counting principle can be broadened to calculating the number of

elements in the cartesian product of multiple sets. Consider the finite sets

S1, S2, . . . , Sr and their cartesian product

S1 × S2 × · · · × Sr = {(s1, s2, . . . , sr)|si ∈ Si} .
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If we denote the cardinality of Si by ni = |Si|, then the number of distinct

ordered r-tuples of the form (s1, s2, . . . , sr) is n = n1n2 · · ·nr.

Example 5 (Sampling with Replacement and Ordering). An urn contains n

balls numbered one through n. A ball is drawn from the urn and its number is

recorded on an ordered list. The ball is then replaced in the urn. This procedure

is repeated k times. We wish to compute the number of possible sequences that

can result from this experiment. There are k drawings and n possibilities per

drawing. Using the counting principle, we gather that the number of distinct

sequences is nk.

111

1

1 2

2222

Figure 2.2: The cartesian product {1, 2}2 has four distinct ordered pairs.

Example 6. The power set of S, denoted by 2S, is the collection of all subsets

of S. In set theory, 2S represents the set of all functions from S to {0, 1}. By
identifying a function in 2S with the corresponding preimage of one, we obtain

a bijection between 2S and the subsets of S. In particular, each function in 2S

is the characteristic function of a subset of S.

Suppose that S is finite with n = |S| elements. For every element of S,

a characteristic function in 2S is either zero or one. There are therefore 2n

distinct characteristic functions from S to {0, 1}. Hence, the number of distinct

subsets of S is given by 2n.

2.2 Permutations

Again, consider the integer set S = {1, 2, . . . , n}. A permutation of S is

an ordered arrangement of its elements, i.e., a list without repetitions. The

number of permutations of S can be computed as follows. Clearly, there are n

distinct possibilities for the first item in the list. The number of possibilities

for the second item is n − 1, namely all the integers in S except the element
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1

1

1 1

1

2

2

222

3

3

3 3

3

Figure 2.3: The power set of {1, 2, 3} contains eight subsets. These elements

are displayed above.

we selected initially. Similarly, the number of distinct possibilities for the mth

item is n − m + 1. This pattern continues until all the elements in S are

recorded. Summarizing, we find that the total number of permutations of S

is n factorial, n! = n(n− 1) · · ·1.

Example 7. We wish to compute the number of permutations of S = {1, 2, 3}.
Since the set S possesses three elements, it has 3! = 6 different permutations.

They can be written as 123, 132, 213, 231, 312, 321.

1

1

1

1

1

1

1

2

2

2

2

2

2

2

3

3

3

3

3

33

Figure 2.4: Ordering the numbers one, two and three leads to six possible

permutations.
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2.2.1 Stirling’s Formula*

The number n! grows very rapidly as a function of n. A good approximation

for n! when n is large is given by Stirling’s formula,

n! ∼ nne−n
√
2πn.

The notation an ∼ bn signifies that the ratio an/bn → 1 as n → ∞.

2.2.2 k-Permutations

Suppose that we rank only k elements out of the set S = {1, 2, . . . , n}, where
k ≤ n. We wish to count the number of distinct k-permutations of S. Fol-

lowing our previous argument, we can choose one of n elements to be the first

item listed, one of the remaining (n− 1) elements for the second item, and so

on. The procedure terminates when k items have been recorded. The number

of possible sequences is therefore given by

n!

(n− k)!
= n(n− 1) · · · (n− k + 1).

Example 8. A recently formed music group can play four original songs. They

are asked to perform two songs at South by Southwest. We wish to compute

the number of song arrangements the group can offer in concert. Abstractly,

this is equivalent to computing the number of 2-permutations of four songs.

Thus, the number of distinct arrangements is 4!/2! = 12.

1

11

1

1

11

2

2

2

2 2

2

2

3

3

3

3

3

3

3

4

4

4

4

4

4

4

Figure 2.5: There are twelve 2-permutations of the numbers one through four.
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Example 9 (Sampling without Replacement, with Ordering). An urn con-

tains n balls numbered one through n. A ball is picked from the urn, and its

number is recorded on an ordered list. The ball is not replaced in the urn.

This procedure is repeated until k balls are selected from the urn, where k ≤ n.

We wish to compute the number of possible sequences that can result from

this experiment. The number of possibilities is equivalent to the number of

k-permutations of n elements, which is given by n!/(n− k)!.

2.3 Combinations

Consider the integer set S = {1, 2, . . . , n}. A combination is a subset of S.

We emphasize that a combination differs from a permutation in that elements

in a combination have no specific ordering. The 2-element subsets of S =

{1, 2, 3, 4} are

{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4},
whereas the 2-permutations of S are more numerous with

(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4),

(3, 1), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3).

Consequently, there are fewer 2-element subsets of S than 2-permutations of

S.

1

1

1

1

2

22

2

3

3

3

3

4

444

Figure 2.6: There exist six 2-element subsets of the numbers one through four.

We can compute the number of k-element combinations of S = {1, 2, . . . , n}
as follows. Note that a k-permutation can be formed by first selecting k objects
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from S and then ordering them. There are k! distinct ways of ordering k

components. The number of k-permutations must therefore be equal to the

number of k-element combinations multiplied by k!. Since the total number

of k-permutations of S is n!/(n− k)!, we gather that the number of k-element

combinations is
(

n

k

)

=
n!

k!(n− k)!
=

n(n− 1) · · · (n− k + 1)

k!
.

This expression is termed a binomial coefficient. Observe that selecting a k-

element subset of S is equivalent to choosing the n − k elements that belong

to its complement. Thus, we can write

(

n

k

)

=

(

n

n− k

)

.

Example 10 (Sampling without Replacement or Ordering). An urn contains

n balls numbered one through n. A ball is drawn from the urn and placed in

a separate jar. This process is repeated until the jar contains k balls, where

k ≤ n. We wish to compute the number of distinct combinations the jar can

hold after the completion of this experiment. Because there is no ordering in

the jar, this amounts to counting the number of k-element subsets of a given

n-element set, which is given by

(

n

k

)

=
n!

k!(n− k)!
.

Again, let S = {1, 2, . . . , n}. Since a combination is also a subset and

the number of k-element combinations of S is
(

n
k

)

, the sum of the binomial

coefficients
(

n
k

)

over all values of k must be equal to the number of elements

in the power set of S,
n
∑

k=0

(

n

k

)

= 2n.

2.4 Partitions

Abstractly, a combination is equivalent to partitioning a set into two disjoint

subsets, one containing k objects and the other containing the n−k remaining
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elements. In general, the set S = {1, 2, . . . , n} can be partitioned into r disjoint

subsets. Let n1, n2, . . . , nr be nonnegative integers such that

r
∑

i=1

ni = n.

Consider the following iterative algorithm that leads to a partition of S. First,

we choose a subset of n1 elements from S. Having selected the first subset,

we pick a second subset containing n2 elements from the remaining n − n1

elements. We continue this procedure by successively choosing subsets of ni

elements from the residual n − n1 − · · · − ni−1 elements, until no element

remains. This algorithm yields a partition of S into r subsets, with the ith

subset containing exactly ni elements.

We wish to count the number of such partitions. We know that there are
(

n
n1

)

ways to form the first subset. Examining our algorithm, we see that there

are exactly
(

n− n1 − · · · − ni−1

ni

)

ways to form the ith subset. Using the counting principle, the total number

of partitions is then given by

(

n

n1

)(

n− n1

n2

)

· · ·
(

n− n1 − · · · − nr−1

nr

)

,

which after simplification can be written as

(

n

n1, n2, . . . , nr

)

=
n!

n1!n2! · · ·nr!
.

This expression is called a multinomial coefficient.

Example 11. A die is rolled nine times. We wish to compute the number

of possible outcomes for which every odd number appears three times. The

number of distinct sequences in which one, three and five each appear three

times is equal to the number of partitions of {1, 2, . . . , 9} into three subsets of

size three, namely
9!

3!3!3!
= 1680.
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In the above analysis, we assume that the cardinality of each subset is

fixed. Suppose instead that we are interested in counting the number of ways

to pick the cardinality of the subsets that form the partition. Specifically, we

wish to compute the number of ways integers n1, n2, . . . , nr can be selected

such that every integer is nonnegative and

r
∑

i=1

ni = n.

We can visualize the number of possible assignments as follows. Picture n

balls spaced out on a straight line and consider r− 1 vertical markers, each of

which can be put between two consecutive balls, before the first ball, or after

the last ball. For instance, if there are five balls and two markers then one

possible assignment is illustrated in Figure 2.7.

1 1

1 1 1

1 1 111

Figure 2.7: The number of possible cardinality assignments for the partition

of a set of n elements into r distinct subsets is equivalent to the number of

ways to select n positions out of n+ r − 1 candidates.

The number of objects in the first subset corresponds to the number of

balls appearing before the first marker. Similarly, the number of objects in

the ith subset is equal to the number of balls positioned between the ith

marker and the preceding one. Finally, the number of objects in the last

subset is simply the number of balls after the last marker. In this scheme,

two consecutive markers imply that the corresponding subset is empty. For
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example, the integer assignment associated with the Figure 2.7 is

(n1, n2, n3) = (0, 2, 3).

11 111

Figure 2.8: The assignment displayed in Figure 2.7 corresponds to having no

element in the first set, two elements in the second set and three elements in

the last one.

There is a natural relation between an integer assignment and the graph-

ical representation depicted above. To count the number of possible integer

assignments, it suffices to calculate the number of ways to place the markers

and the balls. In particular, there are n + r − 1 positions, n balls and r − 1

markers. The number of ways to assign the markers is equal to the number of

n-combinations of n+ r − 1 elements,
(

n+ r − 1

n

)

=

(

n + r − 1

r − 1

)

.

Example 12 (Sampling with Replacement, without Ordering). An urn con-

tains r balls numbered one through r. A ball is drawn from the urn and its

number is recorded. The ball is then returned to the urn. This procedure is

repeated a total of n times. The outcome of this experiment is a table that

contains the number of times each ball has come in sight. We are interested

in computing the number of possible outcomes. This is equivalent to counting

the ways a set with n elements can be partitioned into r subsets. The number

of possible outcomes is therefore given by
(

n+ r − 1

n

)

=

(

n + r − 1

r − 1

)

.

2.5 Combinatorial Examples

In this section, we present a few applications of combinatorics to computing

the probabilities of specific events.
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Example 13 (Pick 3 Texas Lottery). The Texas Lottery game “Pick 3” is

easy to play. A player must pick three numbers from zero to nine, and choose

how to play them: exact order or any order. The Pick 3 balls are drawn using

three air-driven machines. These machines employ compressed air to mix and

select each ball.

The probability of winning when playing the exact order is

1

10

1

10

1

10
=

1

1000
.

The probability of winning while playing any order depends on the numbers

selected. When three distinct numbers are selected, the probability of winning

is given by
3!

1000
=

3

500
.

If a number is repeated twice, the probability of winning becomes
(

3
2

)

1000
=

3

1000
.

Finally, if a same number is selected three times, the probability of winning

decreases to 1/1000.

Example 14 (Mega Millions Texas Lottery). To play the Mega Millions game,

a player must select five numbers from 1 to 56 in the upper white play area of

the play board, and one Mega Ball number from 1 to 46 in the lower yellow play

area of the play board. All drawing equipment is stored in a secured on-site

storage room. Only authorized drawings department personnel have keys to the

door. Upon entry of the secured room to begin the drawing process, a lottery

drawing specialist examines the security seal to determine if any unauthorized

access has occurred. For each drawing, the Lotto Texas balls are mixed by four

acrylic mixing paddles rotating clockwise. High speed is used for mixing and

low speed for ball selection. As each ball is selected, it rolls down a chute into

an official number display area. We wish to compute the probability of winning

the Mega Millions Grand Prize, which requires the correct selection of the five

white balls plus the gold Mega ball.

The probability of winning the Mega Millions Grand Prize is

1
(

56
5

)

1

46
=

51!5!

56!

1

46
=

1

175711536
.
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Example 15 (Sinking Boat). Six couples, twelve people total, are out at sea

on a sail boat. Unfortunately, the boat hits an iceberg and starts sinking slowly.

Two Coast Guard vessels, the Ibis and the Mako, come to the rescue. Each

boat can rescue six people. What is the probability that no two people from a

same couple end up on the Mako?

Suppose that rescued passengers are assigned to the Ibis and the Mako

at random. Then, the number of possible ways to partition these passengers

between the two vessels is
(

12

6

)

=
12!

6!6!
.

If no two people from a same couple end up on the Mako, then each couple is

split between the two vessels. In these circumstances, there are two possibilities

for every couple and, using the counting principle, we gather that there are 26

such assignments. Collecting these results, we conclude that the probability

that no two people from a same couple end up on the Mako is equal to

26
(

12
6

) =
266!6!

12!
.

Further Reading

1. Ross, S., A First Course in Probability, 7th edition, Pearson Prentice Hall,

2006: Chapter 1.

2. Bertsekas, D. P., and Tsitsiklis, J. N., Introduction to Probability, Athena

Scientific, 2002: Section 1.6.

3. Gubner, J. A., Probability and Random Processes for Electrical and Computer

Engineers, Cambridge, 2006: Section 1.7.



Chapter 3

Basic Concepts of Probability

The theory of probability provides the mathematical tools necessary to study

and analyze uncertain phenomena that occur in nature. It establishes a formal

framework to understand and predict the outcome of a random experiment. It

can be used to model complex systems and characterize stochastic processes.

This is instrumental in designing efficient solutions to many engineering prob-

lems. Two components define a probabilistic model, a sample space and a

probability law.

3.1 Sample Spaces and Events

In the context of probability, an experiment is a random occurrence that pro-

duces one of several outcomes. The set of all possible outcomes is called the

sample space of the experiment, and it is denoted by Ω. An admissible subset

of the sample space is called an event.

Example 16. The rolling of a die forms a common experiment. A sample

space Ω corresponding to this experiment is given by the six faces of a die.

The set of prime numbers less than or equal to six, namely {2, 3, 5}, is one of

many possible events. The actual number observed after rolling the die is the

outcome of the experiment.

There is essentially no restriction on what constitutes an experiment. The

flipping of a coin, the flipping of n coins, and the tossing of an infinite sequence

of coins are all random experiments. Also, two similar experiments may have

23
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1

2
3

4
5

6

7

event

outcome

Figure 3.1: A sample space contains all the possible outcomes; an admissible

subset of the sample space is called an event.

Figure 3.2: A possible sample space for the rolling of a die is Ω = {1, 2, . . . , 6},
and the subset {2, 3, 5} forms a specific event.

different sample spaces. A sample space Ω for observing the number of heads

in n tosses of a coin is {0, 1, . . . , n}; however, when describing the complete

history of the n coin tosses, the sample space becomes much larger with 2n

distinct sequences of heads and tails. Ultimately, the choice of a particular

sample space depends on the properties one wishes to analyze. Yet some rules

must be followed in selecting a sample space.

1. The elements of a sample space should be distinct andmutually exclusive.

This ensures that the outcome of an experiment is unique.

2. A sample space must be collectively exhaustive. That is, every possible

outcome of the experiment must be accounted for in the sample space.

In general, a sample space should be precise enough to distinguish between all

outcomes of interest, while avoiding frivolous details.
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Example 17. Consider the space composed of the odd integers located between

one and six, the even integers contained between one and six, and the prime

numbers less than or equal to six. This collection cannot be a sample space

for the rolling of a die because its elements are not mutually exclusive. In

particular, the numbers three and five are both odd and prime, while the number

two is prime and even. This violates the uniqueness criterion.

Figure 3.3: This collection of objects cannot be a sample space as the three

proposed outcomes (even, odd and prime) are not mutually exclusive.

Alternatively, the elements of the space composed of the odd numbers be-

tween one and six, and the even numbers between one and six, are distinct and

mutually exclusive; an integer cannot be simultaneously odd and even. More-

over, this space is collectively exhaustive because every integer is either odd or

even. This latter description forms a possible sample space for the rolling of a

die.

Figure 3.4: A candidate sample space for the rolling of a die is composed of

two objects, the odd numbers and the even numbers between one and six.
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3.2 Probability Laws

A probability law specifies the likelihood of events related to an experiment.

Formally, a probability law assigns to every event A a number Pr(A), called

the probability of event A, such that the following axioms are satisfied.

1. (Nonnegativity) Pr(A) ≥ 0, for every event A.

2. (Normalization) The probability of the sample space Ω is equal to one,

Pr(Ω) = 1.

3. (Countable Additivity) If A and B are disjoint events, A ∩ B = ∅,
then the probability of their union satisfies

Pr(A ∪ B) = Pr(A) + Pr(B).

More generally, if A1, A2, . . . is a sequence of disjoint events and
⋃∞

k=1Ak

is itself an admissible event then

Pr

( ∞
⋃

k=1

Ak

)

=
∞
∑

k=1

Pr(Ak).

A number of important properties can be deduced from the three axioms of

probability. We prove two such properties below. The first statement describes

the relation between inclusion and probabilities.

Proposition 1. If A ⊂ B, then Pr(A) ≤ Pr(B).

Proof. Since A ⊂ B, we have B = A∪ (B−A). Noting that A and B−A are

disjoint sets, we get

Pr(B) = Pr(A) + Pr(B −A) ≥ Pr(A),

where the inequality follows from the nonnegativity of probability laws.

Our second result specifies the probability of the union of two events that

are not necessarily mutually exclusive.

Proposition 2. Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B).
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A

B

B − A

Figure 3.5: If event A is a subset of event B, then the probability of A is less

than or equal to the probability of B.

Proof. Using the third axiom of probability on the disjoint sets A and (A ∪
B)− A, we can write

Pr(A ∪B) = Pr(A) + Pr((A ∪ B)− A) = Pr(A) + Pr(B − A).

Similarly, applying the third axiom to A ∩ B and B − (A ∩ B), we obtain

Pr(B) = Pr(A ∩ B) + Pr(B − (A ∩ B)) = Pr(A ∩B) + Pr(B − A).

Combining these two equations yields the desired result.

A B

A ∩B

Figure 3.6: The probability of the union of A and B is equal to the probability

of A plus the probability of B minus the probability of their intersection.

The statement of Proposition 2 can be extended to finite unions of events.

Specifically, we can write

Pr

(

n
⋃

k=1

Ak

)

=

n
∑

k=1

(−1)k−1
∑

I⊂{1,...,n},|I|=k

Pr

(

⋂

i∈I
Ai

)

where the rightmost sum runs over all subsets I of {1, . . . , n} that contain

exactly k elements. This more encompassing result is known as the inclusion-

exclusion principle.
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We can use Proposition 2 recursively to derive a bound on the probabilities

of unions. This theorem, which is sometimes called the Boole inequality, asserts

that the probability of at least one event occurring is no greater than the sum

of the probabilities of the individual events.

Theorem 1 (Union Bound). Let A1, A2, . . . , An be a collection of events, then

Pr

(

n
⋃

k=1

Ak

)

≤
n
∑

k=1

Pr(Ak). (3.1)

Proof. We show this result using induction. First, we note that the claim is

trivially true for n = 1. As an inductive hypothesis, assume that (3.1) holds

for some n ≥ 1. Then, we have

Pr

(

n+1
⋃

k=1

Ak

)

= Pr

(

An+1 ∪
(

n
⋃

k=1

Ak

))

= Pr(An+1) + Pr

(

n
⋃

k=1

Ak

)

− Pr

(

An+1 ∩
(

n
⋃

k=1

Ak

))

≤ Pr(An+1) + Pr

(

n
⋃

k=1

Ak

)

≤
n+1
∑

k=1

Pr(Ak).

Therefore, by the principle of mathematical induction, (3.1) is valid for all

positive integers.

The union bound is often employed in situations where finding the joint

probability of multiple rare events is difficult, but computing the probabilities

of the individual components is straightforward.

Example 18. An urn contains 990 blue balls and 10 red balls. Five people

each pick a ball at random, without replacement. We wish to compute the

probability that at least one person picks a red ball. Let Bk denote the event

that person k draws a red ball. We note that the probability of interest can be

written as Pr
(
⋃5

k=1Bk

)

.

We first approximate this probability using the union bound. The probability

that a particular person picks a red ball is equal to 1/100. Applying (3.1), we

get a bound on the probability that at least one person picks a red ball,

Pr

(

5
⋃

k=1

Bk

)

≤
5
∑

k=1

Pr(Bk) =
5
∑

k=1

1

100
=

1

20
.
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We can also compute this probability exactly. The probability that no red balls

are selected is given by
(

990
5

)

/
(

1000
5

)

. Hence, the probability that a least one

person draws a red ball becomes

Pr

(

5
⋃

k=1

Bk

)

= 1−
(

990
5

)

(

1000
5

) ≈ 0.0491.

As a second application, consider the problem where the five people each

draw two balls from the urn, without replacement. This time, we wish to

approximate the probability that at least one person gets two red balls. Using

the same steps as before, we get

Pr

(

5
⋃

k=1

Ck

)

≤
5
∑

k=1

Pr(Ck) =

5
∑

k=1

(

10
2

)

(

1000
2

) =
1

2220
,

where Ck represents the event that person k draws two red balls. In this latter

scenario, computing the exact probability is much more challenging.

3.2.1 Finite Sample Spaces

If a sample space Ω contains a finite number of elements, then a probability law

on Ω is completely determined by the probabilities of its individual outcomes.

Denote a sample space containing n elements by Ω = {s1, s2, . . . , sn}. Any

event in Ω is of the form A = {si ∈ Ω|i ∈ I}, where I is a subset of the

integers one through n. The probability of event A is therefore given by the

third axiom of probability,

Pr(A) = Pr({si ∈ Ω|i ∈ I}) =
∑

i∈I
Pr(si).

We emphasize that, by definition, distinct outcomes are always disjoint events.

If in addition the elements of Ω are equally likely with

Pr(s1) = Pr(s2) = · · · = Pr(sn) =
1

n
,

then the probability of an event A becomes

Pr(A) =
|A|
n

(3.2)

where |A| denotes the number of elements in A.
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Example 19. The rolling of a fair die is an experiment with a finite number

of equally likely outcomes. The probability of observing any of the faces labeled

one through six is therefore equal to 1/6. The probability of any event can

easily be computed by counting the number of distinct outcomes included in the

event. For instance, the probability of rolling a prime number is

Pr({2, 3, 5}) = Pr(2) + Pr(3) + Pr(5) =
3

6
.

3.2.2 Countably Infinite Models

Consider a sample space that consists of a countably infinite number of el-

ements, Ω = {s1, s2, . . .}. Again, a probability law on Ω is specified by

the probabilities of individual outcomes. An event in Ω can be written as

A = {sj ∈ Ω|j ∈ J}, where J is a subset of the positive integers. Using the

third axiom of probability, Pr(A) can be written as

Pr(A) = Pr({sj ∈ Ω|j ∈ J}) =
∑

j∈J
Pr(sj).

The possibly infinite sum
∑

j∈JPr(sj) always converges since the summands

are nonnegative and the sum is bounded above by one; it is consequently well

defined.

1 2 3 4 5 6 7

Figure 3.7: A countable set is a collection of elements with the same cardinality

as some subset of the natural numbers.

Example 20. Suppose that a fair coin is tossed repetitively until heads is

observed. The number of coin tosses is recorded as the outcome of this ex-

periment. A natural sample space for this experiment is Ω = {1, 2, . . .}, a

countably infinite set.

The probability of observing heads on the first trial is 1/2, and the proba-

bility of observing heads for the first time on trial k is 2−k. The probability of

the entire sample space is therefore equal to

Pr(Ω) =
∞
∑

k=1

Pr(k) =
∞
∑

k=1

1

2k
= 1,
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as expected. Similarly, the probability of the number of coin tosses being even

can be computed as

Pr({2, 4, 6, . . .}) =
∞
∑

k=1

Pr(2k) =
∞
∑

k=1

1

22k
=

1

4

1
(

1− 1
4

) =
1

3
.

3.2.3 Uncountably Infinite Models

Probabilistic models with uncountably infinite sample spaces differ from the

finite and countable cases in that a probability law may not necessarily be

specified by the probabilities of single-element outcomes. This difficulty arises

from the large number of elements contained in the sample space when the

latter is uncountable. Many subsets of Ω do not have a finite or countable

representation, and as such the third axiom of probability cannot be applied

to relate the probabilities of these events to the probabilities of individual

outcomes. Despite these apparent difficulties, probabilistic models with un-

countably infinite sample spaces are quite useful in practice. To develop an

understanding of uncountable probabilistic models, we consider the unit inter-

val [0, 1].

0 1

Figure 3.8: The unit interval [0, 1], composed of all real numbers between zero

and one, is an example of an uncountable set.

Suppose that an element is chosen at random from this interval, with uni-

form weighting. By the first axiom of probability, the probability that this

element belongs to the interval [0, 1] is given by Pr ([0, 1]) = 1. Furthermore,

if two intervals have the same length, the probabilities of the outcome falling

in either interval should be identical. For instance, it is natural to anticipate

that Pr ((0, 0.25)) = Pr ((0.75, 1)).

In an extension of the previous observation, we take the probability of an

open interval (a, b) where 0 ≤ a < b ≤ 1 to equal

Pr((a, b)) = b− a. (3.3)
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0 0.25 0.75 1

Figure 3.9: If the outcome of an experiment is uniformly distributed over [0, 1],

then two subintervals of equal lengths should have the same probabilities.

Using the third axiom of probability, it is then possible to find the probability

of a finite or countable union of disjoint open intervals.

0 1

Figure 3.10: The probabilities of events that are formed through the union of

disjoint intervals can be computed in a straightforward manner.

Specifically, for constants 0 ≤ a1 < b1 < a2 < b2 < · · · ≤ 1, we get

Pr

( ∞
⋃

k=1

(ak, bk)

)

=

∞
∑

k=1

(bk − ak) .

The probabilities of more complex events can be obtained by applying ad-

ditional elementary set operations. However, it suffices to say for now that

specifying the probability of the outcome falling in (a, b) for every possible

open interval is enough to define a probability law on Ω. In the example at

hand, (3.3) completely determines the probability law on [0, 1].

Note that we can give an alternative means of computing the probability

of an interval. Again, consider the open interval (a, b) where 0 ≤ a < b ≤ 1.

The probability of the outcome falling in this interval is equal to

Pr((a, b)) = b− a =

∫ b

a

dx =

∫

(a,b)

dx.
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Moreover, for 0 ≤ a1 < b1 < a2 < b2 < · · · ≤ 1, we can write

Pr

( ∞
⋃

k=1

(ak, bk)

)

=

∞
∑

k=1

(bk − ak) =

∫

⋃∞
k=1(ak ,bk)

dx.

For this carefully crafted example, it appears that the probability of an ad-

missible event A is given by the integral

Pr(A) =

∫

A

dx.

This is indeed accurate for the current scenario. In fact, the class of admissible

events for this experiment is simply the collection of all sets for which the

integral
∫

A
dx can be computed. In other words, if a number is chosen at

random from [0, 1], then the probability of this number falling in set A ⊂ [0, 1]

is

Pr(A) =

∫

A

dx.

This method of computing probabilities can be extended to more complicated

problems. In these notes, we will see many probabilistic models with uncount-

ably infinite sample spaces. The mathematical tools required to handle such

models will be treated alongside.

Example 21. Suppose that a participant at a game-show is required to spin

the wheel of serendipity, a perfect circle with unit radius. When subjected to a

vigorous spin, the wheel is equally likely to stop anywhere along its perimeter.

A sampling space for this experiment is the collection of all angles from 0

to 2π, an uncountable set. The probability of Ω is invariably equal to one,

Pr([0, 2π)) = 1.

The probability that the wheel stops in the first quadrant is given by

Pr
([

0,
π

2

))

=

∫ π
2

0

1

2π
dθ =

1

4
.

More generally, the probability that the wheel stops in an interval (a, b) where

0 ≤ a ≤ b < 2π can be written as

Pr((a, b)) =
b− a

2π
.

If B ⊂ [0, 2π) is a set representing all winning outcomes, then the probability

of success at the wheel becomes

Pr(B) =

∫

B

1

2π
dθ.
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Figure 3.11: The wheel of serendipity forms an example of a random experi-

ment for which the sample space is uncountable.

3.2.4 Probability and Measure Theory*

A thorough treatment of probability involves advanced mathematical concepts,

especially when it comes to infinite sample spaces. The basis of our intuition

for the infinite is the set of natural numbers,

N = {1, 2, . . .}.

Two sets are said to have the same cardinality if their elements can be put

in one-to-one correspondence. A set with the same cardinality as a subset

of the natural numbers is said to be countable. That is, the elements of a

countable set can always be listed in sequence, s1, s2, . . .; although the order

may have nothing to do with any relation between the elements. The integers

and the rational numbers are examples of countably infinite sets. It may be

surprising at first to learn that there exist uncountable sets. To escape beyond

the countable, one needs set theoretic tools such as power sets. The set of real

numbers is uncountably infinite; it cannot be put in one-to-one correspondence

with the natural numbers. A typical progression in analysis consists of using

the finite to gain intuition about the countably infinite, and then to employ

the countably infinite to get at the uncountable.

It is tempting to try to assign probabilities to every subset of a sample

space Ω. However, for uncountably infinite sample spaces, this leads to serious

difficulties that cannot be resolved. In general, it is necessary to work with

special subclasses of the class of all subsets of a sample space Ω. The collections

of the appropriate kinds are called fields and σ-fields, and they are studied in

measure theory. This leads to measure-theoretic probability, and to its unified
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treatment of the discrete and the continuous.

Fortunately, it is possible to develop a working understanding of probabil-

ity without worrying excessively about these issues. At some point in your

academic career, you may wish to study analysis and measure theory more

carefully and in greater details. However, it is not our current purpose to

initiate the rigorous treatment of these topics.

Further Reading

1. Ross, S., A First Course in Probability, 7th edition, Pearson Prentice Hall,

2006: Chapter 2.

2. Bertsekas, D. P., and Tsitsiklis, J. N., Introduction to Probability, Athena

Scientific, 2002: Section 1.2.

3. Miller, S. L., and Childers, D. G., Probability and Random Processes with

Applications to Signal Processing and Communications, 2004: Sections 2.1–

2.3.

4. Gubner, J. A., Probability and Random Processes for Electrical and Computer

Engineers, Cambridge, 2006: Sections 1.1,1.3–1.4.
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Chapter 4

Conditional Probability

Conditional probability provides a way to compute the likelihood of an event

based on partial information. This is a powerful concept that is used exten-

sively throughout engineering with applications to decision making, networks,

communications and many other fields.

4.1 Conditioning on Events

We begin our description of conditional probability with illustrative examples.

The intuition gained through this exercise is then generalized by introducing

a formal definition for this important concept.

Example 22. The rolling of a fair die is an experiment with six equally likely

outcomes. As such, the probability of obtaining any of the outcomes is 1/6.

However, if we are told that the upper face features an odd number, then only

three possibilities remain, namely {1, 3, 5}. These three outcomes had equal

probabilities before the additional information was revealed. It then seems nat-

ural to assume that they remain equally likely afterwards. In particular, it is

reasonable to assign a probability of 1/3 to each of the three outcomes that re-

main possible candidates after receiving the side information. We can express

the probability of getting a three given that the outcome is an odd number as

Pr(3 ∩ {1, 3, 5})
Pr({1, 3, 5}) =

Pr(3)

Pr({1, 3, 5}) =
1

3
.

37
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Figure 4.1: Partial information about the outcome of an experiment may

change the likelihood of events. The resulting values are known as conditional

probabilities.

Example 23. Let A and B be events associated with a random experiment,

and assume that Pr(B) > 0. To gain additional insight into conditional proba-

bility, we consider the scenario where this experiment is repeated N times. Let

NAB be the number of trials for which A ∩ B occurs, NAB be the number of

times where only A occurs, NAB be the number of times where only B occurs,

and NAB be the number of trials for which neither takes place. From these

definitions, we gather that A is observed exactly NA = NAB +NAB times, and

B is seen NB = NAB +NAB times.

The frequentist view of probability is based on the fact that, as N becomes

large, one can approximate the probability of an event by taking the ratio of the

number of times this event occurs over the total number of trials. For instance,

we can write

Pr(A ∩ B) ≈ NAB

N
Pr(B) ≈ NB

N
.

Likewise, the conditional probability of A given knowledge that the outcome

lies in B can be computed using

Pr(A|B) ≈ NAB

NB

=
NAB/N

NB/N
≈ Pr(A ∩B)

Pr(B)
. (4.1)

As N approaches infinity, these approximations become exact and (4.1) unveils

the formula for conditional probability.

Having considered intuitive arguments, we turn to the mathematical def-

inition of conditional probability. Let B be an event such that Pr(B) > 0.
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A conditional probability law assigns to every event A a number Pr(A|B),

termed the conditional probability of A given B, such that

Pr(A|B) =
Pr(A ∩ B)

Pr(B)
. (4.2)

We can show that the collection of conditional probabilities {Pr(A|B)} spec-

ifies a valid probability law, as defined in Section 3.2. For every event A, we

have

Pr(A|B) =
Pr(A ∩B)

Pr(B)
≥ 0

and, hence, Pr(A|B) is nonnegative. The probability of the entire sample

space Ω is equal to

Pr(Ω|B) =
Pr(Ω ∩ B)

Pr(B)
=

Pr(B)

Pr(B)
= 1.

If A1, A2, . . . is a sequence of disjoint events, then

A1 ∩ B,A2 ∩ B, . . .

is also a sequence of disjoint events and

Pr

( ∞
⋃

k=1

Ak

∣

∣

∣
B

)

=
Pr ((

⋃∞
k=1Ak) ∩B)

Pr(B)
=

Pr (
⋃∞

k=1(Ak ∩ B))

Pr(B)

=
∞
∑

k=1

Pr(Ak ∩ B)

Pr(B)
=

∞
∑

k=1

Pr(Ak|B),

where the third equality follows from the third axiom of probability applied to

the set
⋃∞

k=1(Ak ∩ B). Thus, the conditional probability law defined by (4.2)

satisfies the three axioms of probability.

Example 24. A fair coin is tossed repetitively until heads is observed. In

Example 20, we found that the probability of observing heads for the first time

on trial k is 2−k. We now wish to compute the probability that heads occurred

for the first time on the second trial given that it took an even number of tosses

to observe heads. In this example, A = {2} and B is the set of even numbers.

The probability that the outcome is two, given that the number of tosses is

even, is equal to

Pr(2|B) =
Pr(2 ∩B)

Pr(B)
=

Pr(2)

Pr(B)
=

1/4

1/3
=

3

4
.
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In the above computation, we have used the fact that the probability of flipping

the coin an even number of times is equal to 1/3. This fact was established in

Example 20.

The definition of conditional probability can be employed to compute the

probability of several events occurring simultaneously. Let A1, A2, . . . , An be

a collection of events. The probability of events A1 through An taking place

at the same time is given by

Pr

(

n
⋂

k=1

Ak

)

= Pr(A1) Pr(A2|A1) Pr(A3|A1 ∩A2) · · ·Pr
(

An

∣

∣

∣

∣

n−1
⋂

k=1

Ak

)

. (4.3)

This formula is known as the chain rule of probability, and it can be verified

by expanding each of the conditional probabilities using (4.2),

Pr

(

n
⋂

k=1

Ak

)

= Pr(A1)
Pr(A1 ∩A2)

Pr(A1)

Pr(A1 ∩ A2 ∩A3)

Pr(A1 ∩ A2)
· · · Pr (

⋂n
k=1Ak)

Pr
(
⋂n−1

k=1 Ak

) .

This latter expression implicitly assumes that Pr
(
⋂n−1

k=1 Ak

)

6= 0.

Example 25. An urn contains eight blue balls and four green balls. Three

balls are drawn from this urn without replacement. We wish to compute the

probability that all three balls are blue. The probability of drawing a blue ball

the first time is equal to 8/12. The probability of drawing a blue ball the second

time given that the first ball is blue is 7/11. Finally, the probability of drawing

a blue ball the third time given that the first two balls are blue is 6/10. Using

(4.3), we can compute the probability of drawing three blue balls as

Pr(bbb) =
8

12

7

11

6

10
=

14

55
.

4.2 The Total Probability Theorem

The probability of events A andB occurring at the same time can be calculated

as a special case of (4.3). For two events, this computational formula simplifies

to

Pr(A ∩ B) = Pr(A|B) Pr(B). (4.4)
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Figure 4.2: Conditional probability can be employed to calculate the proba-

bility of multiple events occurring at the same time.

We can also obtain this equation directly from the definition of conditional

probability. This property is a key observation that plays a central role in

establishing two important results, the total probability theorem and Bayes’

rule. To formulate these two theorems, we need to revisit the notion of a

partition. A collection of events A1, A2, . . . , An is said to be a partition of the

sample space Ω if these events are disjoint and their union is the entire sample

space,
n
⋃

k=1

Ak = Ω.

Visually, a partition divides an entire set into disjoint subsets, as exemplified

in Figure 4.3.

Theorem 2 (Total Probability Theorem). Let A1, A2, . . . , An be a collection of

events that forms a partition of the sample space Ω. Suppose that Pr(Ak) > 0

for all k. Then, for any event B, we can write

Pr(B) = Pr(A1 ∩ B) + Pr(A2 ∩ B) + · · ·+ Pr(An ∩B)

= Pr(A1) Pr(B|A1) + Pr(A2) Pr(B|A2) + · · ·+ Pr(An) Pr(B|An).
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Figure 4.3: A partition of S can be formed by selecting a collection of subsets

that are disjoint and whose union is S.

Proof. The collection of events A1, A2, . . . , An forms a partition of the sample

space Ω. We can therefore write

B = B ∩ Ω = B ∩
(

n
⋃

k=1

Ak

)

.

Since A1, A2, . . . , An are disjoint sets, the events A1 ∩ B,A2 ∩ B, . . . , An ∩ B

are also disjoint. Combining these two facts, we get

Pr(B) = Pr

(

B ∩
(

n
⋃

k=1

Ak

))

= Pr

(

n
⋃

k=1

(B ∩Ak)

)

=

n
∑

k=1

Pr (B ∩ Ak) =

n
∑

k=1

Pr(Ak) Pr (B|Ak) ,

where the fourth equality follows from the third axiom of probability.

Figure 4.4: The total probability theorem states that the probability of event

B can be computed by summing Pr(Ai ∩B) over all members of the partition

A1, A2, . . . , An.

A graphical interpretation of Theorem 2 is illustrated in Figure 4.4. Event

B can be decomposed into the disjoint union of A1 ∩ B,A2 ∩ B, . . . , An ∩ B.
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The probability of event B can then be computed by adding the corresponding

summands

Pr(A1 ∩B),Pr(A2 ∩B), . . . ,Pr(An ∩B).

Example 26. An urn contains five green balls and three red balls. A second

urn contains three green balls and nine red balls. One of the two urns is picked

at random, with equal probabilities, and a ball is drawn from the selected urn.

We wish to compute the probability of obtaining a green ball.

In this problem, using a divide and conquer approach seems appropriate;

we therefore utilize the total probability theorem. If the first urn is chosen,

then the ensuing probability of getting a green ball is 5/8. One the other hand,

if a ball is drawn from the second urn, the probability that it is green reduces

to 3/12. Since the probability of selecting either urn is 1/2, we can write the

overall probability of getting a green ball as

Pr(g) = Pr(g ∩ U1) + Pr(g ∩ U2)

= Pr(g|U1) Pr(U1) + Pr(g|U2) Pr(U2)

=
5

8
· 1
2
+

3

12
· 1
2
=

7

16
.

4.3 Bayes’ Rule

The following result is also very useful. It relates the conditional probability

of A given B to the conditional probability of B given A.

Theorem 3 (Bayes’ Rule). Let A1, A2, . . . , An be a collection of events that

forms a partition of the sample space Ω. Suppose that Pr(Ak) > 0 for all k.

Then, for any event B such that Pr(B) > 0, we can write

Pr(Ai|B) =
Pr(Ai) Pr(B|Ai)

Pr(B)

=
Pr(Ai) Pr(B|Ai)

∑n
k=1 Pr(Ak) Pr(B|Ak)

.

(4.5)

Proof. Bayes’ rule is easily verified. We expand the probability of Ai∩B using

(4.4) twice, and we get

Pr(Ai ∩ B) = Pr(Ai|B) Pr(B) = Pr(B|Ai) Pr(Ai).
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Rearranging the terms yields the first equality. The second equality in (4.5)

is obtained by applying Theorem 2 to the denominator Pr(B).

Example 27. April, a biochemist, designs a test for a latent disease. If a

subject has the disease, the probability that the test results turn out positive is

0.95. Similarly, if a subject does not have the disease, the probability that the

test results come up negative is 0.95. Suppose that one percent of the population

is infected by the disease. We wish to find the probability that a person who

tested positive has the disease.

Let D denote the event that a person has the disease, and let P be the

event that the test results are positive. Using Bayes’ rule, we can compute the

probability that a person who tested positive has the disease,

Pr(D|P ) =
Pr(D) Pr(P |D)

Pr(D) Pr(P |D) + Pr(Dc) Pr(P |Dc)

=
0.01 · 0.95

0.01 · 0.95 + 0.99 · 0.05
≈ 0.1610.

Although the test may initially appear fairly accurate, the probability that a

person with a positive test carries the disease remains small.

4.4 Independence

Two events A and B are said to be independent if Pr(A ∩B) = Pr(A) Pr(B).

Interestingly, independence is closely linked to the concept of conditional prob-

ability. If Pr(B) > 0 and events A and B are independent, then

Pr(A|B) =
Pr(A ∩B)

Pr(B)
=

Pr(A) Pr(B)

Pr(B)
= Pr(A).

That is, the a priori probability of event A is identical to the a posteriori

probability of A given B. In other words, if A is independent of B, then

partial knowledge of B contains no information about the likely occurrence of

A. We note that independence is a symmetric relation; if A is independent of

B, then B is also independent of A. It is therefore unambiguous to say that

A and B are independent events.



4.4. INDEPENDENCE 45

Example 28. Suppose that two dice are rolled at the same time, a red die and

a blue die. We observe the numbers that appear on the upper faces of the two

dice. The sample space for this experiment is composed of thirty-six equally

likely outcomes. Consider the probability of getting a four on the red die given

that the blue die shows a six,

Pr({r = 4}|{b = 6}) = Pr({r = 4} ∩ {b = 6})
Pr(b = 6)

=
1

6
= Pr(r = 4).

From this equation, we gather that

Pr({r = 4} ∩ {b = 6}) = Pr(r = 4)Pr(b = 6).

As such, rolling a four on the red die and rolling a six on the blue die are

independent events.

Similarly, consider the probability of obtaining a four on the red die given

that the sum of the two dice is eleven,

Pr({r = 4}|{r + b = 11}) = Pr({r = 4} ∩ {r + b = 11})
Pr(r + b = 11)

= 0

6= 1

6
= Pr(r = 4).

In this case, we conclude that getting a four on the red die and a sum total of

eleven are not independent events.

The basic idea of independence seems intuitively clear: if knowledge about

the occurrence of event B has no impact on the probability of A, then these

two events must be independent. Yet, independent events are not necessarily

easy to visualize in terms of their sample space. A common mistake is to

assume that two events are independent if they are disjoint. Two mutually

exclusive events can hardly be independent: if Pr(A) > 0, Pr(B) > 0, and

Pr(A ∩B) = 0 then

Pr(A ∩ B) = 0 < Pr(A) Pr(B).

Hence, A and B cannot be independent if they are disjoint, non-trivial events.
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4.4.1 Independence of Multiple Events

The concept of independence can be extended to multiple events. The events

A1, A2, . . . , An are independent provided that

Pr

(

⋂

i∈I
Ai

)

=
∏

i∈I
Pr(Ai), (4.6)

for every subset I of {1, 2, . . . , n}.
For instance, consider a collection of three events, A, B and C. These

events are independent whenever

Pr(A ∩B) = Pr(A) Pr(B)

Pr(A ∩ C) = Pr(A) Pr(C)

Pr(B ∩ C) = Pr(B) Pr(C)

(4.7)

and, in addition,

Pr(A ∩ B ∩ C) = Pr(A) Pr(B) Pr(C).

The three equalities in (4.7) assert that A, B and C are pairwise independent.

Note that the fourth equation does not follow from the first three conditions,

nor does it imply any of them. Pairwise independence does not necessarily

imply independence. This is illustrated below.

Example 29. A fair coin is flipped twice. Let A denote the event that heads

is observed on the first toss. Let B be the event that heads is obtained on the

second toss. Finally, let C be the event that the two coins show distinct sides.

These three events each have a probability of 1/2. Furthermore, we have

Pr(A ∩B) = Pr(A ∩ C) = Pr(B ∩ C) =
1

4

and, therefore, these events are pairwise independent. However, we can verify

that

Pr(A ∩B ∩ C) = 0 6= 1

8
= Pr(A) Pr(B) Pr(C).

This shows that events A, B and C are not independent.
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Example 30. Two dice are rolled at the same time, a red die and a blue die.

Let A be the event that the number on the red die is odd. Let B be the event

that the number on the red die is either two, three or four. Also, let C be the

event that the product of the two dice is twelve. The individual probabilities of

these events are

Pr(A) = Pr(r ∈ {1, 3, 5}) = 1

2

Pr(B) = Pr(r ∈ {2, 3, 4}) = 1

2

Pr(C) = Pr(r × b = 12) =
4

36
.

We note that these events are not pairwise independent because

Pr(A ∩ B) =
1

6
6= 1

4
= Pr(A) Pr(B)

Pr(A ∩ C) =
1

36
6= 1

18
= Pr(A) Pr(C)

Pr(B ∩ C) =
1

12
6= 1

18
= Pr(B) Pr(C).

Consequently, the multiple events A, B and C are not independent. Still, the

probability of these three events occurring simultaneously is

Pr(A ∩ B ∩ C) =
1

36
=

1

2
· 1
2
· 4

36
= Pr(A) Pr(B) Pr(C).

4.4.2 Conditional Independence

We introduced earlier the meaning of conditional probability, and we showed

that the set of conditional probabilities {Pr(A|B)} specifies a valid probability

law. It is therefore possible to discuss independence with respect to conditional

probability. We say that events A1 and A2 are conditionally independent, given

event B, if

Pr(A1 ∩A2|B) = Pr(A1|B) Pr(A2|B).

Note that if A1 and A2 are conditionally independent, we can use equation

(4.2) to write

Pr(A1 ∩A2|B) =
Pr(A1 ∩A2 ∩B)

Pr(B)

=
Pr(B) Pr(A1|B) Pr(A2|A1 ∩B)

Pr(B)

= Pr(A1|B) Pr(A2|A1 ∩ B).
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Under the assumption that Pr(A1|B) > 0, we can combine the previous two

expressions and get

Pr(A2|A1 ∩B) = Pr(A2|B).

This latter result asserts that, given event B has taken place, the additional

information that A1 has also occurred does not affect the likelihood of A2. It is

simple to show that conditional independence is a symmetric relation as well.

Example 31. Suppose that a fair coin is tossed until heads is observed. The

number of trials is recorded as the outcome of this experiment. We denote by

B the event that the coin is tossed more than one time. Moreover, we let A1

be the event that the number of trials is an even number; and A2, the event

that the number of trials is less than six. The conditional probabilities of A1

and A2, given that the coin is tossed more than once, are

Pr(A1|B) =
Pr(A1 ∩B)

Pr(B)
=

1/3

1/2
=

2

3

Pr(A2|B) =
Pr(A2 ∩B)

Pr(B)
=

15/32

1/2
=

15

16
.

The joint probability of events A1 and A2 given B is equal to

Pr(A1 ∩A2|B) =
Pr(A1 ∩A2 ∩B)

Pr(B)

=
5/16

1/2
=

5

8
=

2

3
· 15
16

= Pr(A1|B) Pr(A2|B).

We conclude that A1 and A2 are conditionally independent given B. In par-

ticular, we have

Pr(A2|A1 ∩B) = Pr(A2|B)

Pr(A1|A2 ∩B) = Pr(A1|B).

We emphasize that events A1 and A2 are not independent with respect to the

unconditional probability law.

Two events that are independent with respect to an unconditional proba-

bility law may not be conditionally independent.
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Example 32. Two dice are rolled at the same time, a red die and a blue die.

We can easily compute the probability of simultaneously getting a two on the

red die and a six on the blue die,

Pr({r = 2} ∩ {b = 6}) = 1

36
= Pr(r = 2)Pr(b = 6).

Clearly, these two events are independent.

Consider the probability of rolling a two on the red die and a six on the

blue die given that the sum of the two dice is an odd number. The individual

conditional probabilities are given by

Pr({r = 2}|{r + b is odd}) = Pr({b = 6}|{r + b is odd}) = 1

6
,

whereas the joint conditional probability is

Pr({r = 2} ∩ {b = 6}|{r + b is odd}) = 0.

These two events are not conditionally independent.

It is possible to extend the notion of conditional independence to several

events. The events A1, A2, . . . , An are conditionally independent given B if

Pr

(

⋂

i∈I
Ai

∣

∣

∣
B

)

=
∏

i∈I
Pr(Ai|B)

for every subset I of {1, 2, . . . , n}. This definition is analogous to (4.6), albeit

using the appropriate conditional probability law.

4.5 Equivalent Notations

In the study of probability, we are frequently interested in the probability of

multiple events occurring simultaneously. So far, we have expressed the joint

probability of events A and B using the notation Pr(A∩B). For mathematical

convenience, we also represent the probability that two events occur at the

same time by

Pr(A,B) = Pr(A ∩ B).
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This alternate notation easily extends to the joint probability of several events.

We denote the joint probability of events A1, A2, . . . , An by

Pr(A1, A2, . . . , An) = Pr

(

n
⋂

k=1

Ak

)

.

Conditional probabilities can be written using a similar format. The proba-

bility of A given events B1, B2, . . . , Bn becomes

Pr(A|B1, B2, . . . , Bn) = Pr

(

A

∣

∣

∣

∣

n
⋂

k=1

Bk

)

.

From this point forward, we use these equivalent notations interchangeably.

Further Reading

1. Ross, S., A First Course in Probability, 7th edition, Pearson Prentice Hall,

2006: Chapter 3.

2. Bertsekas, D. P., and Tsitsiklis, J. N., Introduction to Probability, Athena

Scientific, 2002: Sections 1.3–1.5.

3. Miller, S. L., and Childers, D. G., Probability and Random Processes with

Applications to Signal Processing and Communications, 2004: Sections 2.4–

2.6.

4. Gubner, J. A., Probability and Random Processes for Electrical and Computer

Engineers, Cambridge, 2006: Sections 1.5–1.6.



Chapter 5

Discrete Random Variables

Suppose that an experiment and a sample space are given. A random variable

is a real-valued function of the outcome of the experiment. In other words,

the random variable assigns a specific number to every possible outcome of

the experiment. The numerical value of a particular outcome is simply called

the value of the random variable. Because of the structure of real numbers, it

is possible to define pertinent statistical properties on random variables that

otherwise do not apply to probability spaces in general.

Sample Space

1

2

3

4

5

6

7 Real Numbers

Figure 5.1: The sample space in this example has seven possible outcomes. A

random variable maps each of these outcomes to a real number.

Example 33. There are six possible outcomes to the rolling of a fair die,

namely each of the six faces. These faces map naturally to the integers one

51
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through six. The value of the random variable, in this case, is simply the

number of dots that appear on the top face of the die.

1 2 3 4 5 6

Figure 5.2: This random variable takes its input from the rolling of a die and

assigns to each outcome a real number that corresponds to the number of dots

that appear on the top face of the die.

A simple class of random variables is the collection of discrete random

variables. A variable is called discrete if its range is finite or countably infinite;

that is, it can only take a finite or countable number of values.

Example 34. Consider the experiment where a coin is tossed repetitively un-

til heads is observed. The corresponding function, which maps the number

of tosses to an integer, is a discrete random variable that takes a countable

number of values. The range of this random variable is given by the positive

integers {1, 2, . . .}.

5.1 Probability Mass Functions

A discrete random variable X is characterized by the probability of each of

the elements in its range. We identify the probabilities of individual elements

in the range of X using the probability mass function (PMF) of X , which we

denote by pX(·). If x is a possible value of X then the probability mass of x,
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written pX(x), is defined by

pX(x) = Pr({X = x}) = Pr(X = x). (5.1)

Equivalently, we can think of pX(x) as the probability of the set of all outcomes

in Ω for which X is equal to x,

pX(x) = Pr(X−1(x)) = Pr({ω ∈ Ω|X(ω) = x}).

Here, X−1(x) denotes the preimage of x defined by {ω ∈ Ω|X(ω) = x}. This

is not to be confused with the inverse of a bijection.

Sample Space

1

2

3

4

5

6

7

x

Figure 5.3: The probability mass of x is given by the probability of the set of

all outcomes which X maps to x.

Let X(Ω) denote the collection of all the possible numerical values X can

take; this set is known as the range of X . Using this notation, we can write
∑

x∈X(Ω)

pX(x) = 1. (5.2)

We emphasize that the sets defined by {ω ∈ Ω|X(ω) = x} are disjoint and

form a partition of the sample space Ω, as x ranges over all the possible values

in X(Ω). Thus, (5.2) follows immediately from the countable additivity axiom

and the normalization axiom of probability laws. In general, if X is a discrete

random variable and S is a subset of X(Ω), we can write

Pr(S) = Pr ({ω ∈ Ω|X(ω) ∈ S}) =
∑

x∈S
pX(x). (5.3)

This equation offers an explicit formula to compute the probability of any

subset of X(Ω), provided that X is discrete.
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Example 35. An urn contains three balls numbered one, two and three. Two

balls are drawn from the urn without replacement. We wish to find the proba-

bility that the sum of the two selected numbers is odd.

Let Ω be the set of ordered pairs corresponding to the possible outcomes of

the experiment, Ω = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}. Note that these

outcomes are equiprobable. We employ X to represent the sum of the two

selected numbers. The PMF of random variable X is given by

pX(3) = pX(4) = pX(5) =
1

3
.

If S denotes the event that the sum of the two numbers is odd, then the prob-

ability of the sum being odd can be computed as follows,

Pr(S) = Pr({3, 5}) = pX(3) + pX(5) =
2

3
.

5.2 Important Discrete Random Variables

A number of discrete random variables appears frequently in problems related

to probability. These random variables arise in many different contexts, and

they are worth getting acquainted with. In general, discrete random variables

occur primarily in situations where counting is involved.

5.2.1 Bernoulli Random Variables

The first and simplest random variable is the Bernoulli random variable. Let

X be a random variable that takes on only two possible numerical values,

X(Ω) = {0, 1}. Then, X is a Bernoulli random variable and its PMF is given

by

pX(x) =

{

1− p, if x = 0

p, if x = 1

where p ∈ [0, 1].

Example 36. Consider the flipping of a biased coin, for which heads is ob-

tained with probability p and tails is obtained with probability 1−p. A random

variable that maps heads to one and tails to zero is a Bernoulli random vari-

able with parameter p. In fact, every Bernoulli random variable is equivalent

to the tossing of a coin.
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Figure 5.4: The PMF of a Bernoulli random variable appears above for pa-

rameter p = 0.25.

5.2.2 Binomial Random Variables

Multiple independent Bernoulli random variables can be combined to construct

more sophisticated random variables. Suppose X is the sum of n independent

and identically distributed Bernoulli random variables. Then X is called a

binomial random variable with parameters n and p. The PMF of X is given

by

pX(k) = Pr(X = k) =

(

n

k

)

pk(1− p)n−k,

where k = 0, 1, . . . n. We can easily verify that X fulfills the normalization

axiom,
n
∑

k=0

(

n

k

)

pk(1− p)n−k = (p+ (1− p))n = 1.

Example 37. The Brazos Soda Company creates an “Under the Caps” pro-

motion whereby a customer can win an instant cash prize of $1 by looking

under a bottle cap. The likelihood to win is one in four, and it is independent

from bottle to bottle. A customer buys eight bottles of soda from this company.

We wish to find the PMF of the number of winning bottles, which we denote

by X. Also, we want to compute the probability of winning more than $4.

The random variable X is binomial with parameters n = 8 and p = 1/4.
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Figure 5.5: This figure shows a binomial random variable with parameters

n = 8 and p = 0.25.

Its PMF is given by

pX(k) =

(

8

k

)(

1

4

)k (
3

4

)8−k

=

(

8

k

)

38−k

48
,

where k = 0, 1, . . . , 8. The probability of winning more than $4 is

Pr(X > 4) =

8
∑

k=5

(

8

k

)

38−k

48
.

5.2.3 Poisson Random Variables

The probability mass function of a Poisson random variable is given by

pX(k) =
λk

k!
e−λ, k = 0, 1, . . .

where λ is a positive number. Note that, using Taylor series expansion, we

have ∞
∑

k=0

pX(k) =

∞
∑

k=0

λk

k!
e−λ = e−λ

∞
∑

k=0

λk

k!
= e−λeλ = 1,

which shows that this PMF fulfills the normalization axiom of probability laws.

The Poisson random variable is of fundamental importance when counting the

number of occurrences of a phenomenon within a certain time period. It finds

extensive use in networking, inventory management and queueing applications.
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Figure 5.6: This figure shows the PMF of a Poisson random variable with

parameter λ = 2. Note that the values of the PMF are only present for

k = 0, 1, . . . , 8.

Example 38. Requests at an Internet server arrive at a rate of λ connections

per second. The number of service requests per second is modeled as a random

variable with a Poisson distribution. We wish to find the probability that no

service requests arrive during a time interval of one second.

Let N be a random variable that represents the number of requests that

arrives within a span of one second. By assumption, N is a Poisson random

variable with PMF

pN (k) =
λk

k!
e−λ.

The probability that no service requests arrive in one second is simply given by

pN(0) = e−λ.

It is possible to obtain a Poisson random variable as the limit of a sequence

of binomial random variables. Fix λ and let pn = λ/n. For k = 1, 2, . . . n, we

define the PMF of the random variable Xn as

pXn
(k) = Pr(Xn = k) =

(

n

k

)

pkn(1− pn)
n−k

=
n!

k!(n− k)!

(

λ

n

)k (

1− λ

n

)n−k

=
n!

nk(n− k)!

λk

k!

(

1− λ

n

)n−k

.
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In the limit, as n approaches infinity, we get

lim
n→∞

pXn
(k) = lim

n→∞

n!

nk(n− k)!

λk

k!

(

1− λ

n

)n−k

=
λk

k!
e−λ.

Thus, the sequence of binomial random variables {Xn} converges in distribu-

tion to the Poisson random variable X .
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Figure 5.7: The levels of a binomial PMF with parameter p = λ/n converge to

the probabilities of a Poisson PMF with parameter λ as n increases to infinity.

This discussion suggests that the Poisson PMF can be employed to ap-

proximate the PMF of a binomial random variable in certain circumstances.

Suppose that Y is a binomial random variable with parameters n and p. If n is

large and p is small then the probability that Y equals k can be approximated

by

pY (k) =
n!

nk(n− k)!

λk

k!

(

1− λ

n

)n−k

≈ λk

k!
e−λ,

where λ = np. The latter expression can be computed numerically in a

straightforward manner.

Example 39. The probability of a bit error on a communication channel is

equal to 10−2. We wish to approximate the probability that a block of 1000 bits

has four or more errors.

Assume that the probability of individual errors is independent from bit to

bit. The transmission of each bit can be modeled as a Bernoulli trial, with a
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zero indicating a correct transmission and a one representing a bit error. The

total number of errors in 1000 transmissions then corresponds to a binomial

random variable with parameters n = 1000 and p = 10−2. The probability

of making four or more errors can be approximated using a Poisson random

variable with constant λ = np = 10. Thus, we can approximate the probability

that a block of 1000 bits has four or more errors by

Pr(N ≥ 4) = 1− Pr(N < 4) ≈ 1−
3
∑

k=0

λk

k!
e−λ

= 1− e−10

(

1 + 10 + 50 +
500

3

)

≈ 0.9897.

This is in contrast to the exact answer, which can be written as 0.9899 when

truncated to four decimal places.

5.2.4 Geometric Random Variables

Consider a random experiment where a Bernoulli trial is repeated multiple

times until a one is observed. At each time step, the probability of getting a

one is equal to p and the probability of getting a zero is 1− p. The number of

trials carried out before completion, which we denote by X , is recorded as the

outcome of this experiment. The random variable X is a geometric random

variable, and its PMF is given by

pX(k) = (1− p)k−1p, k = 1, 2, . . .

We stress that (1 − p)k−1p simply represents the probability of obtaining a

sequence of k − 1 zero immediately followed by a one.

Example 40. The Brazos Soda Company introduces another “Under the Caps”

promotion. This time, a customer can win an additional bottle of soda by look-

ing under the cap of her bottle. The probability to win is 1/5, and it is inde-

pendent from bottle to bottle. A customer purchases one bottle of soda from the

Brazos Soda Company and thereby enters the contest. For every extra bottle

of soda won by looking under the cap, the customer gets an additional chance
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Figure 5.8: The PMF of a geometric random variable is a decreasing function

of k. It is plotted above for p = 0.25. The values of the PMF are only present

for k = 1, 2, . . . , 12.

to play. We wish to find the PMF of the number of bottles obtained by this

customer.

Let X denote the total number of bottles obtained by the customer. The

random variable X is geometric and its PMF is

pX(k) =

(

1

5

)k−1
4

5
,

where k = 1, 2, . . .

Memoryless Property: A remarkable aspect of the geometric random vari-

able is that it satisfies the memoryless property,

Pr(X = k + j|X > k) = Pr(X = j).

This can be established using the definition of conditional probability. Let X

be a geometric random variable with parameter p, and assume that k and j

are positive integers. We can write the conditional probability of X as

Pr(X = k + j|X > k) =
Pr({X = k + j} ∩ {X > k})

Pr(X > k)

=
Pr(X = k + j)

Pr(X > k)
=

(1− p)k+j−1p

(1− p)k

= (1− p)j−1p = Pr(X = j).
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In words, the probability that the number of trials carried out before com-

pletion is k + j, given k unsuccessful trials, is equal to the unconditioned

probability that the total number of trials is j. It can be shown that the ge-

ometric random variable is the only discrete random variable that possesses

the memoryless property.

5.2.5 Discrete Uniform Random Variables

A finite random variable where all the possible outcomes are equally likely

is called a discrete uniform random variable. Let X be a uniform random

variable taking value over X(Ω) = {1, 2, . . . , n}. Its PMF is therefore given by

pX(k) =

{

1/n, if k = 1, 2, . . . , n

0, otherwise.

We encountered specific cases of this random variable before. The tossing of a

fair coin and the rolling of a die can both be used to construct uniform random

variables.
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Figure 5.9: A uniform random variable corresponds to the situation where all

the possible values of the random variable are equally likely. It is shown above

for the case where n = 8.
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5.3 Functions of Random Variables

Recall that a random variable is a function of the outcome of an experiment.

Given a random variable X , it is possible to create a new random variable

Y by applying a real-valued function g(·) to X . If X is a random variable

then Y = g(X) is also a random variable since it associates a numerical value

to every outcome of the experiment. In particular, if ω ∈ Ω is the outcome

of the experiment, then X takes on value x = X(ω) and Y takes on value

Y (ω) = g(x).

1

2

3

4

5

Sample Space

X

Y = g(X)

Figure 5.10: A real-valued function of a random variable is a random variable

itself. In this figure, Y is obtained by passing random variable X through a

function g(·).

Furthermore, if X is a discrete random variable, then so is Y . The set of

possible values Y can take is denoted by g(X(Ω)), and the number of elements

in g(X(Ω)) is no greater than the number of elements in X(Ω). The PMF of

Y , which we represent by pY (·), is obtained as follows. If y ∈ g(X(Ω)) then

pY (y) =
∑

{x∈X(Ω)|g(x)=y}
pX(x); (5.4)

otherwise, pY (y) = 0. In particular, pY (y) is non-zero only if there exists an

x ∈ X(Ω) such that g(x) = y and pX(x) > 0.

Example 41. Let X be a random variable and let Y = g(X) = aX + b, where

a and b are constant. That is, Y is an affine function of X. Suppose that
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a 6= 0, then the probability of Y being equal to value y is given by

pY (y) = pX

(

y − b

a

)

.

Linear and affine functions of random variables are commonplace in applied

probability and engineering.

Example 42. A taxi driver works in New York City. The distance of a ride

with a typical client is a discrete uniform random variable taking value over

X(Ω) = {1, 2, . . . , 10}. The metered rate of fare, according to city rules, is

$2.50 upon entry and $0.40 for each additional unit (one-fifth of a mile). We

wish to find the PMF of Y , the value of a typical fare.

Traveling one mile is five units and costs an extra $2.00. The smallest

possible fare is therefore $4.50, with probability 1/10. Similarly, a ride of X

miles will generate a revenue of Y = 2.5 + 2X dollars for the cab driver. The

PMF of Y is thus given by

pY (2.5 + 2k) =
1

10

for k = 1, 2, . . . , 10; and it is necessarily zero for any other argument.

Further Reading

1. Ross, S., A First Course in Probability, 7th edition, Pearson Prentice Hall,

2006: Sections 4.1–4.2, 4.6–4.8.

2. Bertsekas, D. P., and Tsitsiklis, J. N., Introduction to Probability, Athena

Scientific, 2002: Sections 2.1–2.3.

3. Miller, S. L., and Childers, D. G., Probability and Random Processes with

Applications to Signal Processing and Communications, 2004: Section 2.7.

4. Gubner, J. A., Probability and Random Processes for Electrical and Computer

Engineers, Cambridge, 2006: Sections 2.1–1.2.
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Chapter 6

Meeting Expectations

When a large collection of data is gathered, one is typically interested not

necessarily in every individual data point, but rather in certain descriptive

quantities such as the average or the median. The same is true for random

variables. The PMF of discrete random variable X provides a complete char-

acterization of the distribution of X by specifying the probability of every

possible value of X . Still, it may be desirable to summarize the information

contained in the PMF of a random variable. One way to accomplish this task

and thereby obtain meaningful descriptive quantities is through the expecta-

tion operator.

6.1 Expected Values

The expected value E[X ] of discrete random variable X is defined by

E[X ] =
∑

x∈X(Ω)

xpX(x), (6.1)

whenever this sum converges absolutely. If this sum is not absolutely conver-

gent, then X is said not to possess an expected value. As mentioned above,

the expected value E[X ] provides insightful information about the underlying

random variable X without giving a comprehensive and overly detailed de-

scription. The expected value of a random variable, as defined in (6.1), is also

called the mean of X . It is important to realize that E[X ] is not a function of

random variable X ; rather, it is a function of the PMF of X .

65
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Example 43. A fair die is rolled once, with the number of dots appearing

on the top face taken as the value of the corresponding random variable. The

expected value of the roll can be computed as

6
∑

k=1

k

6
=

42

12
= 3.5.

In other words, the mean of this random variable is 3.5.

Example 44. Assume that a fair coin is flipped repetitively until heads is

observed. The value of random variable X is taken to be the total number

of tosses performed during this experiment. The possible values for X are

therefore given by X(Ω) = {1, 2, . . .}. Recall that, in this case, the PMF of X

is equal to pX(k) = 2−k, where k is a positive integer. The expected value of

this geometric random variable can be computed as

E[X ] =
∞
∑

k=1

k

2k
= 2.

The expected number of tosses until the coin produces heads is equal to two.

In general, determining the expectation of a random variable requires as

input its PMF, a detailed characterization of the random variable, and returns

a much simpler scalar attribute, its mean. Hence, computing the expected

value of the random variable yields a concise summary of its overall behavior.

6.2 Functions and Expectations

The mean forms one instance where the distribution of a random variable is

condensed into a scalar quantity. There are several additional examples. The

notion of an expectation can be combined with traditional functions to create

alternate descriptions and other meaningful quantities. Suppose that X is a

discrete random variable. Let g(·) be a real-valued function on the range of X ,

and consider the expectation of g(X). This expected value, E[g(X)], is a scalar

quantity that can also provide partial information about the distribution of

X .

One way to determine the expected value of g(X) is to first note that Y =

g(X) is itself a random variable. Thus, we can find the derived distribution
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of Y and then apply the definition of expected value provided in (6.1). Yet,

there is a more direct way to compute this quantity; the expectation of g(X)

can be expressed as

E [g(X)] =
∑

x∈X(Ω)

g(x)pX(x). (6.2)

It is worth re-emphasizing that there exist random variables and functions for

which the above sum does not converge. In such cases, we simply say that the

expected value of g(X) does not exist. Also, notice that the mean E[X ] is a

special case of (6.2), where g(X) = X . Hence the definition of E[g(X)] given

above subsumes our original description of E[X ], which appeared in (6.1). We

explore pertinent examples below.

Example 45. The simplest possible scenario for (6.2) is the case where the

function g(·) is a constant. The expectation of g(X) = c becomes

E[c] =
∑

x∈X(Ω)

cpX(x) = c
∑

x∈X(Ω)

pX(x) = c.

The last inequality follows from the normalization axiom of probability laws.

The expectation of a constant is always the constant itself.

Example 46. Let S be a subset of the real numbers, and define the indicator

function of S by

1S(x) =







1, x ∈ S

0, x /∈ S.

The expectation of 1S(X) is equal to

E [1S(X)] =
∑

x∈X(Ω)

1S(x)pX(x)

=
∑

x∈S∩X(Ω)

pX(x) = Pr(X ∈ S).

That is, the expectation of the indicator function of S is simply the probability

that X takes on a value in S. This alternate way of computing the probability

of an event can sometimes be employed to solve otherwise difficult probability

problems.
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Let random variable Y be defined by applying real-valued function g(·)
to X , with Y = g(X). The mean of Y is equal to the expectation of g(X),

and we know from our ongoing discussion that this value can be obtained by

applying two different formulas. To ensure consistency, we verify that these

two approaches lead to a same answer.

First, we can apply (6.1) directly to Y , and obtain

E[Y ] =
∑

y∈g(X(Ω))

ypY (y),

where pY (·) is the PMF of Y provided by (5.3). Alternatively, using (6.2), we

have

E[Y ] = E[g(X)] =
∑

x∈X(Ω)

g(x)pX(x).

We prove that these two expressions describe a same answer as follows. Recall

that the PMF of Y evaluated at y is obtained by summing the values of pX(·)
over all x ∈ X(Ω) such that g(x) = y. Mathematically, this can be expressed

as pY (y) =
∑

{x∈X(Ω)|g(x)=y} pX(x). Using this equality, we can write

E[Y ] =
∑

y∈g(X(Ω))

ypY (y) =
∑

y∈g(X(Ω))

y
∑

{x∈X(Ω)|g(x)=y}
pX(x)

=
∑

y∈g(X(Ω))

∑

{x∈X(Ω)|g(x)=y}
ypX(x)

=
∑

y∈g(X(Ω))

∑

{x∈X(Ω)|g(x)=y}
g(x)pX(x)

=
∑

x∈X(Ω)

g(x)pX(x) = E[g(X)].

Note that first summing over all possible values of Y and then over the preim-

age of every y ∈ Y (Ω) is equivalent to summing over all x ∈ X(Ω). Hence,

we have shown that computing the expectation of a function using the two

methods outlined above leads to a same solution.

Example 47. Brazos Extreme Events Radio creates the “Extreme Trio” con-

test. To participate, a person must fill out an application card. Three cards

are drawn from the lot and each winner is awarded $1,000. While a same

participant can send multiple cards, he or she can only win one grand prize.
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At the time of the drawing, the radio station has accumulated a total of 100

cards. David, an over-enthusiastic listener, is accountable for half of these

cards. We wish to compute the amount of money David expects to win under

this promotion.

Let X be the number of cards drawn by the radio station written by David.

The PMF of X is given by

pX(k) =

(

50
k

)(

50
3−k

)

(

100
3

) k ∈ {0, 1, 2, 3}.

The money earned by David can be expressed as g(k) = 1000min{k, 1}. It

follows that the expected amount of money he receives is equal to

3
∑

k=0

(1000min{k, 1}) pX(k) = 1000 · 29
33

.

Alternatively, we can define Y = 1000min{X, 1}. Clearly, Y can only take

on one of two possible values, 0 or 1000. Evaluating the PMF of Y , we get

pY (0) = pX(0) = 4/33 and pY (1000) = 1− pY (0) = 29/33. The expected value

of Y is equal to

0 · pY (0) + 1000 · pY (1000) = 1000 · 29
33

.

As anticipated, both methods lead to the same answer. The expected amount

of money won by David is roughly $878.79.

6.2.1 The Mean

As seen at the beginning of this chapter, the simplest non-trivial expectation

is the mean. We provide two additional examples for the mean, and we explore

a physical interpretation of its definition below.

Example 48. Let X be a geometric random variable with parameter p and

PMF

pX(k) = (1− p)k−1p, k = 1, 2, . . .

The mean of this random variable is

E[X ] =

∞
∑

k=1

k(1− p)k−1p = p

∞
∑

k=1

k(1− p)k−1 =
1

p
.
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Example 49. Let X be a binomial random variable with parameters n and p.

The PMF of X is given by

pX(k) =

(

n

k

)

pk(1− p)n−k, k = 0, 1, . . . , n.

The mean of this binomial random variable can therefore be computed as

E[X ] =
n
∑

k=0

k

(

n

k

)

pk(1− p)n−k

=
n
∑

k=1

n!

(k − 1)!(n− k)!
pk(1− p)n−k

=
n−1
∑

ℓ=0

n!

ℓ!(n− 1− ℓ)!
pℓ+1(1− p)n−ℓ−1

= np
n−1
∑

ℓ=0

(

n− 1

ℓ

)

pℓ(1− p)n−1−ℓ = np.

Notice how we rearranged the sum into a familiar form to compute its value.

It can be insightful to relate the mean of a random variable to classical

mechanics. Let X be a random variable and suppose that, for every x ∈ X(Ω),

we place an infinitesimal particle of mass pX(x) at position x along a real line.

The mean of random variable X as defined in (6.1) coincides with the center

of mass of the system of particles.

Example 50. Let X be a Bernoulli random variable such that

pX(x) =

{

0.25, if x = 0

0.75, if x = 1.

The mean of X is given by

E[X ] = 0 · 0.25 + 1 · 0.75 = 0.75.

Consider a two-particle system with masses m1 = 0.25 and m2 = 0.75, respec-

tively. In the coordinate system illustrated below, the particles are located at

positions x1 = 0 and x2 = 1. From classical mechanics, we know that their

center of mass can be expressed as

m1x1 +m2x2

m1 +m2
= 0.75.

As anticipated, the center of mass corresponds to the mean of X.



6.2. FUNCTIONS AND EXPECTATIONS 71

x1 x2Center of Mass

R

Figure 6.1: The center of mass on the figure is indicated by the tip of the

arrow. In general, the mean of a discrete random variable corresponds to the

center of mass of the associated particle system

6.2.2 The Variance

A second widespread descriptive quantity associated with random variable X

is its variance, which we denote by Var[X ]. It is defined by

Var[X ] = E
[

(X − E[X ])2
]

. (6.3)

Evidently, the variance is always nonnegative. It provides a measure of the

dispersion of X around its mean. For discrete random variables, it can be

computed explicitly as

Var[X ] =
∑

x∈X(Ω)

(x− E[X ])2 pX(x).

The square root of the variance is referred to as the standard deviation of X ,

and it is often denoted by σ.

Example 51. Suppose X is a Bernoulli random variable with parameter p.

We can compute the mean of X as

E[X ] = 1 · p + 0 · (1− p) = p.

Its variance is given by

Var[X ] = (1− p)2 · p+ (0− p)2 · (1− p) = p(1− p).

Example 52. Let X be a Poisson random variable with parameter λ. The

mean of X is given by

E[X ] =

∞
∑

k=0

k
λk

k!
e−λ =

∞
∑

k=1

λk

(k − 1)!
e−λ

= λ
∞
∑

ℓ=0

λℓ

ℓ!
e−λ = λ.
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The variance of X can be calculated as

Var[X ] =

∞
∑

k=0

(k − λ)2
λk

k!
e−λ

=

∞
∑

k=0

(

λ2 + k(1− 2λ) + k(k − 1)
) λk

k!
e−λ

= λ− λ2 +

∞
∑

k=2

λk

(k − 2)!
e−λ = λ.

Both the mean and the variance of a Poisson random variable are equal to its

parameter λ.

6.2.3 Affine Functions

Proposition 3. Suppose X is a random variable with finite mean. Let Y be

the affine function of X defined by Y = aX + b, where a and b are fixed real

numbers. The mean of random variable Y is equal to E[Y ] = aE[X ] + b.

Proof. This can be computed using (6.2);

E[Y ] =
∑

x∈X(Ω)

(ax+ b)pX(x)

= a
∑

x∈X(Ω)

xpX(x) + b
∑

x∈X(Ω)

pX(x)

= aE[X ] + b.

We can summarize this property with E[aX + b] = aE[X ] + b.

It is not much harder to show that the expectation is a linear functional.

Suppose that g(·) and h(·) are two real-valued functions such that E[g(X)]

and E[h(X)] both exist. We can write the expectation of ag(X) + h(X) as

E[ag(X) + h(X)] =
∑

x∈X(Ω)

(ag(x) + h(x))pX(x)

= a
∑

x∈X(Ω)

g(x)pX(x) +
∑

x∈X(Ω)

h(x)pX(x)

= aE[g(X)] + E[h(X)].

This demonstrates that the expectation is both homogeneous and additive.
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Proposition 4. Assume that X is a random variable with finite mean and

variance, and let Y be the affine function of X given by Y = aX + b, where a

and b are constants. The variance of Y is equal to Var[Y ] = a2Var[X ].

Proof. Consider (6.3) applied to Y = aX + b,

Var[Y ] =
∑

x∈X(Ω)

(ax+ b− E[aX + b])2 pX(x)

=
∑

x∈X(Ω)

(ax+ b− aE[X ]− b)2 pX(x)

= a2
∑

x∈X(Ω)

(x− E[X ])2 pX(x) = a2Var[X ].

The variance of an affine function only depends on the distribution of its

argument and parameter a. A translation of the argument by b does not affect

the variance of Y = aX + b; in other words, it is shift invariant.

6.3 Moments

The moments of a random variable X are likewise important quantities used

in providing partial information about the PMF of X . The nth moment of

random variable X is defined by

E[Xn] =
∑

x∈X(Ω)

xnpX(x). (6.4)

Incidentally, the mean of random variable X is its first moment.

Proposition 5. The variance of random variable X can be expressed in terms

of its first two moments, Var[X ] = E [X2]− (E[X ])2.

Proof. Suppose that the variance of X exists and is finite. Starting from (6.3),

we can expand the variance of X as follows,

Var[X ] =
∑

x∈X(Ω)

(x− E[X ])2 pX(x)

=
∑

x∈X(Ω)

(

x2 − 2xE[X ] + (E[X ])2
)

pX(x)

=
∑

x∈X(Ω)

x2pX(x)− 2E[X ]
∑

x∈X(Ω)

xpX(x) + (E[X ])2
∑

x∈X(Ω)

pX(x)

= E
[

X2
]

− (E[X ])2 .
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This alternate formula for the variance is sometimes convenient for computa-

tional purposes.

We include below an example where the above formula for the variance is

applied. This allows the straightforward application of standard sums from

calculus.

Example 53. Let X be a uniform random variable with PMF

pX(k) =

{

1/n, if k = 1, 2, . . . , n

0, otherwise.

The mean of this uniform random variable is equal to

E[X ] =
n + 1

2
.

The variance of X can then be obtained as

Var[X ] = E
[

X2
]

− (E[X ])2 =
n
∑

k=1

k2

n
−
(

n + 1

2

)2

=
n(n+ 1)(2n+ 1)

6n
−
(

n+ 1

2

)2

=
n2 − 1

12
.

Closely related to the moments of a random variable are its central mo-

ments. The kth central moment of X is defined by E
[

(X −E[X ])k
]

. The

variance is an example of a central moment, as we can see from definition

(6.3). The central moments are used to define the skewness of random vari-

able, which is a measure of asymmetry; and its kurtosis, which assesses whether

the variance is due to infrequent extreme deviations or more frequent, modest-

size deviations. Although these quantities will not play a central role in our

exposition of probability, they each reveal a different characteristic of a random

variable and they are encountered frequently in statistics.

6.4 Ordinary Generating Functions

In the special yet important case where X(Ω) is a subset of the non-negative

integers, it is occasionally useful to employ the ordinary generating function.
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This function bears a close resemblance to the z-transform and is defined by

GX(z) = E
[

zX
]

=

∞
∑

k=0

zkpX(k). (6.5)

It is also called the probability-generating function because of the following

property. The probability Pr(X = k) = pX(k) can be recovered from the corre-

sponding generating function GX(z) through Taylor series expansion. Within

the radius of convergence of GX(z), we have

GX(z) =

∞
∑

k=0

1

k!

(

dkGX

dzk
(0)

)

zk.

Comparing this equation to (6.5), we conclude that

pX(k) =
1

k!

dkGX

dzk
(0).

We note that, for |z| ≤ 1, we have
∣

∣

∣

∣

∣

∞
∑

k=0

zkpX(k)

∣

∣

∣

∣

∣

≤
∞
∑

k=0

|z|kpX(k) ≤
∞
∑

k=0

pX(k) = 1

and hence the radius of convergence of any probability-generating function

must include one.

The ordinary generating function plays an important role in dealing with

sums of discrete random variables. As a preview of what lies ahead, we com-

pute ordinary generating functions for Bernoulli and Binomial random vari-

ables below.

Example 54. Let X be a Bernoulli random variable with parameter p. The

ordinary generating function of X is given by

GX(z) = pX(0) + pX(1)z = 1− p+ pz.

Example 55. Let S be a binomial random variable with parameters n and p.

The ordinary generating function of S can be computed as

GS(z) =

n
∑

k=0

zkpS(k) =

n
∑

k=0

zk
(

n

k

)

pk(1− p)n−k

=

n
∑

k=0

(

n

k

)

(pz)k(1− p)n−k = (1− p + pz)n.
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We know, from Section 5.2.2, that one way to create a binomial random

variable is to sum n independent and identically distributed Bernoulli random

variables, each with parameter p. Looking at the ordinary generating functions

above, we notice that theGS(z) is the product of n copies ofGX(z). Intuitively,

it appears that the sum of independent discrete random variables leads to the

product of their ordinary generating functions, a relation that we will revisit

shortly.

The mean and second moment of X can be computed based on its ordinary

generating function, In particular, we have

E[X ] = lim
z↑1

dGX

dz
(z).

Similarly, the second moment of X can be derived as

E
[

X2
]

= lim
z↑1

(

d2GX

dz2
(z) +

dGX

dz
(z)

)

.

This can be quite useful, as illustrated in the following example.

Example 56 (Poisson Random Variable). Suppose that X has a Poisson dis-

tribution with parameter λ > 0. The function GX(s) can be computed using

the distribution of X,

GX(z) =
∞
∑

k=0

zk
e−λλk

k!
= e−λ

∞
∑

k=0

(λz)k

k!
= e−λeλz = eλ(z−1).

The first two moments of X are given by

E[X ] = lim
z↑1

dGX

dz
(z) = lim

z↑1
λeλ(z−1) = λ

E
[

X2
]

= lim
z↑1

(

d2GX

dz2
(z) +

dGX

dz
(z)

)

= lim
z↑1

(

λ2 + λ
)

eλ(z−1) = λ2 + λ.

This provides a very efficient way to compute the mean and variance of X,

which are both equal to λ. It may be helpful to compare this derivation with

Example 52.

Further Reading
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2006: Section 4.3.
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4. Miller, S. L., and Childers, D. G., Probability and Random Processes with

Applications to Signal Processing and Communications, 2004: Sections 4.8.
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Chapter 7

Multiple Discrete Random

Variables

Thus far, our treatment of probability has been focused on single random vari-

ables. It is often convenient or required to model stochastic phenomena using

multiple random variables. In this section, we extend some of the concepts

developed for single random variables to multiple random variables. We center

our exposition of random vectors around the simplest case, pairs of random

variables.

7.1 Joint Probability Mass Functions

Consider two discrete random variables X and Y associated with a single

experiment. The random pair (X, Y ) is characterized by the joint probability

mass function of X and Y , which we denote by pX,Y (·, ·). If x is a possible

value of X and y is a possible value of Y , then the probability mass function

of (x, y) is denoted by

pX,Y (x, y) = Pr({X = x} ∩ {Y = y})
= Pr(X = x, Y = y).

Note the similarity between the definition of the joint PMF and (5.1).

Suppose that S is a subset of X(Ω)×Y (Ω). We can express the probability

79
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1

2

3

4

5

Sample Space R

RX

Y
(X, Y )

Figure 7.1: The random pair (X, Y ) maps every outcome contained in the

sample space to a vector in R2.

of S as

Pr(S) = Pr({ω ∈ Ω|(X(ω), Y (ω)) ∈ S})
=
∑

(x,y)∈S
pX,Y (x, y).

In particular, we have

∑

x∈X(Ω)

∑

y∈Y (Ω)

pX,Y (x, y) = 1.

To further distinguish between the joint PMF of (X, Y ) and the individual

PMFs pX(·) and pY (·), we occasionally refer to the latter as marginal proba-

bility mass functions. We can compute the marginal PMFs of X and Y from

the joint PMF pX,Y (·, ·) using the formulas

pX(x) =
∑

y∈Y (Ω)

pX,Y (x, y),

pY (y) =
∑

x∈X(Ω)

pX,Y (x, y).

On the other hand, knowledge of the marginal distributions pX(·) and pY (·) is
not enough to obtain a complete description of the joint PMF pX,Y (·, ·). This
fact is illustrated in Examples 57 & 58.
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Example 57. An urn contains three balls numbered one, two and three. A

random experiment consists of drawing two balls from the urn, without replace-

ment. The number appearing on the first ball is a random variable, which we

denote by X. Similarly, we refer to the number inscribed on the second ball as

Y . The joint PMF of X and Y is specified in table form below,

pX,Y (x, y) 1 2 3

1 0 1/6 1/6

2 1/6 0 1/6

3 1/6 1/6 0

.

We can compute the marginal PMF of X as

pX(x) =
∑

y∈Y (Ω)

pX,Y (x, y) =
1

6
+

1

6
=

1

3
,

where x ∈ {1, 2, 3}. Likewise, the marginal PMF of Y is given by

pY (y) =

{

1/3, if y ∈ {1, 2, 3}
0, otherwise.

Example 58. Again, suppose that an urn contains three balls numbered one,

two and three. This time the random experiment consists of drawing two balls

from the urn with replacement. We use X and Y to denote the numbers

appearing on the first and second balls, respectively. The joint PMF of X and

Y becomes

pX,Y (x, y) 1 2 3

1 1/9 1/9 1/9

2 1/9 1/9 1/9

3 1/9 1/9 1/9

.

The marginal distributions of X and Y are the same as in Example 57; how-

ever, the joint PMFs differ.

7.2 Functions and Expectations

Let X and Y be two random variables with joint PMF pX,Y (·, ·). Consider a

third random variable defined by V = g(X, Y ), where g(·, ·) is a real-valued
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function. We can obtain the PMF of V by computing

pV (v) =
∑

{(x,y)|g(x,y)=v}
pX,Y (x, y). (7.1)

This equation is the analog of (5.3) for pairs of random variables.

1

2

3

45

Sample Space

RR

R

X

Y

V

V = g(X, Y )

Figure 7.2: A real-valued function of two random variables, X and Y , is also

a random variable. Above, V = g(X, Y ) maps elements of the sample space

to real numbers.

Example 59. Two dice, a blue die and a red one, are rolled simultaneously.

The random variable X represents the number of dots that appears on the top

face of the blue die, whereas Y denotes the number of dots on the red die.

We can form a random variable U that describes the sum of these two dice,

U = X + Y .

The lowest possible value for U is two, and its maximum value is twelve.

The PMF of U , as calculated using (7.1), appears in table form below

k 2, 12 3, 11 4, 10 5, 9 6, 8 7

pU(k) 1/36 1/18 1/12 1/9 5/36 1/6

The definition of the expectation operator can be extended to multiple

random variables. In particular, the expected value of g(X, Y ) is obtained by

computing

E[g(X, Y )] =
∑

x∈X(Ω)

∑

y∈Y (Ω)

g(x, y)pX,Y (x, y). (7.2)
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Example 60. An urn contains three balls numbered one, two and three. Two

balls are selected from the urn at random, without replacement. We employ X

and Y to represent the numbers on the first and second balls, respectively. We

wish to compute the expected value of the function X + Y .

Using (7.2), we compute the expectation of g(X, Y ) = X + Y as

E[g(X, Y )] = E[X + Y ]

=
∑

x∈X(Ω)

∑

y∈Y (Ω)

(x+ y)pX,Y (x, y)

=
∑

x∈X(Ω)

xpX(x) +
∑

y∈Y (Ω)

ypY (y) = 4.

The expected value of X + Y is four.

7.3 Conditional Random Variables

Many events of practical interest are dependent. That is, knowledge about

event Amay provide partial information about the realization of event B. This

inter-dependence is captured by the concept of conditioning, which was first

discussed in Chapter 4. In this section, we extend the concept of conditioning

to multiple random variables. We study the probability of events concerning

random variable Y given that some information about random variable X is

available.

Let X and Y be two random variables associated with a same experiment.

The conditional probability mass function of Y given X = x, which we write

pY |X(·|·), is defined by

pY |X(y|x) = Pr(Y = y|X = x)

=
Pr({Y = y} ∩ {X = x})

Pr(X = x)

=
pX,Y (x, y)

pX(x)
,

provided that pX(x) 6= 0. Note that conditioning on X = x is not possible

when pX(x) vanishes, as it has no relevant meaning. This is similar to con-

ditional probabilities being only defined for conditional events with non-zero

probabilities.
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Let x be fixed with pX(x) > 0. The conditional PMF introduced above is

a valid PMF since it is nonnegative and

∑

y∈Y (Ω)

pY |X(y|x) =
∑

y∈Y (Ω)

pX,Y (x, y)

pX(x)

=
1

pX(x)

∑

y∈Y (Ω)

pX,Y (x, y) = 1.

The probability that Y belongs to S, given X = x, is obtained by summing

the conditional probability pY |X(·|·) over all outcomes included in S,

Pr(Y ∈ S|X = x) =
∑

y∈S
pY |X(y|x).

Example 61 (Hypergeometric Random Variable). A wireless communication

channel is employed to transmit a data packet that contains a total of m bits.

The first n bits of this message are dedicated to the packet header, which stores

very sensitive information. The wireless connection is unreliable; every trans-

mitted bit is received properly with probability 1− p and erased with probability

p, independently of other bits. We wish to derive the conditional probability

distribution of the number of erasures located in the header, given that the total

number of corrupted bits in the packet is equal to c.

Let H represent the number of erasures in the header, and denote the num-

ber of corrupted bits in the entire message by C. The conditional probability

mass function of H given C = c is equal to

pH|C(h|c) =
pH,C(h, c)

pC(c)

=

(

n
h

)

(1− p)n−hph
(

m−n
c−h

)

(1− p)(m−n)−(c−h)pc−h

(

m
c

)

(1− p)m−cpc

=

(

n
h

)(

m−n
c−h

)

(

m
c

) ,

where h = 0, 1, . . .min{c, n}. Clearly, the conditioning affects the probability

distribution of the number of corrupted bits in the header. In general, a ran-

dom variable with such a distribution is known as a hypergeometric random

variable.
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The definition of conditional PMF can be rearranged to obtain a convenient

formula to calculate the joint distribution of X and Y , namely

pX,Y (x, y) = pY |X(y|x)pX(x) = pX|Y (x|y)pY (y).

This formula can be use to compute the joint PMF of X and Y sequentially.

Example 62 (Splitting Property of Poisson PMF). A digital communication

system sends out either a one with probability p or a zero with probability

1 − p, independently of previous transmissions. The number of transmitted

binary digits within a given time interval has a Poisson PMF with parameter

λ. We wish to show that the number of ones sent in that same time interval

has a Poisson PMF with parameter pλ.

Let M denote the number of ones within the stipulated interval, N be the

number of zeros, and K = M +N be the total number of bits sent during the

same interval. The number of ones given that the total number of transmissions

is k is given by

pM |K(m|k) =
(

k

m

)

pm(1− p)k−m, m = 0, 1, . . . , k.

The probability that M is equal to m is therefore equal to

pM(m) =

∞
∑

k=0

pK,M(k,m) =

∞
∑

k=0

pM |K(m|k)pK(k)

=

∞
∑

k=m

(

k

m

)

pm(1− p)k−mλk

k!
e−λ

=
∞
∑

u=0

(

u+m

m

)

pm(1− p)u
λu+m

(u+m)!
e−λ

=
(λp)m

m!
e−λ

∞
∑

u=0

((1− p)λ)u

u!
=

(λp)m

m!
e−pλ.

Above, we have used the change of variables k = u +m. We have also rear-

ranged the sum into a familiar form, leveraging the fact that the summation

of a Poisson PMF over all possible values is equal to one. We can see that M

has a Poisson PMF with parameter pλ.
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7.3.1 Conditioning on Events

It is also possible to define the conditional PMF of a random variable X , con-

ditioned on an event S where Pr(X ∈ S) > 0. Let X be a random variable

associated with a particular experiment, and let S be a non-trivial event cor-

responding to this experiment. The conditional PMF of X given S is defined

by

pX|S(x) = Pr(X = x|S) = Pr({X = x} ∩ S)

Pr(S)
. (7.3)

Note that the events {ω ∈ Ω|X(ω) = x} form a partition of Ω as x ranges over

all the values in X(Ω). Using the total probability theorem, we gather that

∑

x∈X(Ω)

Pr({X = x} ∩ S) = Pr(S)

and, consequently, we get

∑

x∈X(Ω)

pX|S(x) =
∑

x∈X(Ω)

Pr({X = x} ∩ S)

Pr(S)

=

∑

x∈X(Ω) Pr({X = x} ∩ S)

Pr(S)
= 1.

We conclude that pX|S(·) is a valid PMF.

Another interpretation of (7.3) is the following. Let Y = 1S(·) symbolize

the indicator function of S, with

1S(ω) =







1, ω ∈ S

0, ω /∈ S.

Then pX|S(x) = pX|Y (x|1). In this sense, conditioning on an event is a special

case of a conditional probability mass function.

Example 63. A data packet is sent to a destination over an unreliable wireless

communication link. Data is successfully decoded at the receiver with proba-

bility p, and the transmission fails with probability (1 − p), independently of

previous trials. When initial decoding fails, a retransmission is requested im-

mediately. However, if packet transmission fails n consecutive times, then the

data is dropped from the queue altogether, with no further transmission at-

tempt. Let X denote the number of trials, and let S be the event that the data
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packet is successfully transmitted. We wish to compute the conditional PMF

of X given S.

First, we note that a successful transmission can happen at any of n possible

instants. These outcomes being mutually exclusive, the probability of S can be

written as

Pr(S) =
n
∑

k=1

(1− p)k−1p = 1− (1− p)n.

Thus, the conditional PMF pN |S(·) is equal to

pN |S(k) =
(1− p)k−1p

1− (1− p)n
,

where k = 1, 2, . . . n.

7.4 Conditional Expectations

The conditional expectation of Y given X = x is simply the expectation of Y

with respect to the conditional PMF pY |X(·|x),

E[Y |X = x] =
∑

y∈Y (Ω)

ypY |X(y|x).

This conditional expectation can be viewed as a function of x,

h(x) = E[Y |X = x].

It is therefore mathematically accurate and sometimes desirable to talk about

the random variable h(X) = E[Y |X ]. In particular, if X and Y are two ran-

dom variables associated with an experiment, the outcome of this experiment

determines the value of X , say X = x, which in turn yields the conditional

expectation h(x) = E[Y |X = x]. From this point of view, the conditional

expectation E[Y |X ] is simply an instance of a random variable.

Not too surprisingly, the expectation of E[Y |X ] is equal to E[Y ], as evinced
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by the following derivation,

E [E[Y |X ]] =
∑

x∈X(Ω)

E[Y |X = x]pX(x)

=
∑

x∈X(Ω)

∑

y∈Y (Ω)

ypY |X(y|x)pX(x)

=
∑

y∈Y (Ω)

∑

x∈X(Ω)

ypX,Y (x, y)

=
∑

y∈Y (Ω)

ypY (y) = E[Y ].

Using a similar argument, it is straightforward to show that

E [E[g(Y )|X ]] = E[g(Y )].

Example 64. An entrepreneur opens a small business that sells two kinds of

beverages from the Brazos Soda Company, cherry soda and lemonade. The

number of bottles sold in an hour at the store is found to be a Poisson random

variable with parameter λ = 10. Every customer selects a cherry soda with

probability p and a lemonade with probability (1 − p), independently of other

customers. We wish to find the conditional mean of the number of cherry sodas

purchased in an hour given that ten beverages were sold to customers during

this time period.

Let B represent the number of bottles sold during an hour. Similarly, let

C and L be the number of cherry sodas and lemonades purchased during the

same time interval, respectively. We note that B = C + L. The conditional

PMF of C given that the total number of beverages sold equals ten is

pC|B(k|10) =
(

10

k

)

pk(1− p)10−k. (7.4)

This follows from the fact that every customer selects a cherry soda with prob-

ability p, independently of other customers. The conditional mean is then seen

to equal

E[C|B = 10] =

10
∑

k=0

k

(

10

k

)

pk(1− p)10−k = 10p.

We can define the expectation of X conditioned on event S in an analogous

fashion. Let S be an event such that Pr(S) > 0. The conditional expectation
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of X given S is

E[X|S] =
∑

x∈X(Ω)

xpX|S(x),

where pX|S(·) is defined in (7.3). Similarly, we have

E[g(X)|S] =
∑

x∈X(Ω)

g(x)pX|S(x),

Example 65. Spring break is coming and a student decides to renew his shirt

collection. The number of shirts purchased by the student is a random variable

denoted by N . The PMF of this random variable is a geometric distribution

with parameter p = 0.5. Any one shirt costs $10, $20 or $50 with respective

probabilities 0.5, 0.3 and 0.2, independently of other shirts. We wish to com-

pute the expected amount of money spent by the student during his shopping

spree. Also, we wish to compute the expected amount of money disbursed given

that the student buys at least five shirts.

Let Ci be the cost of the ith shirt. The total amount of money spent by the

student, denoted by T , can be expressed as

T =
N
∑

i=1

Ci.

The mean of T can be computed using nested conditional expectation. It is

equal to

E[T ] = E

[

N
∑

i=1

Ci

]

= E

[

E

[

N
∑

i=1

Ci

∣

∣

∣
N

]]

= E

[

N
∑

i=1

E[Ci|N ]

]

= 21E[N ] = 42.

The student is expected to spend $42. Given that the student buys at least five

shirts, the conditional expectation becomes

E[T |N ≥ 5] = E

[

N
∑

i=1

Ci

∣

∣

∣
N ≥ 5

]

= E

[

E

[

N
∑

i=1

Ci

∣

∣

∣
N

]

∣

∣

∣

∣

N ≥ 5

]

= 21E[N |N ≥ 5] = 126.
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Conditioned on buying more than five shirts, the student is expected to spend

$126. Note that, in computing the conditional expectation, we have utilized the

memoryless property of the geometric random variable,

E[N |N ≥ 5] = E[N |N > 4] = 4 + E[N ] = 6.

7.5 Independence

Let X and Y be two random variables associated with a same experiment. We

say that X and Y are independent random variables if

pX,Y (x, y) = pX(x)pY (y)

for every x ∈ X(Ω) and every y ∈ Y (Ω).

There is a clear relation between the concept of independence introduced in

Section 4.4 and the independence of two random variables. Random variables

X and Y are independent if and only if the events {X = x} and {Y = y} are

independent for every pair (x, y) such that x ∈ X(Ω) and y ∈ Y (Ω).

Proposition 6. If X and Y are independent random variables, then

E[XY ] = E[X ]E[Y ].

Proof. Assume that both E[X ] and E[Y ] exist, then

E[XY ] =
∑

x∈X(Ω)

∑

y∈Y (Ω)

xypX,Y (x, y)

=
∑

x∈X(Ω)

∑

y∈Y (Ω)

xypX(x)pY (y)

=
∑

x∈X(Ω)

xpX(x)
∑

y∈Y (Ω)

ypY (y) = E[X ]E[Y ],

where we have used the fact that pX,Y (x, y) = pX(x)pY (y) for independent

random variables.

Example 66. Two dice of different colors are rolled, as in Example 59. We

wish to compute the expected value of their product. We know that the mean

of each role is E[X ] = E[Y ] = 3.5. Furthermore, it is straightforward to show
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that X and Y , the numbers of dots on the two dice, are independent random

variables. The expected value of their product is then equal to the product of

the individual means, E[XY ] = E[X ]E[Y ] = 12.25.

We can parallel the proof of Proposition 6 to show that

E[g(X)h(Y )] = E[g(X)]E[h(Y )] (7.5)

whenever X and Y are independent random variables and the corresponding

expectations exist.

7.5.1 Sums of Independent Random Variables

We turn to the question of determining the distribution of a sum of two in-

dependent random variables in terms of the marginal PMF of the summands.

Suppose X and Y are independent random variables that take on integer val-

ues. Let pX(·) and pY (·) be the PMFs of X and Y , respectively. We wish to

determine the distribution pU(·) of U , where U = X + Y . To accomplish this

task, it suffices to compute the probability that U assumes a value k, where k

is an arbitrary integer,

pU(k) = Pr(U = k) = Pr(X + Y = k)

=
∑

{(x,y)∈X(Ω)×Y (Ω)|x+y=k}
pX,Y (x, y)

=
∑

m∈Z
pX,Y (m, k −m)

=
∑

m∈Z
pX(m)pY (k −m).

The latter operation is called a discrete convolution. In particular, the PMF

of U = X + Y is the discrete convolution of pX(·) and pY (·) given by

pU(k) = (pX ∗ pY )(k) =
∑

m∈Z
pX(m)pY (k −m). (7.6)

The discrete convolution is commutative and associative.

One interesting application of (7.5) occurs when dealing with sums of in-

dependent random variables. Suppose X and Y are two independent random
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variables that take on integer values and, again, let U = X +Y . The ordinary

generating function of U , as defined in Section 6.4, is given by

GU(z) = E
[

zU
]

= E
[

zX+Y
]

= E
[

zXzY
]

= E
[

zX
]

E
[

zY
]

= GX(z)GY (z).

That is, the generating function of a sum of independent random variables is

equal to the product of the individual ordinary generating functions.

Example 67 (Sum of Poisson Random Variables). Let X be a Poisson ran-

dom variable with parameter α and let Y be a Poisson random variable with

parameter β. We wish to find the probability mass function of U = X + Y .

To solve this problem, we use ordinary generating functions. First, recall

that the generating function of a Poisson random variable with parameter λ is

eλ(z−1). The ordinary generating functions of X and Y are therefore equal to

GX(z) = eα(z−1)

GY (z) = eβ(z−1).

As such, the ordinary generating function of U = X + Y is

GU(z) = GX(z)GY (z) = eα(z−1)eβ(z−1) = e(α+β)(z−1).

We conclude, by the uniqueness of generating functions, that U is a Poisson

random variable with parameter α + β and, accordingly, we get

pU(k) =
(α + β)k

k!
e−(α+β), k = 0, 1, 2, . . .

This method of finding the PMF of U is more concise than using the discrete

convolution.

We saw in Section 7.3 that a random variable can also be conditioned on

a specific event. Let X be a random variable and let S be a non-trivial event.

The variable X is independent of S if

Pr({X = x} ∩ S) = pX(x) Pr(S)

for every x ∈ X(Ω). In particular, if X is independent of event S then

pX|S(x) = pX(x)

for all x ∈ X(Ω).
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7.6 Numerous Random Variables

The notion of a joint distribution can be applied to any number of random

variables. Let X1, X2, . . . , Xn be random variables; their joint PMF is defined

by

pX1,X2,...,Xn
(x1, x2, . . . , xn) = Pr

(

n
⋂

k=1

{Xk = xk}
)

,

or, in vector form, pX(x) = Pr(X = x). When the random variables {Xk} are

independent, their joint PMF reduces to

pX(x) =

n
∏

k=1

pXk
(xk).

Although not discussed in details herein, we emphasize that most concepts

introduced in this chapter can be extended to multiple random variables in

a straightforward manner. Also, we note that, from an abstract perspective,

the space defined by vectors of the form (X1(ω), X2(ω), . . . , Xn(ω)), ω ∈ Ω, is

itself a sample space on which random variables can be defined.

Consider the empirical sums

Sn =

n
∑

k=1

Xk n ≥ 1,

where X1, X2, . . . are independent integer-valued random variables, each with

marginal PMF pX(·). Obviously, the distribution of S1 is simply pX(·). More

generally, the PMF of Sn can be obtained recursively using the formula

Sn = Sn−1 +Xn.

This leads to the PMF

pSn
(k) = (pX ∗ pX ∗ · · · ∗ pX)(k),

which is the n-fold convolution of pX(·). Furthermore, the ordinary generating

function of Sn can be written as

GSn
(z) = (GX(z))

n .
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Example 68 (Binomial Random Variables). Suppose that Sn is a sum of n

independent and identically distributed Bernoulli random variables, each with

parameter p ∈ (0, 1). The PMF of S1 is equal to

pS1(k) =







1− p k = 0

p k = 1.

Assume that the PMF of Sn−1 is given by

pSn−1(k) =

(

n− 1

k

)

pk(1− p)n−1−k, k = 0, 1, . . . n− 1.

Then, the distribution of Sn can be computed recursively using the discrete

convolution,

pSn
(k) =

∞
∑

m=−∞
pSn−1(m)pX(k −m)

= pSn−1(k)(1− p) + pSn−1(k − 1)p

=

(

n− 1

k

)

pk(1− p)n−k +

(

n− 1

k − 1

)

pk(1− p)n−k

=

(

n

k

)

pk(1− p)n−k

where k = 0, 1, . . . , n. Thus, by the principle of mathematical induction, we

gather that the sum of n independent Bernoulli random variables, each with

parameter p, is a binomial random variable with parameters n and p.

The convolution of two binomial distributions, one with parameter m and p

and the other with parameters n and p, is also a binomial random distribution

with parameters (m + n) and p. This fact follows directly from the previous

argument.

Example 69 (Negative Binomial Random Variable*). Suppose that a Bernoulli

trial is repeated multiple times until r ones are obtained. We denote by X the

random variable that represents the number of zeros observed before completion

of the process. The distribution of X is given by

pX(k) =

(

k + r − 1

r − 1

)

pr(1− p)k, k = 0, 1, . . .
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where p is the common parameter of the Bernoulli trials. In general, a random

variable with such a distribution is known as a negative binomial random

variable.

We wish to show that X can be obtained as a sum of r independent random

variables, a task which we perform by looking at its ordinary generating func-

tion. We use properties of differential equations to derive GX(z) from pX(·).
By definition, we have

GX(z) =
∞
∑

k=0

zk
(

k + r − 1

r − 1

)

pr(1− p)k.

Consider the derivative of GX(z),

dGX

dz
(z) =

∞
∑

k=0

kzk−1

(

k + r − 1

r − 1

)

pr(1− p)k

=

∞
∑

k=1

zk−1 (k + r − 1)!

(r − 1)!(k − 1)!
pr(1− p)k

= (1− p)

∞
∑

ℓ=0

(ℓ+ r)zℓ
(

ℓ+ r − 1

r − 1

)

pr(1− p)ℓ

= (1− p)

(

z
dGX

dz
(z) + rGX(z)

)

.

It follows from this equation that

1

GX(z)

dGX

dz
(z) =

(1− p)r

1− (1− p)z

or, alternatively, we can write

d

dz
log (GX(z)) =

(1− p)r

1− (1− p)z
.

Integrating both sides yields

log (GX(z)) = −r log (1− (1− p)z) + c,

where c is an arbitrary constant. Applying boundary condition GX(1) = 1, we

get the ordinary generating function of X as

GX(z) =

(

p

1− (1− p)z

)r

.
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From this equation, we can deduce that X is the sum of r independent random

variables, Y1, . . . , Yr, each with ordinary generating function

GYi
(z) =

p

1− (1− p)z
.

In particular, the distribution of Yi is given by

pYi
(m) =

1

m!

dmGYi

dzm
(0) = p(1− p)m m = 0, 1, . . .

It may be instructive to compare this distribution with the PMF of a geometric

random variable.

Further Reading

1. Bertsekas, D. P., and Tsitsiklis, J. N., Introduction to Probability, Athena

Scientific, 2002: Sections 2.5–2.7.
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2006: Sections 6.1–6.4.

3. Gubner, J. A., Probability and Random Processes for Electrical and Computer

Engineers, Cambridge, 2006: Sections 3.4–3.5.



Chapter 8

Continuous Random Variables

So far, we have studied discrete random variables and we have explored their

properties. Discrete random variables are quite useful in many contexts, yet

they form only a small subset of the collection of random variables pertinent

to applied probability and engineering. In this chapter, we consider random

variables that range over a continuum of possible values; that is, random

variables that can take on an uncountable set of values.

Continuous random variables are powerful mathematical abstractions that

allow engineers to pose and solve important problems. Many of these problems

are difficult to address using discrete models. While this extra flexibility is

useful and desirable, it comes at a certain cost. A continuous random variable

cannot be characterized by a probability mass function. This predicament

emerges from the limitations of the third axiom of probability laws, which

only applies to countable collections of disjoint events.

Below, we provide a definition for continuous random variables. Further-

more, we extend and apply the concepts and methods initially developed for

discrete random variables to the class of continuous random variables. In par-

ticular, we develop a continuous counterpart to the probability mass function.

8.1 Cumulative Distribution Functions

We begin our exposition of continuous random variables by introducing a gen-

eral concept which can be employed to bridge our understanding of discrete

97
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and continuous random variables. Recall that a random variable is a real-

valued function acting on the outcomes of an experiment. In particular, given

a sample space, random variable X is a function from Ω to R. The cumulative

distribution function (CDF) of X is defined point-wise as the probability of

the event {X ≤ x},

FX(x) = Pr({X ≤ x}) = Pr(X ≤ x).

In terms of the underlying sample space, FX(x) denotes the probability of the

set of all outcomes in Ω for which the value of X is less than or equal to x,

FX(x) = Pr
(

X−1((−∞, x])
)

= Pr({ω ∈ Ω|X(ω) ≤ x}).

In essence, the CDF is a convenient way to specify the probability of all events

of the form {X ∈ (−∞, x]}.
The CDF of random variable X exists for any well-behaved function X :

Ω 7→ R. Moreover, since the realization of X is a real number, we have

lim
x↓−∞

FX(x) = 0

lim
x↑∞

FX(x) = 1.

Suppose x1 < x2, then we can write {X ≤ x2} as the union of the two disjoint

sets {X ≤ x1} and {x1 < X ≤ x2}. It follows that

FX(x2) = Pr(X ≤ x2)

= Pr(X ≤ x1) + Pr(x1 < X ≤ x2)

≥ Pr(X ≤ x1) = FX(x1).

(8.1)

In other words, a CDF is always a non-decreasing function. Finally, we note

from (8.1) that the probability of X falling in the interval (x1, x2] is

Pr(x1 < X ≤ x2) = FX(x2)− FX(x1). (8.2)

8.1.1 Discrete Random Variables

If X is a discrete random variable, then the CDF of X is given by

FX(x) =
∑

u∈X(Ω)∩(−∞,x]

pX(u),
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and its PMF can be computed using the formula

pX(x) = Pr(X ≤ x)− Pr(X < x) = FX(x)− lim
u↑x

FX(u).

Fortunately, this formula is simpler when the random variable X only takes

integer values, as seen in the example below.
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Figure 8.1: This figure shows the PMF of a discrete random variable, along

with the corresponding CDF. The values of the PMF are depicted by the

height of the rectangles; their cumulative sums lead to the values of the CDF.

Example 70. Let X be a geometric random variable with parameter p,

pX(k) = (1− p)k−1p k = 1, 2, . . .

For x > 0, the CDF of X is given by

FX(x) =

⌊x⌋
∑

k=1

(1− p)k−1p = 1− (1− p)⌊x⌋,

where ⌊·⌋ denotes the standard floor function. For integer k ≥ 1, the PMF of

geometric random variable X can be recovered from the CDF as follows,

pX(k) = FX(x)− lim
u↑x

FX(u) = FX(k)− FX(k − 1)

=
(

1− (1− p)k
)

−
(

1− (1− p)k−1
)

= (1− p)k−1p.
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8.1.2 Continuous Random Variables

Having introduced the general notion of a CDF, we can safely provide a more

precise definition for continuous random variables. LetX be a random variable

with CDF FX(·), then X is said to be a continuous random variable if FX(·)
is continuous and differentiable.

Example 71. Suppose that X is a random variable with CDF given by

FX(x) =







1− e−x, x ≥ 0

0, x < 0.

This cumulative distribution function is differentiable with

dFX

dx
(x) =







e−x, x > 0

0, x < 0

and therefore X is a continuous random variable.
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Figure 8.2: The CDF of a continuous random variable is differentiable. This

figure provides one example of a continuous random variable. Both, the CDF

FX(·) and its derivative fX(·) (PDF) are displayed.
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8.1.3 Mixed Random Variables*

Generally speaking, the CDF of a discrete random variable is a discontinuous

staircase-like function, whereas the CDF of a continuous random variable is

continuous and differentiable almost everywhere. There exist random variables

for which neither situation applies. Such random variables are sometimes

called mixed random variables. Our exposition of mixed random variables in

this document is very limited. Still, we emphasize that a good understanding

of discrete and continuous random variables is instrumental in understanding

and solving problems including mixed random variables.
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Figure 8.3: This figure shows the CDF of a mixed random variable. In general,

mixed random variables do not have a PMF nor a PDF. Their CDF may be

composed of a mixture of differentiable intervals and discontinuous jumps.

8.2 Probability Density Functions

As mentioned above, the CDF of continuous random variable X is a differ-

entiable function. The derivative of FX(·) is called the probability density

function (PDF) of X , and it is denoted by fX(·). If X is a random variable

with PDF fX(·) then, by the fundamental theorem of calculus, we have

FX(x) =

∫ x

−∞
fX(ξ)dξ.
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Equivalently, we can write

fX(x) =
dFX

dx
(x).

Note that PDFs are only defined for continuous random variables. This is

somewhat restrictive. Nevertheless, the PDF can be a very powerful tool to

derive properties of continuous random variables, which may otherwise be

difficult to compute.

For x1 < x2, we can combine the definition of fX(·) and (8.2) to obtain

Pr(x1 < X ≤ x2) =

∫ x2

x1

fX(ξ)dξ.

Furthermore, it is easily seen that for any continuous random variable

Pr(X = x2) = lim
x1↑x2

Pr(x1 < X ≤ x2) = lim
x1↑x2

∫ x2

x1

fX(ξ)dξ

=

∫ x2

x2

fX(ξ)dξ = 0.

In other words, if X is a continuous random variable, then Pr(X = x) = 0 for

any real number x. An immediate corollary of this fact is

Pr(x1 < X < x2) = Pr(x1 ≤ X < x2)

= Pr(x1 < X ≤ x2) = Pr(x1 ≤ X ≤ x2);

the inclusion or exclusion of endpoints in an interval does not affect the prob-

ability of the corresponding interval when X is a continuous random variable.

We can derive properties for the PDF of continuous random variable X

based on the axioms of probability laws. First, the probability that X is a real

number is given by

Pr(−∞ < X < ∞) =

∫ ∞

−∞
fX(ξ)dξ = 1.

Thus, fX(x) must integrate to one. Also, because the probabilities of events are

nonnegative, we must have fX(x) ≥ 0 everywhere. Finally, given an admissible

set S, the probability that X ∈ S can be expressed through an integral,

Pr(X ∈ S) =

∫

S

fX(ξ)dξ.

Admissible events of the form {X ∈ S} are sets for which we know how to

carry this integral.
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8.3 Important Distributions

Good intuition about continuous random variables can be developed by looking

at examples. In this section, we introduce important random variables and

their distributions. These random variables find widespread application in

various fields of engineering.

8.3.1 The Uniform Distribution

A (continuous) uniform random variable is such that all intervals of a same

length contained within its support are equally probable. The PDF of a uni-

form random variable is defined by two parameters, a and b, which represent

the minimum and maximum values of its support, respectively. The PDF

fX(·) is given by

fX(x) =







1
b−a

, x ∈ [a, b]

0, otherwise.

The associated cumulative distribution function becomes

FX(x) =



















0, x < a

x−a
b−a

, a ≤ x ≤ b

1, x ≥ b.

Example 72. David comes to campus every morning riding the Aggie Spirit

Transit. On his route, a bus comes every thirty minutes, from sunrise until

dusk. David, who does not believe in alarm clocks or watches, wakes up with

daylight. After cooking a hefty breakfast, he walks to the bus stop. If his arrival

time at the bus stop is uniformly distributed between 9:00 a.m. and 9:30 a.m.,

what is the probability that he waits less than five minutes for the bus?

Let t0 be the time at which David arrives at the bus stop, and denote by T

the time he spends waiting. The time at which the next bus arrives at David’s

stop is uniformly distributed between t0 and t0 + 30. The amount of time that

he spends at the bus stop is therefore uniformly distributed between 0 and 30

minutes. Accordingly, we have

fT (t) =







1
30
, t ∈ [0, 30]

0, otherwise.
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Figure 8.4: This figure shows the PDFs of uniform random variables with

support intervals [0, 1], [0, 2] and [0, 4].

The probability that David waits less than five minutes is

Pr(T < 5) =

∫ 5

0

1

30
dt =

1

6
.

8.3.2 The Gaussian (Normal) Random Variable

The Gaussian random variable is of fundamental importance in probability and

statistics. It is often used to model distributions of quantities influenced by

large numbers of small random components. The PDF of a Gaussian random

variable is given by

fX(x) =
1√
2πσ

e−
(x−m)2

2σ2 −∞ < x < ∞,

where m and σ > 0 are real parameters.

A Gaussian variable whose distribution has parameters m = 0 and σ = 1

is called a normal random variable or a standard Gaussian random variable,

names that hint at its popularity. The CDF of a Gaussian random variable

does not admit a closed-form expression; it can be expressed as

FX(x) = Pr(X ≤ x) =
1√
2πσ

∫ x

−∞
e−

(ξ−m)2

2σ2 dξ

=
1√
2π

∫ (x−m)/σ

−∞
e−

ζ2

2 dζ = Φ

(

x−m

σ

)

,
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Figure 8.5: The distributions of Gaussian random variables appear above for

parameters m = 0 and σ2 ∈ {1, 2, 4}.

where Φ(·) is termed the standard normal cumulative distribution function and

is defined by

Φ(x) =
1√
2π

∫ x

−∞
e−

ζ2

2 dζ.

We emphasize that the function Φ(·) is nothing more than a convenient nota-

tion for the CDF of a normal random variable.

Example 73. A binary signal is transmitted through a noisy communication

channel. The sent signal takes on either a value of 1 or −1. The message

received at the output of the communication channel is corrupted by additive

thermal noise. This noise can be accurately modeled as a Gaussian random

variable. The receiver declares that a 1 (−1) was transmitted if the sent signal

is positive (negative). What is the probability of making an erroneous decision?

Let S ∈ {−1, 1} denote the transmitted signal, N be the value of the thermal

noise, and Y represent the value of the received signal. An error can occur in

one of two possible ways: S = 1 was transmitted and Y is less than zero, or

S = −1 was transmitted and Y is greater than zero. Using the total probability

theorem, we can compute the probability of error as

Pr(Y ≥ 0|S = −1) Pr(S = −1) + Pr(Y ≤ 0|S = 1)Pr(S = 1).
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By symmetry, it is easily argued that

Pr(Y ≤ 0|S = 1) = Pr(Y ≥ 0|S = −1) = Pr(N > 1)

=

∫ ∞

1

1√
2πσ

e−
ξ2

2σ2 dξ = 1− Φ

(

1

σ

)

.

The probability that the receiver makes an erroneous decision is 1 − Φ(1/σ).

The reliability of this transmission scheme depends on the amount of noise

present at the receiver.

The normal random variable is so frequent in applied mathematics and

engineering that many variations of its CDF possess their own names. The

error function is a function which is primarily encountered in the fields of

statistics and partial differential equations. It is defined by

erf(x) =
2√
π

∫ x

0

e−ξ2dξ.

The error function is related to the standard normal cumulative distribution

function by scaling and translation,

Φ(x) =
1 + erf

(

x/
√
2
)

2
.

If X is a standard normal random variable, then erf
(

x/
√
2
)

denotes the prob-

ability that X lies in the interval (−x, x). In engineering, it is customary to

employ the Q-function, which is given by

Q(x) =
1√
2π

∫ ∞

x

e−
ξ2

2 dξ = 1− Φ(x)

=
1− erf

(

x/
√
2
)

2
.

(8.3)

Equation (8.3) may prove useful when using software packages that provide a

built-in implementation for erf(·), but not for the Q-function. The probability

of an erroneous decision in Example 73 can be expressed concisely using the

Q-function as Q(1/σ).

Next, we prove that the standard normal PDF integrates to one. The

solution is easy to follow, but hard to discover. It is therefore useful to include

it in this document. Consider a standard normal PDF,

fX(x) =
1√
2π

e−
x2

2 .
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We can show that fX(x) integrates to one using a subtle argument and a

change of variables. We start with the square of the integrated PDF and

proceed from there,

(
∫ ∞

−∞
fX(ξ)dξ

)2

=

∫ ∞

−∞

1√
2π

e−
ξ2

2 dξ

∫ ∞

−∞

1√
2π

e−
ζ2

2 dζ

=

∫ ∞

−∞

∫ ∞

−∞

1

2π
e−

ξ2+ζ2

2 dξdζ =

∫ 2π

0

1

2π
dθ

∫ ∞

0

e−
r2

2 rdr

=
(

−e−
r2

2

)∣

∣

∣

∞

0
= 1.

Since the square of the desired integral is nonnegative and equal to one, we

can conclude that the normal PDF integrates to one.

8.3.3 The Exponential Distribution

The exponential random variable is also frequently encountered in engineering.

It can be used to model the lifetime of devices and systems, and the time

elapsed between specific occurrences. An exponential random variable X with

parameter λ > 0 has PDF

fX(x) = λe−λx x ≥ 0.

For x ≥ 0, its CDF is equal to

FX(x) = 1− e−λx.

The parameter λ characterizes the rate at which events occur.

Example 74. Connection requests at an Internet server are characterized

by an exponential inter-arrival time with parameter λ = 1/2. If a request

arrives at time t0, what is the probability that the next packet arrives within

two minutes?

The probability that the inter-arrival time T is less than two minutes can

be computed as

Pr(T < 2) =

∫ 2

0

1

2
e−

ξ

2dξ = −e−
ξ

2

∣

∣

∣

2

0

= 1− e−1 ≈ 0.632.
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Figure 8.6: The distributions of exponential random variables are shown above

for parameters λ ∈ {0.5, 1, 2}.

The exponential random variable can be obtained as the limit of a sequence

of geometric random variables. Let λ be fixed and defined pn = λ/n. We define

the PMF of random variable Yn as

pYn
(k) = (1− pn)

k−1pn =

(

1− λ

n

)k−1
λ

n
k = 1, 2, . . .

That is, random variable Yn is a standard geometric random variable with

parameter pn = λ/n. For every n, we create a new variable Xn,

Xn =
Yn

n
.

By construction, the random variable Xn has PMF

pXn
(y) =

{

(1− pn)
k−1pn, if y = k/n

0, otherwise.

For any x ≥ 0, the CDF of random variable Xn can be computed as

Pr(Xn ≤ x) = Pr(Yn ≤ nx) =

⌊nx⌋
∑

k=1

pYn
(k)

=

⌊nx⌋
∑

k=1

(1− pn)
k−1pn = 1− (1− pn)

⌊nx⌋.
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In the limit, as n grows unbounded, we get

lim
n→∞

Pr(Xn ≤ x) = lim
n→∞

[

1− (1− pn)
⌊nx⌋]

= 1− lim
n→∞

(

1− λ

n

)⌊nx⌋

= 1− e−λx.

Thus, the sequence of scaled geometric random variables {Xn} converges in

distribution to an exponential random variable X with parameter λ.

Memoryless Property: In view of this asymptotic characterization and

the fact that geometric random variables are memoryless, it is not surprising

that the exponential random variable also satisfies the memoryless property,

Pr(X > t + u|X > t) = Pr(X > u).

This fact can be shown by a straightforward application of conditional prob-

ability. Suppose that X is an exponential random variable with parameter λ.

Also, let t and u be two positive numbers. The memoryless property can be

verified by expanding the conditional probability of X using definition (4.2),

Pr(X > t+ u|X > t) =
Pr({X > t+ u} ∩ {X > t})

Pr(X > t)

=
Pr(X > t+ u)

Pr(X > t)
=

e−λ(t+u)

e−λt

= e−λu = Pr(X > u).

In reality, the exponential random variable is the only continuous random

variable that satisfies the memoryless property.

Example 75. A prominent company, Century Oak Networks, maintains a

bank of servers for its operation. Hard drives on the servers have a half-life of

two years. We wish to compute the probability that a specific disk needs repair

within its first year of usage.

Half-lives are typically used to describe quantities that undergo exponential

decay. Let T denote the time elapsed until failure of the disk. We know that T

is an exponential random variable and, although we are not given λ explicitly,

we know that

Pr(T > 2) =
1

2
.
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We use the memoryless property to solve this problem,

Pr(T > 2) = Pr(T > 1) Pr(T > 1 + 1|T > 1)

= Pr(T > 1) Pr(T > 1) = (Pr(T > 1))2 .

It follows that Pr(T > 1) =
√

Pr(T > 2) = 1/
√
2. We can then write Pr(T <

1) = 1 − Pr(T > 1) ≈ 0.293. An alternative way to solve this problem would

be to first find the value of λ associated with T , and then compute Pr(T < 1)

from the corresponding integral.

8.4 Additional Distributions

Probability distributions arise in many different contexts and they assume var-

ious forms. We conclude this first chapter on continuous random variables by

mentioning a few additional distributions that find application in engineering.

It is interesting to note the interconnection between various random variables

and their corresponding probability distributions.

8.4.1 The Gamma Distribution

The gamma PDF defines a versatile collection of distributions. The PDF of a

gamma random variable is given by

fX(x) =
λ(λx)α−1e−λx

Γ(α)
x > 0,

where Γ(·) denotes the gamma function defined by

Γ(z) =

∫ ∞

0

ξz−1e−ξdξ z > 0.

The two parameters α > 0 and λ > 0 affect the shape of the ensuing distri-

bution significantly. By varying these two parameters, it is possible for the

gamma PDF to accurately model a wide array of empirical data.

The gamma function can be evaluated recursively using integration by

parts; this yields the relation Γ(z + 1) = zΓ(z) for z > 0. For nonnegative in-

tegers, it can easily be shown that Γ(k+1) = k!. Perhaps, the most well-known
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value for the gamma function at a non-integer argument is Γ(1/2) =
√
π. In-

terestingly, this specific value for the gamma function can be evaluated by a

procedure similar to the one we used to integrate the Gaussian distribution,

(

Γ

(

1

2

))2

=

∫ ∞

0

ξ−
1
2 e−ξdξ

∫ ∞

0

ζ−
1
2 e−ζdζ

=

∫ ∞

0

∫ ∞

0

ξ−
1
2 ζ−

1
2 e−(ξ+ζ)dξdζ

=

∫ π/2

0

∫ ∞

0

1

r2 sin θ cos θ
e−r24r3 sin θ cos θdrdθ

=

∫ π/2

0

∫ ∞

0

e−r24rdrdθ = π.

Many common distributions are special cases of the gamma distribution, as

seen in Figure 8.7.
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Figure 8.7: Gamma distributions form a two-parameter family of PDFs and,

depending on (α, λ), they can be employed to model various situations. The

parameters used above are (1, 0.5) for the exponential distribution, (2, 0.5) for

the chi-square distribution and (4, 2) for the Erlang distribution; they are all

instances of gamma distributions.

The Exponential Distribution: When α = 1, the gamma distribution

simply reduces to the exponential distribution discussed in Section 8.3.3.
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The Chi-Square Distribution: When λ = 1/2 and α = k/2 for some

positive integer k, the gamma distribution becomes a chi-square distribution,

fX(x) =
x

k
2
−1e−

x
2

2
k
2Γ(k/2)

x > 0.

The chi-square distribution is one of the probability distributions most widely

used in statistical inference problems. Interestingly, the sum of the squares of

k independent standard normal random variables leads to a chi-square variable

with k degrees of freedom.

The Erlang Distribution: When α = m, a positive integer, the gamma

distribution is called an Erlang distribution. This distribution finds application

in queueing theory. Its PDF is given by

fX(x) =
λ(λx)m−1e−λx

(m− 1)!
x > 0.

An m-Erlang random variable can be obtained by summing m independent

exponential random variables. Specifically, let X1, X2, . . . , Xm be indepen-

dent exponential random variables, each with parameter λ > 0. The random

variable Sm given by

Sm =

m
∑

k=1

Xk

is an Erlang random variable with parameter m and λ.

Example 76. Suppose that the requests arriving at a computer server on the

Internet are characterized by independent, memoryless inter-arrival periods.

Let Sm be a random variable that denotes the time instant of the mth arrival,

then Sm is an Erlang random variable.

8.4.2 The Rayleigh Distribution

The Rayleigh PDF is given by

fR(r) =
r

σ2
e−

r2

2σ2 r ≥ 0.

The Rayleigh distribution arises in the context of wireless communications.

Suppose that X and Y are two independent normal random variables, then
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Figure 8.8: This figure plots the distributions of Rayleigh random variables

for parameters σ2 ∈ {1, 2, 4}.

the magnitude of this random vector possesses a Rayleigh distribution. Also,

if R is a Rayleigh random variable then R2 has an exponential distribution.

Example 77. Radio signals propagating through wireless media get reflected,

refracted and diffracted. This creates variations in signal strength at the desti-

nations, a phenomenon known as fading. Rayleigh random variables are often

employed to model amplitude fluctuations of radio signals in urban environ-

ments.

8.4.3 The Laplace Distribution

The Laplace distribution is sometimes called a double exponential distribution

because it can be thought of as an exponential function and its reflection

spliced together. The PDF of a Laplacian random variable can then be written

as

fX(x) =
1

2b
e−

|x|
b x ∈ R,

where b is a positive constant. The difference between two independent and

identically distributed exponential random variables is governed by a Laplace

distribution.
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Figure 8.9: The PDF of a Laplace random variable can be constructed using

an exponential function and its reflection spliced together. This figures shows

Laplace PDFs for parameters b ∈ {0.5, 1, 2}.

8.4.4 The Cauchy Distribution

The Cauchy distribution is considered a heavy-tail distribution because its tail

is not exponentially bounded. The PDF of a Cauchy random variable is given

by

fX(x) =
γ

π (γ2 + x2)
x ∈ R.

An interesting fact about this distribution is that its mean, variance and all

higher moments are undefined. Moreover, if X1, X2, . . . , Xn are independent

random variables, each with a standard Cauchy distribution, then the sample

mean (X1+X2+ · · ·+Xn)/n possesses the same Cauchy distribution. Cauchy

random variables appear in detection theory to model communication systems

subject to extreme noise conditions; they also finds applications in physics.

Physicists sometimes refer to this distribution as the Lorentz distribution.

Further Reading

1. Ross, S., A First Course in Probability, 7th edition, Pearson Prentice Hall,

2006: Sections 5.1, 5.3–5.6.
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Figure 8.10: Cauchy distributions are categorized as heavy-tail distributions

because of their very slow decay. The PDFs of Cauchy random variables are

plotted above for parameters γ ∈ {0.5, 1, 2}.

2. Bertsekas, D. P., and Tsitsiklis, J. N., Introduction to Probability, Athena

Scientific, 2002: Sections 3.1–3.3.

3. Gubner, J. A., Probability and Random Processes for Electrical and Computer

Engineers, Cambridge, 2006: Sections 4.1, 5.1.

4. Miller, S. L., and Childers, D. G., Probability and Random Processes with

Applications to Signal Processing and Communications, 2004: Sections 3.1–

3.4.
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Chapter 9

Functions and Derived

Distributions

We already know from our previous discussion that it is possible to form new

random variables by applying real-valued functions to existing discrete random

variables. In a similar manner, it is possible to generate a new random variable

Y by taking a well-behaved function g(·) of a continuous random variable X .

The graphical interpretation of this notion is analog to the discrete case and

appears in Figure 9.1.

Sample Space

X

Y = g(X)

Figure 9.1: A function of a random variable is a random variable itself. In

this figure, Y is obtained by applying function g(·) to the value of continuous

random variable X .

Suppose X is a continuous random variable and let g(·) be a real-valued

function. The function composition Y = g(X) is itself a random variable. The

probability that Y falls in a specific set S depends on both the function g(·)

117
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and the PDF of X ,

Pr(Y ∈ S) = Pr(g(X) ∈ S) = Pr
(

X ∈ g−1(S)
)

=

∫

g−1(S)

fX(ξ)dξ,

where g−1(S) = {ξ ∈ X(Ω)|g(ξ) ∈ S} denotes the preimage of S. In particular,

we can derive the CDF of Y using the formula

FY (y) = Pr(g(X) ≤ y) =

∫

{ξ∈X(Ω)|g(ξ)≤y}
fX(ξ)dξ. (9.1)

Example 78. Let X be a Rayleigh random variable with parameter σ2 = 1,

and define Y = X2. We wish to find the distribution of Y . Using (9.1), we

can compute the CDF of Y . For y > 0, we get

FY (y) = Pr(Y ≤ y) = Pr
(

X2 ≤ y
)

= Pr(−√
y ≤ X ≤ √

y) =

∫

√
y

0

ξe−
ξ2

2 dξ

=

∫ y

0

1

2
e−

ζ

2dζ = 1− e−
y

2 .

In this derivation, we use the fact that X ≥ 0 in identifying the boundaries of

integration, and we apply the change of variables ζ = ξ2 in computing the inte-

gral. We recognize FY (·) as the CDF of an exponential random variable. This

shows that the square of a Rayleigh random variable possesses an exponential

distribution.

In general, the fact thatX is a continuous random variable does not provide

much information about the properties of Y = g(X). For instance, Y could

be a continuous random variable, a discrete random variable or neither. To

gain a better understanding of derived distributions, we begin our exposition

of functions of continuous random variables by exploring specific cases.

9.1 Monotone Functions

A monotonic function is a function that preserves a given order. For instance,

g(·) is monotone increasing if, for all x1 and x2 such that x1 ≤ x2, we have

g(x1) ≤ g(x2). Likewise, a function g(·) is termed monotone decreasing pro-

vided that g(x1) ≥ g(x2) whenever x1 ≤ x2. If the inequalities above are
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replaced by strict inequalities (< and >), then the corresponding functions

are said to be strictly monotonic. Monotonic functions of random variables

are straightforward to handle because they admit the simple characterization

of their derived CDFs. For non-decreasing function g(·) of continuous random
variable X , we have

FY (y) = Pr(Y ≤ y) = Pr(g(X) ≤ y) = Pr(g(X) ∈ (−∞, y])

= Pr(X ∈ g−1((−∞, y])) = Pr
(

X ≤ sup
{

g−1((−∞, y])
})

= FX

(

sup
{

g−1((−∞, y])
})

.

(9.2)

The supremum comes from the fact that multiple values of x may lead to a

same value of y; that is, the preimage g−1(y) = {x|g(x) = y} may contain

several elements. Furthermore, g(·) may be discontinuous and g−1(y) may

not contain any value. These scenarios all need to be accounted for in our

expression, and this is accomplished by selecting the largest value in the set

g−1((−∞, y]).

g−1(y) = {x|g(x) = y}

y

X

Y

Figure 9.2: In this figure, Y is obtained by passing random variable X through

a function g(·). The preimage of point y contains several elements, as seen

above.

Example 79. Let X be a continuous random variable uniformly distributed

over interval [0, 1]. We wish to characterize the derived distribution of Y =

2X. This can be accomplished as follows. For y ∈ [0, 2], we get

FY (y) = Pr(Y ≤ y) = Pr
(

X ≤ y

2

)

=

∫
y

2

0

dx =
y

2
.



120 CHAPTER 9. FUNCTIONS AND DERIVED DISTRIBUTIONS

g−1((−∞, y])

y

X

Y

Figure 9.3: If g(·) is monotone increasing and discontinuous, then g−1(y) can be

empty; whereas g−1((−∞, y]) is typically a well-defined interval. It is therefore

advisable to define FY (y) in terms of g−1((−∞, y]).

In particular, Y is a uniform random variable with support [0, 2]. By taking

derivatives, we obtain the PDF of Y as

fY (y) =







1
2
, y ∈ [0, 2]

0, otherwise.

More generally, an affine function of a uniform random variable is also a

uniform random variable.

The same methodology applies to non-increasing functions. Suppose that

g(·) is monotone decreasing, and let Y = g(X) be a function of continuous

random variable X . The CDF of Y is then equal to

FY (y) = Pr(Y ≤ y) = Pr
(

X ∈ g−1((−∞, y])
)

= Pr
(

X ≥ inf
{

g−1((−∞, y])
})

= 1− FX

(

inf
{

g−1((−∞, y])
})

.

(9.3)

This formula is similar to the previous case in that the infimum accounts for

the fact that the preimage g−1(y) = {x|g(x) = y} may contain numerous

elements or no elements at all.
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9.2 Differentiable Functions

To further our understanding of derived distributions, we next consider the

situation where g(·) is a differentiable and strictly increasing function. Note

that, with these two properties, g(·) becomes an invertible function. It is

therefore possible to write x = g−1(y) unambiguous, as the value of x is unique.

In such a case, the CDF of Y = g(X) becomes

FY (y) = Pr
(

X ≤ g−1(y)
)

= FX

(

g−1(y)
)

.

Differentiating this equation with respect to y, we obtain the PDF of Y

fY (y) =
d

dy
FY (y) =

d

dy
FX

(

g−1(y)
)

= fX
(

g−1(y)
) d

dy
g−1(y) = fX

(

g−1(y)
) dx

dy
.

With the simple substitution x = g−1(y), we get

fY (y) = fX(x)
dx

dy
=

fX(x)
dg
dx
(x)

.

Note that dg
dx
(x) =

∣

∣

dg
dx
(x)
∣

∣ is strictly positive because g(·) is a strictly increasing

function. From this analysis, we gather that Y = g(X) is a continuous random

variable. In addition, we can express the PDF of Y = g(X) in terms of the

PDF of X and the derivative of g(·), as seen above.

Likewise, suppose that g(·) is differentiable and strictly decreasing. We can

write the CDF of random variable Y = g(X) as follows,

FY (y) = Pr(g(X) ≤ y) = Pr
(

X ≥ g−1(y)
)

= 1− FX

(

g−1(y)
)

.

Its PDF is given by

fY (y) =
d

dy

(

1− FX

(

g−1(y)
))

=
fX(x)

− dg
dx
(x)

,

where again x = g−1(y). We point out that dg
dx
(x) = −

∣

∣

dg
dx
(x)
∣

∣ is strictly

negative because g(·) is a strictly decreasing function. As before, we find that

Y = g(X) is a continuous random variable and the PDF of Y can be expressed

in terms of fX(·) and the derivative of g(·). Combining these two expressions,
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g−1((y1, y1 + δ)) g−1((y2, y2 + δ))

(y1, y1 + δ)

(y2, y2 + δ)

X

Y

Figure 9.4: This figure provides a graphical interpretation of why the derivative

of g(·) plays an important role in determining the value of the derived PDF

fY (·). For an interval of width δ on the y-axis, the size of the corresponding

interval on the x-axis depends heavily on the derivative of g(·). A small slope

leads to a wide interval, whereas a steep slope produces a narrow interval on

the x-axis.

we observe that, when g(·) is differentiable and strictly monotone, the PDF of

Y becomes

fY (y) = fX
(

g−1(y)
)

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

=
fX(x)
∣

∣

dg
dx
(x)
∣

∣

(9.4)

where x = g−1(y). The role of
∣

∣

dg
dx
(·)
∣

∣ in finding the derived PDF fY (·) is

illustrated in Figure 9.4.

Example 80. Suppose that X is a Gaussian random variable with PDF

fX(x) =
1√
2π

e−
x2

2 .

We wish to find the PDF of random variable Y where Y = aX + b and a 6= 0.

In this example, we have g(x) = ax+ b and g(·) is immediately recognized

as a strictly monotonic function. The inverse of function of g(·) is equal to

x = g−1(y) =
y − b

a
,

and the desired derivative is given by

dx

dy
=

1
dg
dx
(x)

=
1

a
.
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The PDF of Y can be computed using (9.4), and is found to be

fY (y) = fX
(

g−1(y)
)

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

=
1√
2π|a|

e−
(y−b)2

2a2 ,

which is itself a Gaussian distribution.

Using a similar progression, we can show that the affine function of any

Gaussian random variable necessarily remains a Gaussian random variable

(provided a 6= 0).

Example 81 (Channel Fading and Energy). Suppose X is a Rayleigh random

variable with parameter σ2 = 1, and let Y = X2. We wish to derive the

distribution of random variable Y using the PDF of X.

Recall that the distribution of Rayleigh random variable X is given by

fX(x) = xe−
x2

2 x ≥ 0.

Since Y is the square of X, we have g(x) = x2. Note that X is a non-negative

random variable and g(x) = x2 is strictly monotonic over [0,∞). The PDF of

Y is therefore found to be

fY (y) =
fX(x)
∣

∣

dg
dx
(x)
∣

∣

=
fX
(√

y
)

∣

∣

dg
dx

(√
y
)
∣

∣

=

√
y

2
√
y
e−

y
2 =

1

2
e−

y
2 ,

where y ≥ 0. Thus, random variable Y possesses an exponential distribution

with parameter 1/2. It may be instructive to compare this derivation with the

steps outlined in Example 78.

Finally, suppose that g(·) is a differentiable function with a finite number

of local extrema. Then, g(·) is piecewise monotonic and we can write the PDF

of Y = g(X) as

fY (y) =
∑

{x∈X(Ω)|g(x)=y}

fX(x)
∣

∣

dg
dx
(x)
∣

∣

(9.5)

for (almost) all values of y ∈ R. That is, fY (y) is obtained by first identi-

fying the values of x for which g(x) = y. The PDF of Y is then computed

explicitly by finding the local contribution of each of these values to fY (y)

using the methodology developed above. This is accomplished by applying

(9.4) repetitively to every value of x for which g(x) = y. It is certainly useful

to compare (9.5) to its discrete equivalent (5.4), which is easier to understand

and visualize.
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y

x1 x2 x3 x4 x5 X

Y

Figure 9.5: The PDF of Y = g(X) when X is a continuous random variable

and g(·) is differentiable with a finite number of local extrema is obtained by

first identifying all the values of x for which g(x) = y, and then calculating

the contribution of each of these values to fY (y) using (9.4). The end result

leads to (9.5).

Example 82 (Signal Phase and Amplitude). Suppose X is a continuous ran-

dom variable uniformly distributed over [0, 2π). Let Y = cos(X), the random

sampling of a sinusoidal waveform. We wish to find the PDF of Y .

For y ∈ (−1, 1), the preimage g−1(y) contains two values in [0, 2π), namely

arccos(y) and 2π − arccos(y). Recall that the derivative of cos(x) is given by

d

dx
cos(x) = − sin(x).

Collecting these results, we can write the PDF of Y as

fY (y) =
fX(arccos(y))

|− sin(arccos(y))| +
fX(2π − arccos(y))

|− sin(2π − arccos(y))|
=

1

2π
√

1− y2
+

1

2π
√

1− y2
=

1

π
√

1− y2
,

where −1 < y < 1. The CDF of Y can be obtained by integrating fY (y). Not

surprisingly, solving this integral involves a trigonometric substitution.

9.3 Generating Random Variables

In many engineering projects, computer simulations are employed as a first

step in validating concepts or comparing various design candidates. Many
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such tasks involve the generation of random variables. In this section, we

explore a method to generate arbitrary random variables based on a routine

that outputs a random value uniformly distributed between zero and one.

9.3.1 Continuous Random Variables

First, we consider a scenario where the simulation task requires the generation

of a continuous random variable. We begin our exposition with a simple

observation. LetX be a continuous random variable with PDF fX(·). Consider
the random variable Y = FX(X). Since FX(·) is differentiable and strictly

increasing over the support of X , we get

fY (y) =
fX(x)
∣

∣

dFX

dx
(x)
∣

∣

=
fX(x)

|fX(x)|
= 1

where y ∈ (0, 1) and x = F−1
X (y). The PDF of Y is zero outside of this interval

because 0 ≤ FX(x) ≤ 1. Thus, using an arbitrary continuous random variable

X , we can generate a uniform random variable Y with PDF

fY (y) =







1 y ∈ (0, 1)

0 otherwise.

This observation provides valuable insight about our original goal. Suppose

that Y is a continuous random variable uniformly distributed over [0, 1]. We

wish to generate continuous random variable with CDF FX(·). First, we note

that, when FX(·) is invertible, we have

F−1
X (FX(X)) = X.

Thus, applying F−1
X (·) to uniform random variable Y should lead to the desired

result. Define V = F−1
X (Y ), and consider the PDF of V . Using our knowledge

of derived distributions, we get

fV (v) =
fY (y)
∣

∣

∣

dF−1
X

dy
(y)
∣

∣

∣

= fY (y)
dFX

dv
(v) = fX(v)

where y = FX(v). Note that fY (y) = 1 for any y ∈ [0, 1] because Y is uniform

over the unit interval. Hence the PDF of F−1
X (Y ) possesses the structure
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wanted. We stress that this technique can be utilized to generate any random

variable with PDF fX(·) using a computer routine that outputs a random

value uniformly distributed between zero and one. In other words, to create

a continuous random variable X with CDF FX(·), one can apply the function

F−1
X (·) to a random variable Y that is uniformly distributed over [0, 1].

Example 83. Suppose that Y is a continuous random variable uniformly dis-

tributed over [0, 1]. We wish to create an exponential random variable X with

parameter λ by taking a function of Y .

Random variable X is nonnegative, and its CDF is given by FX(x) =

1− e−λx for x ≥ 0. The inverse of FX(·) is given by

F−1
X (y) = −1

λ
log(1− y).

We can therefore generate the desired random variable X with

X = −1

λ
log(1− Y ).

Indeed, for x ≥ 0, we obtain

fX(x) =
fY (y)

1
λ(1−y)

= λe−λx

where we have implicitly defined y = 1− e−λx. This is the desired distribution.

9.3.2 Discrete Random Variables

It is equally straightforward to generate a discrete random variable from a

continuous random variable that is uniformly distributed between zero and

one. Let pX(·) be a PMF, and denote its support by {x1, x2, . . .} where xi < xj

whenever i < j. We know that the corresponding CDF is given by

FX(x) =
∑

xi≤x

pX(xi).

We can generate a random variable X with PMF pX(·) with the following case

function,

g(y) =







xi, if FX(xi−1) < y ≤ FX(xi)

0, otherwise.
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Note that we have used the convention x0 = 0 to simplify the definition of

g(·). Taking X = g(Y ), we get

Pr(X = xi) = Pr(FX(xi−1) < Y ≤ FX(xi))

= FX(xi)− FX(xi−1) = pX(xi).

Of course, implementing a discrete random variable through a case statement

may lead to an excessively slow routine. For many discrete random variables,

there are much more efficient ways to generate a specific output.

Further Reading

1. Ross, S., A First Course in Probability, 7th edition, Pearson Prentice Hall,

2006: Section 5.7.
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Scientific, 2002: Section 3.6.

3. Miller, S. L., and Childers, D. G., Probability and Random Processes with

Applications to Signal Processing and Communications, 2004: Section 4.6.

4. Gubner, J. A., Probability and Random Processes for Electrical and Computer

Engineers, Cambridge, 2006: Sections 1.1,1.3–1.4.

5. Mitzenmacher, M., and Upfal, E., Probability and Computing: Randomized

Algorithms and Probabilistic Analysis, Cambridge, 2005: Chapters 1 & 10.



128 CHAPTER 9. FUNCTIONS AND DERIVED DISTRIBUTIONS



Chapter 10

Expectations and Bounds

The concept of expectation, which was originally introduced in the context

of discrete random variables, can be generalized to other types of random

variables. For instance, the expectation of a continuous random variable is

defined in terms of its probability density function (PDF). We know from our

previous discussion that expectations provide an effective way to summarize

the information contained in the distribution of a random variable. As we

will see shortly, expectations are also very valuable in establishing bounds on

probabilities.

10.1 Expectations Revisited

The definition of an expectation associated with a continuous random variable

is very similar to its discrete counterpart; the weighted sum is simply replaced

by a weighted integral. For a continuous random variable X with PDF fX(·),
the expectation of g(X) is defined by

E[g(X)] =

∫

R

g(ξ)fX(ξ)dξ.

In particular, the mean of X is equal to

E[X ] =

∫

R

ξfX(ξ)dξ

and its variance becomes

Var(X) = E
[

(X − E[X ])2
]

=

∫

R

(ξ − E[X ])2fX(ξ)dξ.

129
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As before, the variance of random variable X can also be computed using

Var(X) = E [X2]− (E[X ])2.

Example 84. We wish to calculate the mean and variance of a Gaussian

random variable with parameters m and σ2. By definition, the PDF of this

random variable can be written as

fX(ξ) =
1√
2πσ

e−
(ξ−m)2

2σ2 ξ ∈ R.

The mean of X can be obtained through direct integration, with a change of

variables,

E[X ] =
1√
2πσ

∫ ∞

−∞
ξe−

(ξ−m)2

2σ2 dξ

=
σ√
2π

∫ ∞

−∞

(

ζ +
m

σ

)

e−
ζ2

2 dζ

=
σ√
2π

∫ ∞

−∞
ζe−

ζ2

2 dζ +
σ√
2π

∫ ∞

−∞

m

σ
e−

ζ2

2 dζ = m.

In finding a solution, we have leveraged the facts that ζe−
ζ2

2 is an absolutely in-

tegrable, odd function. We also took advantage of the normalization condition

which ensures that a Gaussian PDF integrates to one. To derive the variance,

we again use the normalization condition. For a Gaussian PDF, this property

implies that
∫ ∞

−∞
e−

(ξ−m)2

2σ2 dξ =
√
2πσ.

Differentiating both sides of this equation with respect to σ, we get

∫ ∞

−∞

(ξ −m)2

σ3
e−

(ξ−m)2

2σ2 dξ =
√
2π.

Rearranging the terms yields

∫ ∞

−∞

(ξ −m)2√
2πσ

e−
(ξ−m)2

2σ2 dξ = σ2.

Hence, Var(X) = E [(X −m)2] = σ2. Of course, the variance can also be

obtained by more conventional methods.

Example 85. Suppose that R is a Rayleigh random variable with parameter

σ2. We wish to compute its mean and variance.
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Recall that R is a nonnegative random variable with PDF

fR(r) =
r

σ2
e−

r2

2σ2 r ≥ 0.

Using this distribution, we get

E[R] =

∫ ∞

0

ξfR(ξ)dξ =

∫ ∞

0

ξ2

σ2
e−

ξ2

2σ2 dξ

= −ξe−
ξ2

2σ2

∣

∣

∣

∣

∞

0

+

∫ ∞

0

e−
ξ2

2σ2 dξ

=
√
2πσ

∫ ∞

0

1√
2πσ

e−
ζ2

2σ2 dζ =

√
2πσ

2
.

Integration by parts is key in solving this expectation. Also, notice the judicious

use of the fact that the integral of a standard normal random variable over

[0,∞) must be equal to 1/2. We compute the second moment of R below,

E
[

R2
]

=

∫ ∞

0

ξ2fR(ξ)dξ =

∫ ∞

0

ξ3

σ2
e−

ξ2

2σ2 dξ

= −ξ2e−
ξ2

2σ2

∣

∣

∣

∣

∞

0

+

∫ ∞

0

2ξe−
ξ2

2σ2 dξ

= −2σ2e−
ξ2

2σ2

∣

∣

∣

∣

∞

0

= 2σ2.

The variance of R is therefore equal to

Var[R] =
(4− π)

2
σ2.

Typically, σ2 is employed to denote the variance of a random variable. It may

be confusing at first to have a random variable R described in terms of parame-

ter σ2 whose variance is equal to (4−π)σ2/2. This situation is an artifact of the

following relation. A Rayleigh random variable R can be generated through the

expression R =
√
X2 + Y 2, where X and Y are independent zero-mean Gaus-

sian variables with variance σ2. Thus, the parameter σ2 in fR(·) is a tribute

to this popular construction, not a representation of its actual variance.

For nonnegative random variable X , an alternative way to compute E[X ]

is described in Proposition 7.
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Proposition 7. Suppose that X is a nonnegative random variable with finite

mean, then

E[X ] =

∫ ∞

0

Pr(X > x)dx.

Proof. We offer a proof for the special case where X is a continuous random

variable, although the result remains true in general,

∫ ∞

0

Pr(X > x)dx =

∫ ∞

0

∫ ∞

x

fX(ξ)dξdx

=

∫ ∞

0

∫ ξ

0

fX(ξ)dxdξ

=

∫ ∞

0

ξfX(ξ)dξ = E[X ].

Interchanging the order of integration is justified because X is assumed to

have finite mean.

Example 86. A player throws darts at a circular target hung on a wall. The

dartboard has unit radius, and the position of every dart is distributed uni-

formly over the target. We wish to compute the expected distance from each

dart to the center of the dartboard.

Let R denote the distance from a dart to the center of the target. For

0 ≤ r ≤ 1, the probability that R exceeds r is given by

Pr(R > r) = 1− Pr(R ≤ r) = 1− πr2

π
= 1− r2.

Then, by Proposition 7, the expected value of R is equal to

E[R] =

∫ 1

0

(

1− r2
)

dr =

(

r − r3

3

)
∣

∣

∣

∣

1

0

= 1− 1

3
=

2

3
.

Notice how we were able to compute the answer without deriving an explicit

expression for fR(·).

10.2 Moment Generating Functions

The moment generating function of a random variable X is defined by

MX(s) = E
[

esX
]

.
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For continuous random variables, the moment generating function becomes

MX(s) =

∫ ∞

−∞
fX(ξ)e

sξdξ.

The experienced reader will quickly recognize the definition of MX(s) as a

variant of the Laplace Transform, a widely used linear operator. The moment

generating function gets its name from the following property. Suppose that

MX(s) exists within an open interval around s = 0, then the nth moment of

X is given by

dn

dsn
MX(s)

∣

∣

∣

s=0
=

dn

dsn
E
[

esX
]

∣

∣

∣

s=0
= E

[

dn

dsn
esX
]
∣

∣

∣

∣

s=0

= E
[

XnesX
]

∣

∣

∣

s=0
= E[Xn].

In words, if we differentiate MX(s) a total of n times and then evaluate the

resulting function at zero, we obtain the nth moment of X . In particular, we

have dMX

ds
(0) = E[X ] and d2MX

ds2
(0) = E[X2].

Example 87 (Exponential Random Variable). Let X be an exponential ran-

dom variable with parameter λ. The moment-generating function of X is given

by

MX(s) =

∫ ∞

0

λe−λξesξdξ =

∫ ∞

0

λe−(λ−s)ξdξ =
λ

λ− s
.

The mean of X is

E[X ] =
dMX

ds
(0) =

λ

(λ− s)2

∣

∣

∣

∣

s=0

=
1

λ
;

more generally, the nth moment of X can be computed as

E[Xn] =
dnMX

dsn
(0) =

n!λ

(λ− s)n+1

∣

∣

∣

∣

s=0

=
n!

λn
.

Incidentally, we can deduce from these results that the variance of X is 1/λ2.

The definition of the moment generating function applies to discrete ran-

dom variables as well. In fact, for integer-valued random variables, the moment

generating function and the ordinary generating function are related through

the equation

MX(s) =
∑

k∈X(Ω)

eskpX(k) = GX(e
s).
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Example 88 (Discrete Uniform Random Variable). Suppose U is a discrete

uniform random variable taking value in U(Ω) = {1, 2, . . . , n}. Then, pU(k) =
1/n for 1 ≤ k ≤ n and

MU(s) =

n
∑

k=1

1

n
esk =

1

n

n
∑

k=1

esk =
es(ens − 1)

n(es − 1)
.

The moment generating function provides an alternate and somewhat intricate

way to compute the mean of U ,

E[U ] =
dMU

ds
(0) = lim

s→0

ne(n+2)s − (n+ 1)e(n+1)s + es

n (es − 1)2

= lim
s→0

n(n + 2)e(n+1)s − (n+ 1)2ens + 1

2n (es − 1)

= lim
s→0

n(n + 1)(n+ 2)ne(n+1)s − n(n + 1)2ens

2nes
=

n+ 1

2
.

Notice the double application of l’Hôpital’s rule to evaluate the derivative of

MU(s) at zero. This may be deemed a more contrived method to derive the

expected value of a discrete uniform random variables, but it does not rely on

prior knowledge of special sums. Through similar steps, one can derive the

second moment of U , which is equal to

E
[

U2
]

=
(n+ 1)(2n+ 1)

6
.

From these two results, we can show that the variance of U is (n2 − 1)/12.

The simple form of the moment generating function of a standard normal

random variable points to its importance in many situations. The exponential

function is analytic and possesses many representations.

Example 89 (Gaussian Random Variable). Let X be a standard normal ran-

dom variable whose PDF is given by

fX(ξ) =
1√
2π

e−
ξ2

2 .

The moment generating function of X is equal to

MX(s) = E
[

esX
]

=

∫ ∞

−∞

1√
2π

e−
ξ2

2 esξdξ

=

∫ ∞

−∞

1√
2π

e−
ξ2+2sξ

2 dξ = e
s2

2

∫ ∞

−∞

1√
2π

e−
ξ2−2sξ+s2

2 dξ

= e
s2

2

∫ ∞

−∞

1√
2π

e−
(ξ−s)2

2 dξ = e
s2

2 .
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The last equality follows from the normalization condition and the fact that

the integrand is a Gaussian PDF.

Let MX(s) be the moment generating function associated with a random

variable X , and consider the random variable Y = aX + b where a and b are

constant. The moment generating function of Y can be obtained as follows,

MY (s) = E
[

esX
]

= E
[

es(aX+b)
]

= esbE
[

esaX
]

= esbMX(as).

Thus, if Y is an affine function of X then MY (s) = esbMX(as).

Example 90. We can use this property to identify the moment generating

function of a Gaussian random variable with parameters m and σ2. Recall

that an affine function of a Gaussian random variable is also Gaussian. Let

Y = σX +m, then the moment generating function of Y becomes

MY (s) = E
[

esY
]

= E
[

es(σX+m)
]

= esmE
[

esσX
]

= esm+ s2σ2

2 .

From this moment generating function, we get

E[Y ] =
dMY

ds
(0) =

[

(

m+ sσ2
)

esm+ s2σ2

2

]
∣

∣

∣

s=0
= m

E
[

Y 2
]

=
d2MY

ds2
(0) =

[

σ2esm+ s2σ2

2 +
(

m+ sσ2
)2

esm+ s2σ2

2

]
∣

∣

∣

s=0

= σ2 +m2.

The mean of Y is m and its variance is equal to σ2, as anticipated.

10.3 Important Inequalities

There are many situations for which computing the exact value of a prob-

ability is impossible or impractical. In such cases, it may be acceptable to

provide bounds on the value of an elusive probability. The expectation is

most important in finding pertinent bounds.

As we will see, many upper bounds rely on the concept of dominating

functions. Suppose that g(x) and h(x) are two nonnegative function such that

g(x) ≤ h(x) for all x ∈ R. Then, for any continuous random variable X , the
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following inequality holds

E[g(X)] =

∫ ∞

−∞
g(x)fX(x)dx

≤
∫ ∞

−∞
h(x)fX(x)dx = E[h(X)].

This is illustrated in Figure 10.1. In words, the weighted integral of g(·) is

dominated by the weighted integral of h(·), where fX(·) acts as the weighting

function. This notion is instrumental in understanding bounding techniques.

R

R

h(x)

g(x)

Figure 10.1: If g(x) and h(x) are two nonnegative functions such that g(x) ≤
h(x) for all x ∈ R, then E[g(X)] is less than or equal to E[h(X)].

10.3.1 The Markov Inequality

We begin our exposition of classical upper bounds with a result known as the

Markov inequality. Recall that, for admissible set S ⊂ R, we have

Pr(X ∈ S) = E [1S(X)] .

Thus, to obtain a bound on Pr(X ∈ S), it suffices to find a function that

dominates 1S(·) and for which we can compute the expectation.

Suppose that we wish to bound Pr(X ≥ a) where X is a nonnegative

random variable. In this case, we can select S = [a,∞) and function h(x) =

x/a. For any x ≥ 0, we have h(x) ≥ 1S(x), as illustrated in Figure 10.2. It

follows that

Pr(X ≥ a) = E [1S(X)] ≤ E[X ]

a
.
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R

R

h(x) = x
a

g(x) = 1S(x)

a

Figure 10.2: Suppose that we wish to find a bound for Pr(X ≤ a). We

define set S = [a,∞) and function g(x) = 1S(x). Using dominating function

h(x) = x/a, we conclude that Pr(X ≥ a) ≤ a−1E[X ] for any nonnegative

random variable X .

10.3.2 The Chebyshev Inequality

The Chebyshev inequality provides an extension to this methodology to various

dominating functions. This yields a number of bounds that become useful in

a myriad of contexts.

Proposition 8 (Chebyshev Inequality). Suppose h(·) is a nonnegative func-

tion and let S be an admissible set. We denote the infimum of h(·) over S

by

iS = inf
x∈S

h(x).

The Chebyshev inequality asserts that

iS Pr(X ∈ S) ≤ E[h(X)] (10.1)

where X is an arbitrary random variable.

Proof. This is a remarkably powerful result and it can be shown in a few steps.

The definition of iS and the fact that h(·) is nonnegative imply that

iS1S(x) ≤ h(x)1S(x) ≤ h(x)

for any x ∈ R. Moreover, for any such x and distribution fX(·), we can write

iS1S(x)fX(x) ≤ h(x)f(x), which in turn yields

iS Pr(X ∈ S) = E [is1S(X)] =

∫

R

iS1S(ξ)fX(ξ)dξ

≤
∫

R

h(ξ)fX(ξ)dξ = E[h(X)].
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When iS > 0, this provides the upper bound Pr(X ∈ S) ≤ i−1
S E[h(X)].

Although the proof assumes a continuous random variable, we emphasize

that the Chebyshev inequality applies to both discrete and continuous random

variables alike. The interested reader can rework the proof using the discrete

setting and a generic PMF. We provide special instances of the Chebyshev

inequality below.

Example 91. Consider the nonnegative function h(x) = x2 and let S =

{x|x2 ≥ b2} where b is a positive constant. We wish to find a bound on

the probability that |X| exceeds b. Using the Chebyshev inequality, we have

iS = infx∈S x
2 = b2 and, consequently, we get

b2 Pr(X ∈ S) ≤ E
[

X2
]

.

Constant b being a positive real number, we can rewrite this equation as

Pr(|X| ≥ b) = Pr(X ∈ S) ≤ E [X2]

b2
.

Example 92 (The Cantelli Inequality). Suppose that X is a random variable

with mean m and variance σ2. We wish to show that

Pr(X −m ≥ a) ≤ σ2

a2 + σ2
,

where a ≥ 0.

This equation is slightly more involved and requires a small optimization

in addition to the Chebyshev inequality. Define Y = X − m and note that,

by construction, we have E[Y ] = 0. Consider the probability Pr(Y ≥ a) where

a > 0, and let S = {y|y ≥ a}. Also, define the nonnegative function h(y) =

(y+b)2, where b > 0. Following the steps of the Chebyshev inequality, we write

the infimum of h(y) over S as

iS = inf
y∈S

(y + b)2 = (a+ b)2.

Then, applying the Chebyshev inequality, we obtain

Pr(Y ≥ a) ≤ E [(Y + b)2]

(a+ b)2
=

σ2 + b2

(a+ b)2
. (10.2)
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This inequality holds for any b > 0. To produce a better upper bound, we mini-

mize the right-hand side of (10.2) over all possible values of b. Differentiating

this expression and setting the derivative equal to zero yields

2b

(a+ b)2
=

2 (σ2 + b2)

(a+ b)3

or, equivalently, b = σ2/a. A second derivative test reveals that this is indeed

a minimum. Collecting these results, we obtain

Pr(Y ≥ a) ≤ σ2 + b2

(a+ b)2
=

σ2

a2 + σ2
.

Substituting Y = X −m leads to the desired result.

In some circumstances, a Chebyshev inequality can be tight.

Example 93. Let a and b be two constants such that 0 < b ≤ a. Consider the

function h(x) = x2 along with the set S = {x|x2 ≥ a2}. Furthermore, let X

be a discrete random variable with PMF

pX(x) =











1− b2

a2
, x = 0

b2

a2
, x = a

0, otherwise.

For this random variable, we have Pr(X ∈ S) = b2/a2. By inspection, we also

gather that the second moment of X is equal to E [X2] = b2. Applying the

Chebyshev inequality, we get iS = infx∈S h(x) = a2 and therefore

Pr(X ∈ S) ≤ i−1
S E [h(X)] =

b2

a2
.

Thus, in this particular example, the inequality is met with equality.

10.3.3 The Chernoff Bound

The Chernoff bound is yet another upper bound that can be constructed from

the Chebyshev inequality. Still, because of its central role in many application

domains, it deserves its own section. Suppose that we want to find a bound on

the probability Pr(X ≥ a). We can apply the Chebyshev inequality using the
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nonnegative function h(x) = esx, where s > 0. For this specific construction,

S = [a,∞) and

iS = inf
x∈S

esx = esa.

It follows that

Pr(X ≥ a) ≤ e−saE[esX ] = e−saMX(s).

Because this inequality holds for any s > 0, we can optimize the upper bound

over all possible values of s, thereby picking the best one,

Pr(X ≥ a) ≤ inf
s>0

e−saMX(s). (10.3)

This inequality is called the Chernoff bound. It is sometimes expressed in

terms of the log-moment generating function Λ(s) = logMX(s). In this latter

case, (10.3) translates into

log Pr(X ≥ a) ≤ − sup
s>0

{sa− Λ(s)} . (10.4)

The right-hand side of (10.4) is called the Legendre transformation of Λ(s).

Figure 10.3 plots es(x−a) for various values of s > 0. It should be noted that all

these functions dominate 1[a,∞)(x), and therefore they each provide a different

bound on Pr(X ≥ a). It is natural to select the function that provides the best

bound. Yet, in general, this optimal es(x−a) may depend on the distribution

of X and the value of a, which explains why (10.3) involves a search over all

possible values of s.

10.3.4 Jensen’s Inequality

Some inequalities can be derived based on the properties of a single function.

The Jensen inequality is one such example. Suppose that function g(·) is

convex and twice differentiable, with

d2g

dx2
(x) ≥ 0

for all x ∈ R. From the fundamental theorem of calculus, we have

g(x) = g(a) +

∫ x

a

dg

dx
(ξ)dξ.
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Figure 10.3: This figure illustrates how exponential functions can be employed

to provide bounds on Pr(X > a). Optimizing over all admissible exponential

functions, es(x−a) where s > 0, leads to the celebrated Chernoff bound.

Futhermore, because the second derivative of g(·) is a non-negative function,

we gather that dg
dx
(·) is a monotone increasing function. As such, for any value

of a, we have

g(x) = g(a) +

∫ x

a

dg

dx
(ξ)dξ

≥ g(a) +

∫ x

a

dg

dx
(a)dξ = g(a) + (x− a)

dg

dx
(a).

For random variable X , we then have

g(X) ≥ g(a) + (X − a)
dg

dx
(a).

Choosing a = E[X ] and taking expectations on both sides, we obtain

E[g(X)] ≥ g(E[X ]) + (E[X ]− E[X ])
dg

dx
(E[X ]) = g(E[X ]).

That is, E[g(X)] ≥ g(E[X ]), provided that these two expectations exist. The

Jensen inequality actually holds for convex functions that are not twice differ-

entiable, but the proof is much harder in the general setting.
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Chapter 11

Multiple Continuous Random

Variables

Being versed at dealing with multiple random variables is an essential part of

statistics, engineering and science. This is equally true for models based on

discrete and continuous random variables. In this chapter, we focus on the

latter and expand our exposition of continuous random variables to random

vectors. Again, our initial survey of this topic revolves around conditional

distributions and pairs of random variables. More complex scenarios will be

considered in the later parts of the chapter.

11.1 Joint Cumulative Distributions

Let X and Y be two random variables associated with a same experiment.

The joint cumulative distribution function of X and Y is defined by

FX,Y (x, y) = Pr(X ≤ x, Y ≤ y) x, y ∈ R.

Keeping in mind that X and Y are real-valued functions acting on a same

sample space, we can also write

FX,Y (x, y) = Pr ({ω ∈ Ω|X(ω) ≤ x, Y (ω) ≤ y}) .

143
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From this characterization, we can identify a few properties of the joint CDF;

lim
y↑∞

FX,Y (x, y) = lim
y↑∞

Pr ({ω ∈ Ω|X(ω) ≤ x, Y (ω) ≤ y})

= Pr ({ω ∈ Ω|X(ω) ≤ x, Y (ω) ∈ R})
= Pr ({ω ∈ Ω|X(ω) ≤ x}) = FX(x).

Similarly, we have limx↑∞ FX,Y (x, y) = FY (y). Taking limits in the other

direction, we get

lim
x↓−∞

FX,Y (x, y) = lim
y↓−∞

FX,Y (x, y) = 0.

When the function FX,Y (·, ·) is totally differentiable, it is possible to define

the joint probability density function of X and Y ,

fX,Y (x, y) =
∂2FX,Y

∂x∂y
(x, y) =

∂2FX,Y

∂y∂x
(x, y) x, y ∈ R. (11.1)

Hereafter, we refer to a pair of random variables as continuous if the corre-

sponding joint PDF exists and is defined unambiguously through (11.1). When

this is the case, standard calculus asserts that the following equation holds,

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (ξ, ζ)dζdξ.

From its definition, we note that fX,Y (·, ·) is a nonnegative function which

integrates to one,
∫∫

R2

fX,Y (ξ, ζ)dζdξ = 1.

Furthermore, for any admissible set S ⊂ R2, the probability that (X, Y ) ∈ S

can be evaluated through the integral formula

Pr((X, Y ) ∈ S) =

∫∫

R2

1S(ξ, ζ)fX,Y (ξ, ζ)dζdξ

=

∫∫

S

fX,Y (ξ, ζ)dζdξ.

(11.2)

In particular, if S is the cartesian product of two intervals,

S =
{

(x, y) ∈ R2
∣

∣a ≤ x ≤ b, c ≤ y ≤ d
}

,
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then the probability that (X, Y ) ∈ S reduces to the typical integral form

Pr((X, Y ) ∈ S) = Pr(a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ b

a

∫ d

c

fX,Y (ξ, ζ)dζdξ.

Example 94. Suppose that the random pair (X, Y ) is uniformly distributed

over the unit circle. We can express the joint PDF fX,Y (·, ·) as

fX,Y (x, y) =







1
π

x2 + y2 ≤ 1

0 otherwise.

We wish to find the probability that the point (X, Y ) lies inside a circle of

radius 1/2.

Let S = {(x, y) ∈ R2|x2 + y2 ≤ 0.5}. The probability that (X, Y ) belongs

to S is given by

Pr((X, Y ) ∈ S) =

∫∫

R2

1S(ξ, ζ)

π
dξdζ =

1

4
.

Thus, the probability that (X, Y ) is contained within a circle of radius half is

one fourth.

Example 95. Let X and Y be two independent zero-mean Gaussian random

variables, each with variance σ2. For (x, y) ∈ R2, their joint PDF is given by

fX,Y (x, y) =
1

2πσ2
e−

x2+y2

2σ2 .

We wish to find the probability that (X, Y ) falls within a circle of radius r

centered at the origin.

We can compute this probability using integral formula (11.2) applied to

this particular problem. Let R =
√
X2 + Y 2 and assume r > 0, then

Pr(R ≤ r) =

∫∫

R≤r

fX,Y (x, y)dxdy =

∫∫

R≤r

1

2πσ2
e−

x2+y2

2σ2 (x, y)dxdy

=

∫ r

0

∫ 2π

0

1

2πσ2
e−

r2

2σ2 rdθdr = 1− e−
r2

2σ2 .

The probability that (X, Y ) is contained within a circle of radius r is 1−e−
r2

2σ2 .

Recognizing that R is a continuous random variable, we can write its PDF as

fR(r) =
r

σ2
e−

r2

2σ2 r ≥ 0.

From this equation, we gather That R possesses a Rayleigh distribution with

parameter σ2.
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11.2 Conditional Probability Distributions

Given non-vanishing event A, we can write the conditional CDF of random

variable X as

FX|A(x) = Pr(X ≤ x|A) = Pr({X ≤ x} ∩ A)

Pr(A)
x ∈ R.

Note that event A can be defined in terms of variables X and Y . For instance,

we may use A = {Y ≥ X} as our condition. Under suitable conditions, it is

equally straightforward to specify the conditional PDF of X given A,

fX|A(x) =
dFX|A
dx

(x) x ∈ R.

Example 96. Let X and Y be continuous random variables with joint PDF

fX,Y (x, y) = λ2e−λ(x+y) x, y ≥ 0.

We wish to compute the conditional PDF of X given A = {X ≤ Y }. To solve

this problem, we first compute the probability of the event {X ≤ x} ∩A,

Pr({X ≤ x} ∩A) =

∫ x

0

∫ ξ

0

fX,Y (ξ, ζ)dζdξ =

∫ x

0

∫ ξ

0

λ2e−λ(ξ+ζ)dζdξ

=

∫ x

0

λe−λξ
(

1− e−λξ
)

dξ =

(

1− e−λx
)2

2
.

By symmetry, we gather that Pr(A) = 1/2 and, as such,

fX|A(x) = 2λe−λx
(

1− e−λx
)

x ≥ 0.

One case of special interest is the situation where event A is defined in

terms of the random variable X itself. In particular, consider the PDF of X

conditioned on the fact that X belongs to an interval I. Then, A = {X ∈ I}
and the conditional CDF of X becomes

FX|A(x) = Pr(X ≤ x|X ∈ I)

=
Pr ({X ≤ x} ∩ {X ∈ I})

Pr(X ∈ I)

=
Pr (X ∈ (−∞, x] ∩ I)

Pr(X ∈ I)
.



11.2. CONDITIONAL PROBABILITY DISTRIBUTIONS 147

Differentiating with respect to x, we obtain the conditional PDF of X ,

fX|A(x) =
fX(x)

Pr(X ∈ I)

for any x ∈ I. In words, the conditional PDF of X becomes a scaled version

of fX(·) whenever x ∈ I, and it is equal to zero otherwise. Essentially, this is

equivalent to re-normalizing the PDF of X over interval I, accounting for the

partial information given by X ∈ I.

11.2.1 Conditioning on Values

Suppose that X and Y form a pair of random variables with joint PDF

fX,Y (·, ·). With great care, it is possible and desirable to define the condi-

tional PDF of X , conditioned on Y = y. Special attention must be given to

this situation because the event {Y = y} has probability zero whenever Y is a

continuous random variable. Still, when X and Y are jointly continuous and

for any y ∈ R such that fY (y) > 0, we can defined the conditional PDF of X

given Y = y as

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
. (11.3)

Intuitively, this definition is motivated by the following property. For small

∆x and ∆y, we can write

Pr(x ≤ X ≤ x+∆x|y ≤ Y ≤ y +∆y)

=
Pr(x ≤ X ≤ x+∆x, y ≤ Y ≤ y +∆y)

Pr(y ≤ Y ≤ y +∆y)

≈ fX,Y (x, y)∆x∆y

fY (y)∆y
=

fX,Y (x, y)

fY (y)
∆x.

Thus, loosely speaking, fX|Y (x|y)∆x represents the probability that X lies

close to x, given that Y is near y.

Using this definition, it is possible to compute the probabilities of events

associated with X conditioned on a specific value of random variable Y ,

Pr(X ∈ S|Y = y) =

∫

S

fX|Y (x|y)dx.

A word of caution is in order. The technical difficulty that surfaces when

conditioning on {Y = y} stems from the fact that Pr(Y = y) = 0. Remember
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that, in general, the notion of conditional probability is only defined for non-

vanishing conditions. Although we were able to circumvent this issue, care

must be taken when dealing with the conditional PDF of the form (11.3), as

it only provides valuable insight when the random variables (X, Y ) are jointly

continuous.

Example 97. Consider the experiment where an outcome (ω1, ω2) is selected

at random from the unit circle. Let X = ω1 and Y = ω2. We wish to compute

the conditional PDF of X given that Y = 0.5.

First, we compute the marginal PDF of Y evaluated at Y = 0.5,

fY (0.5) =

∫

R

fX,Y (x, 0.5)dx =

∫

√
3

2

√
3

2

1

π
dx =

√
3

π
.

We then apply definition (11.3) to obtain the desired conditional PDF of X,

fX|Y (x|0.5) =
fX,Y (x, 0.5)

fY (0.5)
=

π√
3
fX,Y (x, 0.5)

=







1√
3

|x| ≤
√
3
2

0 otherwise.

11.2.2 Conditional Expectation

The conditional expectation of a function g(Y ) is simply the integral of g(Y )

weighted by the proper conditional PDF,

E[g(Y )|X = x] =

∫

R

g(y)fY |X(y|x)dy

E[g(Y )|S] =
∫

R

g(y)fY |S(y)dy.

Note again that the function

h(x) = E[Y |X = x]

defines a random variable since the conditional expectation of Y may vary as a

function of X . After all, a conditional expectation is itself a random variable.

Example 98. An analog communication system transmits a random signal

over a noisy channel. The transmit signal X and the additive noise N are both
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standard Gaussian random variables, and they are independent. The signal

received at the destination is equal to

Y = X +N.

We wish to estimate the value of X conditioned on Y = y.

For this problem, the joint PDF of X and Y is

fX,Y (x, y) =
1

2π
exp

(

−2x2 − 2xy + y2

2

)

and the conditional distribution of X given Y becomes

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=

1
2π

exp
(

−2x2−2xy+y2

2

)

1
2
√
π
exp

(

−y2

4

)

=
1√
π
exp

(

−4x2 − 4xy + y2

4

)

.

By inspection, we recognize that this conditional PDF is a Gaussian distribu-

tion with parameters m = y/2 and σ2 = 1/2. A widespread algorithm employed

to perform the desired task is called the minimum mean square error (MMSE)

estimator. In the present case, the MMSE estimator reduces to the conditional

expectation of X given Y = y, which is

E[X|Y = y] =

∫

R

xfX,Y (x|y)dx =
y

2
.

11.2.3 Derived Distributions

Suppose X1 and X2 are jointly continuous random variables. Furthermore, let

Y1 = g1(X1, X2) and Y2 = g2(X1, X2), where g1(·, ·) and g2(·, ·) are real-valued
functions. Under certain conditions, the pair of random variables (Y1, Y2) will

also be continuous. Deriving the joint PDF of (Y1, Y2) can get convoluted, a

task we forgo. It requires the skillful application of vector calculus. Neverthe-

less, we examine the case where a simple expression for fY1,Y2(·, ·) exists.
Consider the scenario where the functions g1(·, ·) and g2(·, ·) are totally

differentiable, with Jacobian determinant

J(x1, x2) = det

[

∂g1
∂x1

(x1, x2)
∂g1
∂x2

(x1, x2)
∂g2
∂x1

(x1, x2)
∂g2
∂x2

(x1, x2)

]

=
∂g1
∂x1

(x1, x2)
∂g2
∂x2

(x1, x2)−
∂g1
∂x2

(x1, x2)
∂g2
∂x1

(x1, x2) 6= 0.
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Also, assume that the system of equations

g1(x1, x2) = y1

g2(x1, x2) = y2

has a unique solution. We express this solution using x1 = h1(y1, y2) and

x2 = h2(y1, y2). Then, the random variables (Y1, Y2) are jointly continuous

with joint PDF

fY1,Y2(y1, y2) =
fX1,X2(x1, x2)

|J(x1, x2)|
(11.4)

where x1 = h1(y1, y2) and x2 = h2(y1, y2). Note the close resemblance between

this equation and the derived distribution of (9.4). Looking back at Chapter 9

offers an idea of what proving this result entails. It also hints at how this

equation can be modified to accommodate non-unique mappings.

Example 99. An important application of (11.4) pertains to the properties

of Gaussian vectors. Suppose that X1 and X2 are jointly continuous random

variables, and let

X =

[

X1

X2

]

.

Define the mean of X by

m = E[X] =

[

E[X1]

E[X2]

]

.

and its covariance by

Σ = E
[

(X−m) (X−m)T
]

=

[

E [(X1 −m1)
2] E[(X1 −m1)(X2 −m2)]

E[(X2 −m2)(X1 −m1)] E [(X2 −m2)
2]

]

.

Random variables X1 and X2 are said to be jointly Gaussian provided that

their joint PDF is of the form

fX1,X2(x1, x2) =
1

2π|Σ| 12
exp

(

−1

2
(x−m)T Σ−1 (x−m)

)

.

Assume that the random variables Y1 and Y2 are generated through the matrix

equation

Y =

[

Y1

Y2

]

= AX+ b,
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where A is a 2× 2 invertible matrix and b is a constant vector. In this case,

X = A−1 (Y − b) and the corresponding Jacobian determinant is

J(x1, x2) = det

[

a11 a12

a21 a22

]

= |A|.

Applying (11.4), we gather that the joint PDF of (Y1, Y2) is expressed as

fY1,Y2(y1, y2) =
1

2π|Σ| 12 |A|
exp

(

−1

2
(x−m)T Σ−1 (x−m)

)

=
1

2π|AΣA| 12
exp

(

−1

2

(

A−1 (y − b)−m
)T

Σ−1
(

A−1 (y − b)−m
)

)

=
1

2π|AΣA| 12
exp

(

−1

2
(y − b− Am)T (AΣA)−1 (y− b− Am)

)

.

Looking at this equation, we conclude that random variables Y1 and Y2 are

also jointly Gaussian, as their joint PDF possesses the proper form. It should

come as no surprise that the mean of Y is E [Y] = Am+b and its covariance

matrix is equal to

E
[

(Y − E [Y]) (Y − E [Y])T
]

= AΣA.

In other words, a non-trivial affine transformation of a two-dimensional Gaus-

sian vector yields another Gaussian vector. This admirable property general-

izes to higher dimensions. Indeed, if Y = AX+b where A is an n×n invertible

matrix and X is a Gaussian random vector, then Y remains a Gaussian ran-

dom vector. Furthermore, to obtain the derived distribution of the latter vector,

it suffices to compute its mean and covariance, and substitute the resulting pa-

rameters in the general form of the Gaussian PDF. Collectively, the features

of joint Gaussian random vectors underly many contemporary successes of en-

gineering.

11.3 Independence

Two random variables X and Y are mutually independent if their joint CDF

is the product of their respective CDFs,

FX,Y (x, y) = FX(x)FY (y)
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for x, y ∈ R. For jointly continuous random variables, this definition neces-

sarily implies that the joint PDF fX,Y (·, ·) is the product of their marginal

PDFs,

fX,Y (x, y) =
∂2FX,Y

∂x∂y
(x, y) =

dFX

dx
(x)

dFY

dy
(y) = fX(x)fY (y)

for x, y ∈ R. Furthermore, we gather from (11.3) that the conditional PDF

of Y given X = x is equal to the marginal PDF of Y whenever X and Y are

independent,

fY |X(y|x) =
fX,Y (x, y)

fX(x)
=

fX(x)fY (y)

fX(x)
= fY (y)

provided of course that fX(x) 6= 0. Additionally, if X and Y are indepen-

dent random variables, then the two events {X ∈ S} and {Y ∈ T} are also

independent,

Pr(X ∈ S, Y ∈ T ) =

∫

S

∫

T

fX,Y (x, y)dydx

=

∫

S

fX(x)dx

∫

T

fY (y)dy

= Pr(X ∈ S) Pr(Y ∈ T ).

Example 100. Consider a random experiment where an outcome (ω1, ω2) is

selected at random from the unit square. Let X = ω1, Y = ω2 and U = ω1+ω2.

We wish to show that X and Y are independent, but that X and U are not

independent.

We begin by computing the joint CDF of X and Y . For x, y ∈ [0, 1], we

have

FX,Y (x, y) =

∫ x

0

∫ y

0

dζdξ = xy = FX(x)FY (y).

More generally, if x, y ∈ R2, we get

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
1[0,1]2(ξ, ζ)dζdξ

=

∫ x

−∞
1[0,1](ξ)dξ

∫ y

−∞
1[0,1](ζ)dζ = FX(x)FY (y).

Thus, we gather that X and Y are independent.



11.3. INDEPENDENCE 153

Next, we show that X and U are not independent. Note that FU(1) = 0.5

and FX(0.5) = 0.5. Consider the joint CDF of X and U evaluated at (0.5, 1),

FX,U(0.5, 1) =

∫ 1
2

0

∫ 1−ξ

0

dζdξ =

∫ 1
2

0

(1− ξ)dξ

=
3

8
6= FX(0.5)FU(1).

Clearly, random variables X and U are not independent.

11.3.1 Sums of Continuous Random Variables

As mentioned before, sums of independent random variables are frequently

encountered in engineering. We therefore turn to the question of determining

the distribution of a sum of independent continuous random variables in terms

of the PDFs of its constituents. If X and Y are independent random variables,

the distribution of their sum U = X + Y can be obtained by using the convo-

lution operator. Let fX(·) and fY (·) be the PDFs of X and Y , respectively.

The convolution of fX(·) and fY (·) is the function defined by

(fX ∗ fY )(u) =
∫ ∞

−∞
fX(ξ)fY (u− ξ)dξ

=

∫ ∞

−∞
fX(u− ζ)fY (ζ)dζ.

The PDF of the sum U = X + Y is the convolution of the individual densities

fX(·) and fY (·),
fU(u) = (fX ∗ fY )(u).

To show that this is indeed the case, we first consider the CDF of U ,

FU(u) = Pr(U ≤ u) = Pr(X + Y ≤ u)

=

∫ ∞

−∞

∫ u−ξ

−∞
fX,Y (ξ, ζ)dζdξ

=

∫ ∞

−∞

∫ u−ξ

−∞
fY (ζ)dζfX(ξ)dξ

=

∫ ∞

−∞
FY (u− ξ)fX(ξ)dξ.
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Taking the derivative of FU(u) with respect to u, we obtain

d

du
FU(u) =

d

du

∫ ∞

−∞
FY (u− ξ)fX(ξ)dξ

=

∫ ∞

−∞

d

du
FY (u− ξ)fX(ξ)dξ

=

∫ ∞

−∞
fY (u− ξ)fX(ξ)dξ.

Notice the judicious use of the fundamental theorem of calculus. This shows

that fU(u) = (fX ∗ fY )(u).

Example 101 (Sum of Uniform Random Variables). Suppose that two num-

bers are independently selected from the interval [0, 1], each with a uniform

distribution. We wish to compute the PDF of their sum. Let X and Y be

random variables describing the two choices, and let U = X + Y represent

their sum. The PDFs of X and Y are

fX(ξ) = fY (ξ) =







1 0 ≤ ξ ≤ 1

0 otherwise.

The PDF of their sum is therefore equal to

fU(u) =

∫ ∞

−∞
fX(u− ξ)fY (ξ)dξ.

Since fY (y) = 1 when 0 ≤ y ≤ 1 and zero otherwise, this integral becomes

fU(u) =

∫ 1

0

fX(u− ξ)dξ =

∫ 1

0

1[0,1](u− ξ)dξ.

The integrand above is zero unless 0 ≤ u− ξ ≤ 1 (i.e., unless u− 1 ≤ ξ ≤ u).

Thus, if 0 ≤ u ≤ 1, we get

fU(u) =

∫ u

0

dξ = u;

while, if 1 < u ≤ 2, we obtain

fU(u) =

∫ 1

u−1

dξ = 2− u.
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If u < 0 or u > 2, the value of the PDF becomes zero. Collecting these results,

we can write the PDF of U as

fU(u) =



















u 0 ≤ u ≤ 1,

2− u 1 < u ≤ 2,

0 otherwise.

Example 102 (Sum of Exponential Random Variables). Two numbers are

selected independently from the positive real numbers, each according to an

exponential distribution with parameter λ. We wish to find the PDF of their

sum. Let X and Y represent these two numbers, and denote this sum by

U = X + Y . The random variables X and Y have PDFs

fX(ξ) = fY (ξ) =







λe−λξ ξ ≥ 0

0 otherwise.

When u ≥ 0, we can use the convolution formula and write

fU(u) =

∫ ∞

−∞
fX(u− ξ)fY (ξ)dξ

=

∫ u

0

λe−λ(u−ξ)λe−λξdξ

=

∫ u

0

λ2e−λudξ = λ2ue−λu.

On the other hand, if u < 0 then we get fU(u) = 0. The PDF of U is given by

fU(u) =







λ2ue−λu u ≥ 0

0 otherwise.

This is an Erlang distribution with parameter m = 2 and λ > 0.

Example 103 (Sum of Gaussian Random Variables). It is an interesting and

important fact that the sum of two independent Gaussian random variables is

itself a Gaussian random variable. Suppose X is Gaussian with mean m1 and

variance σ2
1, and similarly Y is Gaussian with mean m2 and variance σ2

2, then

U = X + Y has a Gaussian density with mean m1 +m2 and variance σ2
1 + σ2

2.

We will show this property in the special case where both random variables
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are standard normal random variable. The general case can be attained in a

similar manner, but the computations are somewhat tedious.

Suppose X and Y are two independent Gaussian random variables with

PDFs

fX(ξ) = fY (ξ) =
1√
2π

e−
ξ2

2 .

Then, the PDF of U = X + Y is given by

fU(u) = (fX ∗ fY )(u) =
1

2π

∫ ∞

−∞
e−

(u−ξ)2

2 e−
ξ2

2 dξ

=
1

2π
e−

u2

4

∫ ∞

−∞
e−(ξ−

u
2 )

2

dξ

=
1

2
√
π
e−

u2

4

(
∫ ∞

−∞

1√
π
e−(ξ−

u
2 )

2

dξ

)

.

The expression within the parentheses is equal to one since the integrant is a

Gaussian PDF with m = u/2 and σ2 = 1/2. Thus, we obtain

fU(u) =
1√
4π

e−
u2

4 ,

which verifies that U is indeed Gaussian.

Let X and Y be independent random variables. Consider the random

variable U = X + Y . The moment generating function of U is given by

MU(s) = E
[

esU
]

= E
[

es(X+Y )
]

= E
[

esXesY
]

= E
[

esX
]

E
[

esY
]

= MX(s)MY (s).

That is, the moment generating function of the sum of two independent ran-

dom variables is the product of the individual moment generating functions.

Example 104 (Sum of Gaussian Random Variables). In this example, we

revisit the problem of adding independent Gaussian variables using moment

generating functions. Again, let X and Y denote the two independent Gaussian

variables. We denote the mean and variance of X by m1 and σ2
1. Likewise,

we represent the mean and variance of Y by m2 and σ2
2. We wish to show that

the sum U = X + Y is Gaussian with parameters m1 +m2 and σ2
1 + σ2

2.
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The moment generating functions of X and Y are

MX(s) = em1s+
σ2
1s

2

2

MY (s) = em2s+
σ2
2s

2

2

The moment generating function of U = X + Y is therefore equal to

MU(s) = MX(s)MY (s) = exp

(

(m1 +m2)s+
(σ2

1 + σ2
2)s

2

2

)

,

which demonstrates that U is a Gaussian random variable with mean m1+m2

and variance σ2
1 + σ2

2, as anticipated.
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Chapter 12

Convergence, Sequences and

Limit Theorems

Some of the most astonishing results in probability are related to the properties

of sequences of random variables and the convergence of empirical distribu-

tions. From an engineering viewpoint, these results are important as they

enable the efficient design of complex systems with very small probabilities of

failure. Concentration behavior facilitates true economies of scale.

12.1 Types of Convergence

The premise on which most probabilistic convergence results lie is a sequence

of random variables X1, X2, . . . and a limiting random variable X , all of which

are defined on the same probability space. Recall that a random variable is a

function of the outcome of a random experiment. The above statement stip-

ulate that all the random variables listed above are functions of the outcome

of a same experiment.

Statements that can be made about a sequence of random variables range

from simple assertions to more intricate claims. For instance, the sequence

may appear to move toward a deterministic quantity or to behave increasingly

akin to a certain function. Alternatively, the CDFs of the random variables

in the sequence may appear to approach a precise function. Being able to

recognize specific patterns within the sequence is key in establishing converge

159
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results. The various statement one can make about the sequence X1, X2, . . .

lead to the different types of convergence encountered in probability. Below,

we discuss briefly three types of convergence.

Example 105. Suppose that X1, X2, . . . is a sequence of independent Gaussian

random variables, each with mean m and variance σ2. Define the partial sums

Sn =
n
∑

i=1

Xi, (12.1)

and consider the sequence

S1,
S2

2
,
S3

3
, . . . (12.2)

We know that affine transformations of Gaussian random variables remain

Gaussian. Furthermore, we know that sums of jointly Gaussian random vari-

ables are also Gaussian. Thus, Sn/n possesses a Gaussian distribution with

mean

E

[

Sn

n

]

=
E[Sn]

n
=

E[X1] + · · ·+ E[Xn]

n
= m

and variance

Var

[

Sn

n

]

=
Var[Sn]

n2
=

Var[X1] + · · ·+Var[Xn]

n2
=

σ2

n
.

It appears that the PDF of Sn/n concentrates around m as n approaches infin-

ity. That is, the sequence in (12.2) seems to become increasingly predictable.

Example 106. Again, let X1, X2, . . . be the sequence described above, and

let Sn be defined according to (12.1). This time, we wish to characterize the

properties of

S1 −m,
S2 − 2m√

2
,
S3 − 3m√

3
, . . .

From our current discussion, we know that (Sn − nm)/
√
n is a Gaussian ran-

dom variables. We can compute its mean and variance as follows

E

[

Sn − nm√
n

]

=
E[Sn − nm]√

n
= 0

Var

[

Sn −mn√
n

]

=
Var[Sn −mn]

n
=

Var[Sn]

n
= σ2.

No matter how large n is, the random variable (Sn −nm)/
√
n has a Gaussian

distribution with mean zero and variance σ2. Intriguingly, the distributions

remains invariant throughout the sequence.
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12.1.1 Convergence in Probability

The basic concept behind the definition of convergence in probability is that

the probability that a random variable deviates from its typical behavior be-

comes less likely as the sequence progresses. Formally, a sequence X1, X2, . . .

of random variables converges in probability to X if for every ǫ > 0,

lim
n→∞

Pr (|Xn −X| ≥ ǫ) = 0.

In Example 105, the sequence {Sn/n} converges in probability to m.

12.1.2 Mean Square Convergence

We say that a sequence X1, X2, . . . of random variables converges in mean

square to X if

lim
n→∞

E
[

|Xn −X|2
]

= 0.

That is, the second moment of the difference between Xn and X vanishes as

n goes to infinity. Convergence in the mean square sense implies convergence

in probability.

Proposition 9. Let X1, X2, . . . be a sequence of random variables that con-

verge in mean square to X. Then, the sequence X1, X2, . . . also converges to

X in probability.

Proof. Suppose that ǫ > 0 is fixed. The sequence X1, X2, . . . converges in mean

square to X . Thus, for δ > 0, there exists an N such that n ≥ N implies

E
[

|Xn −X|2
]

< δ.

If we apply the Chebyshev inequality to Xn −X , we get

Pr (|Xn −X| ≥ ǫ) ≤ E
[

|Xn −X|2
]

ǫ2
<

δ

ǫ2

Since δ can be made arbitrarily small, we conclude that this sequence also

converges to X in probability.
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12.1.3 Convergence in Distribution

A sequence X1, X2, . . . of random variables is said to converge in distribution

to a random variable X if

lim
n→∞

FXn
(x) = FX(x)

at every point x ∈ R where FX(·) is continuous. This type of convergence is

also called weak convergence.

Example 107. Let Xn be a continuous random variable that is uniformly dis-

tributed over [0, 1/n]. Then, the sequence X1, X2, . . . converges in distribution

to 0.

In this example, X = 0 and

FX(x) =







1 x ≥ 0

0 x < 0.

Furthermore, for every x < 0, we have FXn
(x) = 0; and for every x > 0, we

have

lim
n→∞

FXn
(x) = 1.

Hence, the sequence X1, X2, . . . converges in distribution to a constant.

12.2 The Law of Large Numbers

The law of large numbers focuses on the convergence of empirical averages.

Although, there are many versions of this law, we only state its simplest form

below. Suppose that X1, X2, . . . is a sequence of independent and identically

distributed random variable, each with finite second moment. Furthermore,

for n ≥ 1, define the empirical sum

Sn =

n
∑

i=1

Xn.

The law of large number asserts that the sequence of empirical averages,

Sn

n
=

1

n

n
∑

i=1

Xn,

converges in probability to the mean E[X ].
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Theorem 4 (Law of Large Numbers). Let X1, X2, . . . be independent and

identically distributed random variables with mean E[X ] and finite variance.

For every ǫ > 0, we have

lim
n→∞

Pr

(
∣

∣

∣

∣

Sn

n
− E[X ]

∣

∣

∣

∣

≥ ǫ

)

= lim
n→∞

Pr

(
∣

∣

∣

∣

X1 + · · ·+Xn

n
− E[X ]

∣

∣

∣

∣

≥ ǫ

)

= 0.

Proof. Taking the expectation of the empirical average, we obtain

E

[

Sn

n

]

=
E [Sn]

n
=

E[X1] + · · ·+ E[Xn]

n
= E[X ].

Using independence, we also have

Var

[

Sn

n

]

=
Var[X1] + · · ·+Var[Xn]

n2
=

Var[X ]

n
.

As n goes to infinity, the variance of the empirical average Sn/n vanishes.

Thus, we showed that the sequence {Sn/n} of empirical averages converges in

mean square to E[X ] since

lim
n→∞

E

[

∣

∣

∣

∣

Sn

n
− E[X ]

∣

∣

∣

∣

2
]

= lim
n→∞

Var

[

Sn

n

]

= 0.

To get convergence in probability, we apply the Chebyshev inequality, as we

did in Proposition 9,

Pr

(
∣

∣

∣

∣

Sn

n
− E[X ]

∣

∣

∣

∣

≥ ǫ

)

≤ Var
[

Sn

n

]

ǫ2
=

Var[X ]

nǫ2
,

which clearly goes to zero as n approaches infinity.

Example 108. Suppose that a die is thrown repetitively. We are interested in

the average number of times a six shows up on the top face, as the number of

throws becomes very large.

Let Dn be a random variable that represent the number on the nth roll.

Also, define the random variable Xn = 1{Dn=6}. Then, Xn is a Bernoulli

random variable with parameter p = 1/6, and the empirical average Sn/n is

equal to the number of times a six is observed divided by the total number of

rolls. By the law of large numbers, we have

lim
n→∞

Pr

(
∣

∣

∣

∣

Sn

n
− 1

6

∣

∣

∣

∣

≥ ǫ

)

= 0.

That is, as the number of rolls increases, the average number of times a six is

observe converges to the probability of getting a six.
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12.2.1 Heavy-Tailed Distributions*

There are situations where the law of large numbers does not apply. For

example, when dealing with heavy-tailed distributions, one needs to be very

careful. In this section, we study Cauchy random variables in greater details.

First, we show that the sum of two independent Cauchy random variables is

itself a Cauchy random variable.

Let X1 and X2 be two independent Cauchy random variables with param-

eter γ1 and γ2, respectively. We wish to compute the PDF of S = X1 + X2.

For continuous random variable, the PDF of S is given by the convolution of

fX1(·) and fX2(·). Thus, we can write

fS(x) =

∫ ∞

−∞
fX1(ξ)fX2(x− ξ)dξ

=

∫ ∞

−∞

γ1
π (γ2

1 + ξ2)

γ2
π (γ2

2 + (x− ξ)2)
dξ.

This integral is somewhat difficult to solve. We therefore resort to complex

analysis and contour integration to get a solution. Let C be a contour that goes

along the real line from −a to a, and then counterclockwise along a semicircle

centered at zero. For a large enough, Cauchy’s residue theorem requires that

∮

C

fX1(z)fX2(x− z)dz =

∮

C

γ1
π (γ2

1 + z2)

γ2
π (γ2

2 + (x− z)2)
dz

= 2πi (Res(g, iγ1) + Res(g, x+ iγ2))

(12.3)

where we have implicitly defined the function

g(z) =
γ1γ2

π2 (γ2
1 + z2) (γ2

2 + (z − x)2)

=
γ1γ2

π2(z − iγ1)(z + iγ1)(z − x+ iγ2)(z − x− iγ2)
.

Only two residues are contained within the enclosed region. Because they are

simple poles, their values are given by

Res(g, iγ1) = lim
z→iγ1

(z − iγ1)g(z) =
γ2

2iπ2 ((x− iγ1)2 + γ2
2)

Res(g, x+ iγ2) = lim
z→x+iγ2

(z − x− iγ2)g(z) =
γ1

2iπ2 ((x+ iγ2)2 + γ2
1)
.
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It follows that

2πi (Res(g, iγ1) + Res(g, x+ iγ2))

=
γ2

π ((x− iγ1)2 + γ2
2)

+
γ1

π ((x+ iγ2)2 + γ2
1)

=
(γ1 + γ2)

π ((γ1 + γ2)2 + x2)

The contribution of the arc in (12.3) vanishes as a → ∞. We then conclude

that the PDF of S is equal to

fS(x) =
(γ1 + γ2)

π ((γ1 + γ2)2 + x2)
.

The sum of two independent Cauchy random variables with parameters γ1 and

γ is itself a Cauchy random variable with parameter γ1 + γ2.

Let X1, X2, . . . form a sequence of independent Cauchy random variables,

each with parameter γ. Also, consider the empirical sum

Sn =
n
∑

i=1

Xn.

Using mathematical induction and the aforementioned fact, it is possible to

show that Sn is a Cauchy random variable with parameter nγ. Furthermore,

for x ∈ R, the PDF of the empirical average Sn/n is given by

fSn
(nx)
∣

∣

1
n

∣

∣

=
n2γ

π (n2γ2 + (nx)2)
=

γ

π (γ2 + x2)
,

where we have used the methodology developed in Chapter 9. Amazingly,

the empirical average of a sequence of independent Cauchy random variables,

each with parameter γ, remains a Cauchy random variable with the same

parameter. Clearly, the law of large numbers does not apply to this scenario.

Note that our version of the law of large numbers requires random variables

to have finite second moments, a condition that is clearly violated by the

Cauchy distribution. This explains why convergence does not take place in

this situation.

12.3 The Central Limit Theorem

The central limit theorem is a remarkable result in probability; it partly ex-

plains the prevalence of Gaussian random variables. In some sense, it captures
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the behavior of large sums of small, independent random components.

Theorem 5 (Central Limit Theorem). Let X1, X2, . . . be independent and

identically distributed random variables, each with mean E[X ] and variance

σ2. The distribution of
Sn − nE[X ]

σ
√
n

converges in distribution to a standard normal random variable as n → ∞. In

particular, for any x ∈ R,

lim
n→∞

Pr

(

Sn − nE[X ]

σ
√
n

≤ x

)

=

∫ x

−∞

1√
2π

e−
ξ2

2 dξ.

Proof. Initially, we assume that E[X ] = 0 and σ2 = 1. Furthermore, we only

study the situation where the moment generating function of X exists and is

finite. Consider the log-moment generating function of X ,

ΛX(s) = logMX(s) = log E
[

esX
]

.

The first two derivatives of ΛX(s) are equal to

dΛX

ds
(s) =

1

MX(s)

dMX

ds
(s)

d2ΛX

ds2
(s) = −

(

1

MX(s)

)2(
dMX

ds
(s)

)2

+
1

MX(s)

d2MX

ds2
(s).

Collecting these results and evaluating the functions at zero, we get ΛX(0) =

0, dΛX

ds
(0) = E[X ] = 0, and d2ΛX

ds2
(0) = E [X2] = 1. Next, we study the

log-moment generating function of Sn/
√
n. Recall that the expectation of

a product of independent random variables is equal to the product of their

individual expectations. Using this property, we get

log E
[

esSn/
√
n
]

= log E
[

esX1/
√
n · · · esXn/

√
n
]

= log

(

MX

(

s√
n

)

· · ·MX

(

s√
n

))

= nΛX

(

sn−1/2
)

.

To explore the asymptotic behavior of the sequence {Sn/
√
n}, we take the limit

of nΛX

(

sn−1/2
)

as n → ∞. In doing so, notice the double use of L’Hôpital’s
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rule,

lim
n→∞

1

n−1
Λ
(

sn−1/2
)

= lim
n→∞

1

n−2

dΛ

ds

(

sn−1/2
) sn−3/2

2

= lim
n→∞

s

2n−1/2

dΛ

ds

(

sn−1/2
)

= lim
n→∞

s

n−3/2

d2Λ

ds2
(

sn−1/2
) sn−3/2

2

= lim
n→∞

s2

2

d2Λ

ds2
(

sn−1/2
)

=
s2

2
.

That is, the moment generating function of Sn/
√
n converges point-wise to

es
2/2 as n → ∞. In fact, this implies that

Pr

(

Sn√
n
≤ x

)

→
∫ x

−∞

1√
2π

e−
ξ2

2 dξ

as n → ∞. In words, Sn/
√
n converges in distribution to a standard normal

random variable. The more general case where E[X ] and Var[X ] are arbitrary

constants can be established in an analog manner by proper scaling of the

random variables X1, X2, . . .

In the last step of the proof, we stated that point-wise convergence of the

moment generating functions implies convergence in distribution. This is a

sophisticated result that we quote without proof.

12.3.1 Normal Approximation

The central limit theorem can be employed to approximate the CDF of large

sums. Again, let

Sn = X1 + · · ·+Xn

where X1, X2, . . . are independent and identically distributed random variables

with mean E[X ] and variance σ2. When n is large, the CDF of Sn can be

estimated by approximating

Sn − nE[X ]

σ
√
n

as a standard normal random variable. More specifically, we have

FSn
(x) = Pr(Sn ≤ x) = Pr

(

Sn − nE[X ]

σ
√
n

≤ x− nE[X ]

σ
√
n

)

≈ Φ

(

x− nE[X ]

σ
√
n

)

,
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where Φ(·) is the CDF of a standard normal random variable.

Further Reading

1. Ross, S., A First Course in Probability, 7th edition, Pearson Prentice Hall,

2006: Chapter 8.

2. Bertsekas, D. P., and Tsitsiklis, J. N., Introduction to Probability, Athena

Scientific, 2002: Sections 7.2–7.4.

3. Miller, S. L., and Childers, D. G., Probability and Random Processes with

Applications to Signal Processing and Communications, 2004: Chapter 7.
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