Chapter 6
Meeting Expectations

When a large collection of data is gathered, one is typically interested not
necessarily in every individual data point, but rather in certain descriptive
quantities such as the average or the median. The same is true for random
variables. The PMF of discrete random variable X provides a complete char-
acterization of the distribution of X by specifying the probability of every
possible value of X. Still, it may be desirable to summarize the information
contained in the PMF of a random variable. One way to accomplish this task
and thereby obtain meaningful descriptive quantities is through the expecta-

tion operator.

6.1 Expected Values

The expected value E[X] of discrete random variable X is defined by

EX]= ) apx(x), (6.1)
zeX(Q)

whenever this sum converges absolutely. If this sum is not absolutely conver-
gent, then X is said not to possess an expected value. As mentioned above,
the expected value E[X] provides insightful information about the underlying
random variable X without giving a comprehensive and overly detailed de-
scription. The expected value of a random variable, as defined in (G.1]), is also
called the mean of X. It is important to realize that E[X] is not a function of
random variable X; rather, it is a function of the PMF of X.
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Example 43. A fair die is rolled once, with the number of dots appearing
on the top face taken as the value of the corresponding random variable. The

expected value of the roll can be computed as

6
k42
26_5_3‘5‘

k=1

In other words, the mean of this random variable is 3.5.

Example 44. Assume that a fair coin is flipped repetitively until heads is
observed. The value of random variable X is taken to be the total number
of tosses performed during this experiment. The possible values for X are
therefore given by X(Q) = {1,2,...}. Recall that, in this case, the PMF of X
is equal to px (k) = 27F, where k is a positive integer. The expected value of
this geometric random variable can be computed as
EX] =) k_y
k=1 2

The expected number of tosses until the coin produces heads is equal to two.

In general, determining the expectation of a random variable requires as
input its PMF, a detailed characterization of the random variable, and returns
a much simpler scalar attribute, its mean. Hence, computing the expected

value of the random variable yields a concise summary of its overall behavior.

6.2 Functions and Expectations

The mean forms one instance where the distribution of a random variable is
condensed into a scalar quantity. There are several additional examples. The
notion of an expectation can be combined with traditional functions to create
alternate descriptions and other meaningful quantities. Suppose that X is a
discrete random variable. Let g(-) be a real-valued function on the range of X,
and consider the expectation of g(X). This expected value, E[g(X)], is a scalar
quantity that can also provide partial information about the distribution of
X.

One way to determine the expected value of g(X) is to first note that Y =

g(X) is itself a random variable. Thus, we can find the derived distribution
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of Y and then apply the definition of expected value provided in (6.1). Yet,
there is a more direct way to compute this quantity; the expectation of g(X)
can be expressed as

Elg(X)]= Y gla)px(x). (6.2)

zeX(Q)

It is worth re-emphasizing that there exist random variables and functions for
which the above sum does not converge. In such cases, we simply say that the
expected value of g(X) does not exist. Also, notice that the mean E[X] is a
special case of (6.2)), where g(X) = X. Hence the definition of E[g(X)] given
above subsumes our original description of E[X], which appeared in (6.1). We

explore pertinent examples below.

Example 45. The simplest possible scenario for ([6.2) is the case where the

function g(-) is a constant. The expectation of g(X) = ¢ becomes

E[d] = Z cpx(z) =c¢ Z px(z) =c.

2€X(Q) 2€X(Q)

The last inequality follows from the normalization axiom of probability laws.

The expectation of a constant is always the constant itself.

Example 46. Let S be a subset of the real numbers, and define the indicator
function of S by

1, z€8
0, =¢6.

The expectation of 15(X) is equal to

E[s(X)] = 3 Ls(@)px(a)

zeX(Q)

- Z px(z) =Pr(X € 5).

eSNX(Q)

That is, the expectation of the indicator function of S is simply the probability
that X takes on a value in S. This alternate way of computing the probability
of an event can sometimes be employed to solve otherwise difficult probability

problems.
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Let random variable Y be defined by applying real-valued function g(-)
to X, with Y = g(X). The mean of Y is equal to the expectation of g(X),
and we know from our ongoing discussion that this value can be obtained by
applying two different formulas. To ensure consistency, we verify that these
two approaches lead to a same answer.

First, we can apply (6.1)) directly to Y, and obtain

EYI= > upv(y),
y€g(X(Q))
where py(+) is the PMF of Y provided by (5.3]). Alternatively, using (6.2)), we
have
BlY] = Blg(X)] = 3 g(o)px(a)
X (Q)

We prove that these two expressions describe a same answer as follows. Recall
that the PMF of Y evaluated at y is obtained by summing the values of px(-)
over all x € X () such that g(x) = y. Mathematically, this can be expressed

as Py (¥) = D (e x(@)lg(@)=y) Px (¥). Using this equality, we can write

E[Y] = Z ypy (y) = Z Y Z px(z)

y€g(X(Q)) y€g(X(Q)) {zeX()|g(z)=y}

= ) > ypx(@)

y€g(X(Q)) {zeX()|g9(z)=y}
S DD SR e5 e

y€g(X(Q)) {zeX()|g9(z)=y}

= Z g(z)px(z) = E[g(X)].

zeX ()

Note that first summing over all possible values of Y and then over the preim-
age of every y € Y(Q) is equivalent to summing over all z € X (). Hence,
we have shown that computing the expectation of a function using the two

methods outlined above leads to a same solution.

Example 47. Brazos Ezxtreme Fvents Radio creates the “Extreme Trio” con-
test. To participate, a person must fill out an application card. Three cards
are drawn from the lot and each winner is awarded $1,000. While a same

participant can send multiple cards, he or she can only win one grand prize.
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At the time of the drawing, the radio station has accumulated a total of 100
cards. David, an over-enthusiastic listener, is accountable for half of these
cards. We wish to compute the amount of money David expects to win under
this promotion.
Let X be the number of cards drawn by the radio station written by David.
The PMF of X s given by
(%) %)
(')

The money earned by David can be expressed as g(k) = 1000 min{k,1}. It

px (k) = ke {0,1,2,3}.

follows that the expected amount of money he receives is equal to

3
29
> (1000 minfk, 1}) px (k) = 1000 - 3
k=0
Alternatively, we can define Y = 1000 min{ X, 1}. Clearly, Y can only take
on one of two possible values, 0 or 1000. FEwvaluating the PMF of Y, we get
py (0) = px(0) = 4/33 and py (1000) = 1 — py(0) = 29/33. The ezxpected value
of Y s equal to
29
0 py (0) + 1000 - py (1000) = 1000 - 2.

As anticipated, both methods lead to the same answer. The expected amount

of money won by David is roughly $878.79.

6.2.1 The Mean

As seen at the beginning of this chapter, the simplest non-trivial expectation
is the mean. We provide two additional examples for the mean, and we explore

a physical interpretation of its definition below.

Example 48. Let X be a geometric random variable with parameter p and
PMF

px(B)=(1—-p)Fp, k=12,...

The mean of this random variable is

o0

EX] =) k(1-p)'p=p) k1-pt'= !

k=1 p
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Example 49. Let X be a binomial random variable with parameters n and p.
The PMF of X s given by

n

px (k) = <k>pk(1 —p)"_k, k=0,1,...,n

The mean of this binomial random variable can therefore be computed as

X]= Zk@)p’“(l —p) "
—}2 )m(l—m -

n—1 |

_ n (1] _ pyn—t-1
;:mn—1—@W (1-p)

Notice how we rearranged the sum into a familiar form to compute its value.

It can be insightful to relate the mean of a random variable to classical
mechanics. Let X be a random variable and suppose that, for every x € X (),
we place an infinitesimal particle of mass px(z) at position z along a real line.
The mean of random variable X as defined in (6] coincides with the center

of mass of the system of particles.

Example 50. Let X be a Bernoulli random variable such that

(2) 0.25, ifx=0
T) =
bx 0.75, ifz=1.

The mean of X 1is given by
E[X]=0-0.25+1-0.75 = 0.75.

Consider a two-particle system with masses my = 0.25 and mo = 0.75, respec-
tively. In the coordinate system illustrated below, the particles are located at
positions x1 = 0 and xo = 1. From classical mechanics, we know that their
center of mass can be expressed as

L S
my + Mo

As anticipated, the center of mass corresponds to the mean of X .
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Figure 6.1: The center of mass on the figure is indicated by the tip of the
arrow. In general, the mean of a discrete random variable corresponds to the

center of mass of the associated particle system

6.2.2 The Variance

A second widespread descriptive quantity associated with random variable X

is its variance, which we denote by Var[X]. It is defined by
Var[X] = E [(X — E[X))?]. (6.3)

Evidently, the variance is always nonnegative. It provides a measure of the
dispersion of X around its mean. For discrete random variables, it can be

computed explicitly as

Valx] = 3 (o - E[X])px (o).
zeX ()

The square root of the variance is referred to as the standard deviation of X,

and it is often denoted by o.

Example 51. Suppose X is a Bernoulli random variable with parameter p.

We can compute the mean of X as
EX]|=1-p+0-(1—-p)=p.
Its variance is given by
Var[X] = (1 =p)* - p+ (0 —p)*- (1 —p) = p(1 —p).

Example 52. Let X be a Poisson random variable with parameter \. The

mean of X is given by

Bx =Y ke =3 A
(X] =D kipe Z(k—l)!e
k=0 =
o0 l
—)\E%e_’\:)\
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The variance of X can be calculated as

k

(k= 2?2

Var[X] = e

NE

e
Il
o

(A + k(1 —2X) + k(k—1)) 2]: —A

NE

e
Il
o

I
>

)\k
_)\2 7—)\:)\
+Z(/f—2)!e

o)
k=2

Both the mean and the variance of a Poisson random variable are equal to its

parameter \.

6.2.3 Affine Functions

Proposition 3. Suppose X is a random variable with finite mean. Let Y be

the affine function of X defined by Y = aX + b, where a and b are fixed real
numbers. The mean of random variable Y is equal to E[Y] = aE[X] + b.

Proof. This can be computed using (6.2));

EY]= 3 (az+b)px(a)

zeX ()
=a ), apx(@+b ) pxa
zEX(Q) zEX(Q)
= aE[X] +b.
We can summarize this property with E[aX + 0] = aE[X] + ). O

It is not much harder to show that the expectation is a linear functional.
Suppose that g(-) and h(-) are two real-valued functions such that E[g(X)]
and E[h(X)] both exist. We can write the expectation of ag(X) + h(X) as

Elag(X) +h(X)] = ) (ag(x) + h(z))px(2)

zeX(Q)
=a Z Z h(z)px (v
ze€X(Q zeX(Q

= CLE[Q(X)] +E[R(X)].

This demonstrates that the expectation is both homogeneous and additive.
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Proposition 4. Assume that X is a random variable with finite mean and
variance, and let Y be the affine function of X given by Y = aX + b, where a

and b are constants. The variance of Y is equal to Var[Y] = a*Var[X].
Proof. Consider ([6.3]) applied to Y = aX + b,
VarlY] = ) (az +b—E[aX + b))’ px(z)

zeX(Q)
= Y (aw+b—aE[X] - )’ px(z)
zeX(Q)
=a* Y (z—E[X])*px(z) = a®Var[X].
zeX ()

The variance of an affine function only depends on the distribution of its
argument and parameter a. A translation of the argument by b does not affect

the variance of Y = aX + b; in other words, it is shift invariant. O

6.3 Moments

The moments of a random variable X are likewise important quantities used
in providing partial information about the PMF of X. The nth moment of
random variable X is defined by
EX" = ) a"px(x). (6.4)
zeX(Q)

Incidentally, the mean of random variable X is its first moment.

Proposition 5. The variance of random variable X can be expressed in terms
of its first two moments, Var[X] = E[X?] — (E[X])".

Proof. Suppose that the variance of X exists and is finite. Starting from (6.3)),

we can expand the variance of X as follows,

VarlX] = 37 (¢ — E[X])* px(x)

zeX(Q)

= Z (2% — 22B[X] + (E[X])?) px ()
zeX(Q)

= Z *px(r) — 2B[X] Z apx(z) + (E[X])? Z px(z)
2EX(Q) 2€X(Q) 2EX(Q)

= E [X?] - (E[X])*.
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This alternate formula for the variance is sometimes convenient for computa-

tional purposes. O

We include below an example where the above formula for the variance is
applied. This allows the straightforward application of standard sums from

calculus.

Example 53. Let X be a uniform random variable with PMF

px(k):{ 1/n, ifk:1.,2,...,n

0, otherwise.

The mean of this uniform random variable is equal to

n+1

Blx] =22

The variance of X can then be obtained as

Var[X] = E [X?] - ;%2 (Hl)

(n+1 )(2n +1) n+ 1)

3

n?—1
12
Closely related to the moments of a random variable are its central mo-
ments. The kth central moment of X is defined by E [(X — E[X])*|. The

variance is an example of a central moment, as we can see from definition

(63). The central moments are used to define the skewness of random vari-
able, which is a measure of asymmetry; and its kurtosis, which assesses whether
the variance is due to infrequent extreme deviations or more frequent, modest-
size deviations. Although these quantities will not play a central role in our
exposition of probability, they each reveal a different characteristic of a random

variable and they are encountered frequently in statistics.

6.4 Ordinary Generating Functions

In the special yet important case where X ({2) is a subset of the non-negative

integers, it is occasionally useful to employ the ordinary generating function.
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This function bears a close resemblance to the z-transform and is defined by

Gx(2) =E[z¥] =) px(k). (6.5)

k=0
It is also called the probability-generating function because of the following
property. The probability Pr(X = k) = px (k) can be recovered from the corre-
sponding generating function Gy (z) through Taylor series expansion. Within

the radius of convergence of Gx(z), we have

Gxta) =3 3 (L) -

k=0

Comparing this equation to (6.5]), we conclude that

1 d*Gx

px(h) = g (O

We note that, for |z| < 1, we have

> Ao (k)| < lelpx(k) < Y px(k) =1
k=0 k=0 k=0

and hence the radius of convergence of any probability-generating function
must include one.

The ordinary generating function plays an important role in dealing with
sums of discrete random variables. As a preview of what lies ahead, we com-
pute ordinary generating functions for Bernoulli and Binomial random vari-

ables below.

Example 54. Let X be a Bernoulli random variable with parameter p. The

ordinary generating function of X is given by
Gx(z) =px(0) +px(1)z =1—p+pz.

Example 55. Let S be a binomial random variable with parameters n and p.

The ordinary generating function of S can be computed as

Gs(2) = D Hsth) = Y (Z)pm —py

k=0 k=0
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We know, from Section [5.2.2] that one way to create a binomial random
variable is to sum n independent and identically distributed Bernoulli random
variables, each with parameter p. Looking at the ordinary generating functions
above, we notice that the Gg(z) is the product of n copies of Gx(z). Intuitively,
it appears that the sum of independent discrete random variables leads to the
product of their ordinary generating functions, a relation that we will revisit
shortly.

The mean and second moment of X can be computed based on its ordinary

generating function, In particular, we have

Similarly, the second moment of X can be derived as

e dG
E[Xﬂ:lgxf <?2X(z)+ dZX(z)).

This can be quite useful, as illustrated in the following example.

Example 56 (Poisson Random Variable). Suppose that X has a Poisson dis-
tribution with parameter A > 0. The function Gx(s) can be computed using
the distribution of X,

oo _
e ANk

Gy(z) = sz _ e—,\i (A2)* — oA — A
e k=0 B k=0 R N .

The first two moments of X are given by

o dGX IR T )\(Z—l) o
E[X] = 121?11 p (2) = 121{111 e =A
*G dG
E [X?] lzlgl < T (2) + P (z)) lzlgl (M +X)e A+ A

This provides a very efficient way to compute the mean and variance of X,
which are both equal to . It may be helpful to compare this derivation with
Ezxample [52.
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