
Chapter 6

Meeting Expectations

When a large collection of data is gathered, one is typically interested not

necessarily in every individual data point, but rather in certain descriptive

quantities such as the average or the median. The same is true for random

variables. The PMF of discrete random variable X provides a complete char-

acterization of the distribution of X by specifying the probability of every

possible value of X . Still, it may be desirable to summarize the information

contained in the PMF of a random variable. One way to accomplish this task

and thereby obtain meaningful descriptive quantities is through the expecta-

tion operator.

6.1 Expected Values

The expected value E[X ] of discrete random variable X is defined by

E[X ] =
∑

x∈X(Ω)

xpX(x), (6.1)

whenever this sum converges absolutely. If this sum is not absolutely conver-

gent, then X is said not to possess an expected value. As mentioned above,

the expected value E[X ] provides insightful information about the underlying

random variable X without giving a comprehensive and overly detailed de-

scription. The expected value of a random variable, as defined in (6.1), is also

called the mean of X . It is important to realize that E[X ] is not a function of

random variable X ; rather, it is a function of the PMF of X .
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Example 43. A fair die is rolled once, with the number of dots appearing

on the top face taken as the value of the corresponding random variable. The

expected value of the roll can be computed as

6
∑

k=1

k

6
=

42

12
= 3.5.

In other words, the mean of this random variable is 3.5.

Example 44. Assume that a fair coin is flipped repetitively until heads is

observed. The value of random variable X is taken to be the total number

of tosses performed during this experiment. The possible values for X are

therefore given by X(Ω) = {1, 2, . . .}. Recall that, in this case, the PMF of X

is equal to pX(k) = 2−k, where k is a positive integer. The expected value of

this geometric random variable can be computed as

E[X ] =
∞
∑

k=1

k

2k
= 2.

The expected number of tosses until the coin produces heads is equal to two.

In general, determining the expectation of a random variable requires as

input its PMF, a detailed characterization of the random variable, and returns

a much simpler scalar attribute, its mean. Hence, computing the expected

value of the random variable yields a concise summary of its overall behavior.

6.2 Functions and Expectations

The mean forms one instance where the distribution of a random variable is

condensed into a scalar quantity. There are several additional examples. The

notion of an expectation can be combined with traditional functions to create

alternate descriptions and other meaningful quantities. Suppose that X is a

discrete random variable. Let g(·) be a real-valued function on the range of X ,

and consider the expectation of g(X). This expected value, E[g(X)], is a scalar

quantity that can also provide partial information about the distribution of

X .

One way to determine the expected value of g(X) is to first note that Y =

g(X) is itself a random variable. Thus, we can find the derived distribution
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of Y and then apply the definition of expected value provided in (6.1). Yet,

there is a more direct way to compute this quantity; the expectation of g(X)

can be expressed as

E [g(X)] =
∑

x∈X(Ω)

g(x)pX(x). (6.2)

It is worth re-emphasizing that there exist random variables and functions for

which the above sum does not converge. In such cases, we simply say that the

expected value of g(X) does not exist. Also, notice that the mean E[X ] is a

special case of (6.2), where g(X) = X . Hence the definition of E[g(X)] given

above subsumes our original description of E[X ], which appeared in (6.1). We

explore pertinent examples below.

Example 45. The simplest possible scenario for (6.2) is the case where the

function g(·) is a constant. The expectation of g(X) = c becomes

E[c] =
∑

x∈X(Ω)

cpX(x) = c
∑

x∈X(Ω)

pX(x) = c.

The last inequality follows from the normalization axiom of probability laws.

The expectation of a constant is always the constant itself.

Example 46. Let S be a subset of the real numbers, and define the indicator

function of S by

1S(x) =







1, x ∈ S

0, x /∈ S.

The expectation of 1S(X) is equal to

E [1S(X)] =
∑

x∈X(Ω)

1S(x)pX(x)

=
∑

x∈S∩X(Ω)

pX(x) = Pr(X ∈ S).

That is, the expectation of the indicator function of S is simply the probability

that X takes on a value in S. This alternate way of computing the probability

of an event can sometimes be employed to solve otherwise difficult probability

problems.
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Let random variable Y be defined by applying real-valued function g(·)
to X , with Y = g(X). The mean of Y is equal to the expectation of g(X),

and we know from our ongoing discussion that this value can be obtained by

applying two different formulas. To ensure consistency, we verify that these

two approaches lead to a same answer.

First, we can apply (6.1) directly to Y , and obtain

E[Y ] =
∑

y∈g(X(Ω))

ypY (y),

where pY (·) is the PMF of Y provided by (5.3). Alternatively, using (6.2), we

have

E[Y ] = E[g(X)] =
∑

x∈X(Ω)

g(x)pX(x).

We prove that these two expressions describe a same answer as follows. Recall

that the PMF of Y evaluated at y is obtained by summing the values of pX(·)
over all x ∈ X(Ω) such that g(x) = y. Mathematically, this can be expressed

as pY (y) =
∑

{x∈X(Ω)|g(x)=y} pX(x). Using this equality, we can write

E[Y ] =
∑

y∈g(X(Ω))

ypY (y) =
∑

y∈g(X(Ω))

y
∑

{x∈X(Ω)|g(x)=y}
pX(x)

=
∑

y∈g(X(Ω))

∑

{x∈X(Ω)|g(x)=y}
ypX(x)

=
∑

y∈g(X(Ω))

∑

{x∈X(Ω)|g(x)=y}
g(x)pX(x)

=
∑

x∈X(Ω)

g(x)pX(x) = E[g(X)].

Note that first summing over all possible values of Y and then over the preim-

age of every y ∈ Y (Ω) is equivalent to summing over all x ∈ X(Ω). Hence,

we have shown that computing the expectation of a function using the two

methods outlined above leads to a same solution.

Example 47. Brazos Extreme Events Radio creates the “Extreme Trio” con-

test. To participate, a person must fill out an application card. Three cards

are drawn from the lot and each winner is awarded $1,000. While a same

participant can send multiple cards, he or she can only win one grand prize.
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At the time of the drawing, the radio station has accumulated a total of 100

cards. David, an over-enthusiastic listener, is accountable for half of these

cards. We wish to compute the amount of money David expects to win under

this promotion.

Let X be the number of cards drawn by the radio station written by David.

The PMF of X is given by

pX(k) =

(

50
k

)(

50
3−k

)

(

100
3

) k ∈ {0, 1, 2, 3}.

The money earned by David can be expressed as g(k) = 1000min{k, 1}. It

follows that the expected amount of money he receives is equal to

3
∑

k=0

(1000min{k, 1}) pX(k) = 1000 · 29
33

.

Alternatively, we can define Y = 1000min{X, 1}. Clearly, Y can only take

on one of two possible values, 0 or 1000. Evaluating the PMF of Y , we get

pY (0) = pX(0) = 4/33 and pY (1000) = 1− pY (0) = 29/33. The expected value

of Y is equal to

0 · pY (0) + 1000 · pY (1000) = 1000 · 29
33

.

As anticipated, both methods lead to the same answer. The expected amount

of money won by David is roughly $878.79.

6.2.1 The Mean

As seen at the beginning of this chapter, the simplest non-trivial expectation

is the mean. We provide two additional examples for the mean, and we explore

a physical interpretation of its definition below.

Example 48. Let X be a geometric random variable with parameter p and

PMF

pX(k) = (1− p)k−1p, k = 1, 2, . . .

The mean of this random variable is

E[X ] =

∞
∑

k=1

k(1− p)k−1p = p

∞
∑

k=1

k(1− p)k−1 =
1

p
.
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Example 49. Let X be a binomial random variable with parameters n and p.

The PMF of X is given by

pX(k) =

(

n

k

)

pk(1− p)n−k, k = 0, 1, . . . , n.

The mean of this binomial random variable can therefore be computed as

E[X ] =
n
∑

k=0

k

(

n

k

)

pk(1− p)n−k

=
n
∑

k=1

n!

(k − 1)!(n− k)!
pk(1− p)n−k

=
n−1
∑

ℓ=0

n!

ℓ!(n− 1− ℓ)!
pℓ+1(1− p)n−ℓ−1

= np
n−1
∑

ℓ=0

(

n− 1

ℓ

)

pℓ(1− p)n−1−ℓ = np.

Notice how we rearranged the sum into a familiar form to compute its value.

It can be insightful to relate the mean of a random variable to classical

mechanics. Let X be a random variable and suppose that, for every x ∈ X(Ω),

we place an infinitesimal particle of mass pX(x) at position x along a real line.

The mean of random variable X as defined in (6.1) coincides with the center

of mass of the system of particles.

Example 50. Let X be a Bernoulli random variable such that

pX(x) =

{

0.25, if x = 0

0.75, if x = 1.

The mean of X is given by

E[X ] = 0 · 0.25 + 1 · 0.75 = 0.75.

Consider a two-particle system with masses m1 = 0.25 and m2 = 0.75, respec-

tively. In the coordinate system illustrated below, the particles are located at

positions x1 = 0 and x2 = 1. From classical mechanics, we know that their

center of mass can be expressed as

m1x1 +m2x2

m1 +m2
= 0.75.

As anticipated, the center of mass corresponds to the mean of X.
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x1 x2Center of Mass

R

Figure 6.1: The center of mass on the figure is indicated by the tip of the

arrow. In general, the mean of a discrete random variable corresponds to the

center of mass of the associated particle system

6.2.2 The Variance

A second widespread descriptive quantity associated with random variable X

is its variance, which we denote by Var[X ]. It is defined by

Var[X ] = E
[

(X − E[X ])2
]

. (6.3)

Evidently, the variance is always nonnegative. It provides a measure of the

dispersion of X around its mean. For discrete random variables, it can be

computed explicitly as

Var[X ] =
∑

x∈X(Ω)

(x− E[X ])2 pX(x).

The square root of the variance is referred to as the standard deviation of X ,

and it is often denoted by σ.

Example 51. Suppose X is a Bernoulli random variable with parameter p.

We can compute the mean of X as

E[X ] = 1 · p + 0 · (1− p) = p.

Its variance is given by

Var[X ] = (1− p)2 · p+ (0− p)2 · (1− p) = p(1− p).

Example 52. Let X be a Poisson random variable with parameter λ. The

mean of X is given by

E[X ] =

∞
∑

k=0

k
λk

k!
e−λ =

∞
∑

k=1

λk

(k − 1)!
e−λ

= λ
∞
∑

ℓ=0

λℓ

ℓ!
e−λ = λ.
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The variance of X can be calculated as

Var[X ] =

∞
∑

k=0

(k − λ)2
λk

k!
e−λ

=

∞
∑

k=0

(

λ2 + k(1− 2λ) + k(k − 1)
) λk

k!
e−λ

= λ− λ2 +

∞
∑

k=2

λk

(k − 2)!
e−λ = λ.

Both the mean and the variance of a Poisson random variable are equal to its

parameter λ.

6.2.3 Affine Functions

Proposition 3. Suppose X is a random variable with finite mean. Let Y be

the affine function of X defined by Y = aX + b, where a and b are fixed real

numbers. The mean of random variable Y is equal to E[Y ] = aE[X ] + b.

Proof. This can be computed using (6.2);

E[Y ] =
∑

x∈X(Ω)

(ax+ b)pX(x)

= a
∑

x∈X(Ω)

xpX(x) + b
∑

x∈X(Ω)

pX(x)

= aE[X ] + b.

We can summarize this property with E[aX + b] = aE[X ] + b.

It is not much harder to show that the expectation is a linear functional.

Suppose that g(·) and h(·) are two real-valued functions such that E[g(X)]

and E[h(X)] both exist. We can write the expectation of ag(X) + h(X) as

E[ag(X) + h(X)] =
∑

x∈X(Ω)

(ag(x) + h(x))pX(x)

= a
∑

x∈X(Ω)

g(x)pX(x) +
∑

x∈X(Ω)

h(x)pX(x)

= aE[g(X)] + E[h(X)].

This demonstrates that the expectation is both homogeneous and additive.
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Proposition 4. Assume that X is a random variable with finite mean and

variance, and let Y be the affine function of X given by Y = aX + b, where a

and b are constants. The variance of Y is equal to Var[Y ] = a2Var[X ].

Proof. Consider (6.3) applied to Y = aX + b,

Var[Y ] =
∑

x∈X(Ω)

(ax+ b− E[aX + b])2 pX(x)

=
∑

x∈X(Ω)

(ax+ b− aE[X ]− b)2 pX(x)

= a2
∑

x∈X(Ω)

(x− E[X ])2 pX(x) = a2Var[X ].

The variance of an affine function only depends on the distribution of its

argument and parameter a. A translation of the argument by b does not affect

the variance of Y = aX + b; in other words, it is shift invariant.

6.3 Moments

The moments of a random variable X are likewise important quantities used

in providing partial information about the PMF of X . The nth moment of

random variable X is defined by

E[Xn] =
∑

x∈X(Ω)

xnpX(x). (6.4)

Incidentally, the mean of random variable X is its first moment.

Proposition 5. The variance of random variable X can be expressed in terms

of its first two moments, Var[X ] = E [X2]− (E[X ])2.

Proof. Suppose that the variance of X exists and is finite. Starting from (6.3),

we can expand the variance of X as follows,

Var[X ] =
∑

x∈X(Ω)

(x− E[X ])2 pX(x)

=
∑

x∈X(Ω)

(

x2 − 2xE[X ] + (E[X ])2
)

pX(x)

=
∑

x∈X(Ω)

x2pX(x)− 2E[X ]
∑

x∈X(Ω)

xpX(x) + (E[X ])2
∑

x∈X(Ω)

pX(x)

= E
[

X2
]

− (E[X ])2 .
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This alternate formula for the variance is sometimes convenient for computa-

tional purposes.

We include below an example where the above formula for the variance is

applied. This allows the straightforward application of standard sums from

calculus.

Example 53. Let X be a uniform random variable with PMF

pX(k) =

{

1/n, if k = 1, 2, . . . , n

0, otherwise.

The mean of this uniform random variable is equal to

E[X ] =
n + 1

2
.

The variance of X can then be obtained as

Var[X ] = E
[

X2
]

− (E[X ])2 =
n
∑

k=1

k2

n
−
(

n + 1

2

)2

=
n(n+ 1)(2n+ 1)

6n
−
(

n+ 1

2

)2

=
n2 − 1

12
.

Closely related to the moments of a random variable are its central mo-

ments. The kth central moment of X is defined by E
[

(X −E[X ])k
]

. The

variance is an example of a central moment, as we can see from definition

(6.3). The central moments are used to define the skewness of random vari-

able, which is a measure of asymmetry; and its kurtosis, which assesses whether

the variance is due to infrequent extreme deviations or more frequent, modest-

size deviations. Although these quantities will not play a central role in our

exposition of probability, they each reveal a different characteristic of a random

variable and they are encountered frequently in statistics.

6.4 Ordinary Generating Functions

In the special yet important case where X(Ω) is a subset of the non-negative

integers, it is occasionally useful to employ the ordinary generating function.
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This function bears a close resemblance to the z-transform and is defined by

GX(z) = E
[

zX
]

=

∞
∑

k=0

zkpX(k). (6.5)

It is also called the probability-generating function because of the following

property. The probability Pr(X = k) = pX(k) can be recovered from the corre-

sponding generating function GX(z) through Taylor series expansion. Within

the radius of convergence of GX(z), we have

GX(z) =

∞
∑

k=0

1

k!

(

dkGX

dzk
(0)

)

zk.

Comparing this equation to (6.5), we conclude that

pX(k) =
1

k!

dkGX

dzk
(0).

We note that, for |z| ≤ 1, we have
∣

∣

∣

∣

∣

∞
∑

k=0

zkpX(k)

∣

∣

∣

∣

∣

≤
∞
∑

k=0

|z|kpX(k) ≤
∞
∑

k=0

pX(k) = 1

and hence the radius of convergence of any probability-generating function

must include one.

The ordinary generating function plays an important role in dealing with

sums of discrete random variables. As a preview of what lies ahead, we com-

pute ordinary generating functions for Bernoulli and Binomial random vari-

ables below.

Example 54. Let X be a Bernoulli random variable with parameter p. The

ordinary generating function of X is given by

GX(z) = pX(0) + pX(1)z = 1− p+ pz.

Example 55. Let S be a binomial random variable with parameters n and p.

The ordinary generating function of S can be computed as

GS(z) =

n
∑

k=0

zkpS(k) =

n
∑

k=0

zk
(

n

k

)

pk(1− p)n−k

=

n
∑

k=0

(

n

k

)

(pz)k(1− p)n−k = (1− p + pz)n.
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We know, from Section 5.2.2, that one way to create a binomial random

variable is to sum n independent and identically distributed Bernoulli random

variables, each with parameter p. Looking at the ordinary generating functions

above, we notice that theGS(z) is the product of n copies ofGX(z). Intuitively,

it appears that the sum of independent discrete random variables leads to the

product of their ordinary generating functions, a relation that we will revisit

shortly.

The mean and second moment of X can be computed based on its ordinary

generating function, In particular, we have

E[X ] = lim
z↑1

dGX

dz
(z).

Similarly, the second moment of X can be derived as

E
[

X2
]

= lim
z↑1

(

d2GX

dz2
(z) +

dGX

dz
(z)

)

.

This can be quite useful, as illustrated in the following example.

Example 56 (Poisson Random Variable). Suppose that X has a Poisson dis-

tribution with parameter λ > 0. The function GX(s) can be computed using

the distribution of X,

GX(z) =
∞
∑

k=0

zk
e−λλk

k!
= e−λ

∞
∑

k=0

(λz)k

k!
= e−λeλz = eλ(z−1).

The first two moments of X are given by

E[X ] = lim
z↑1

dGX

dz
(z) = lim

z↑1
λeλ(z−1) = λ

E
[

X2
]

= lim
z↑1

(

d2GX

dz2
(z) +

dGX

dz
(z)

)

= lim
z↑1

(

λ2 + λ
)

eλ(z−1) = λ2 + λ.

This provides a very efficient way to compute the mean and variance of X,

which are both equal to λ. It may be helpful to compare this derivation with

Example 52.
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