

Chapter 9

Functions and Derived Distributions

We already know from our previous discussion that it is possible to form new random variables by applying real-valued functions to existing discrete random variables. In a similar manner, it is possible to generate a new random variable Y by taking a well-behaved function $g(\cdot)$ of a continuous random variable X . The graphical interpretation of this notion is analog to the discrete case and appears in Figure 9.1.

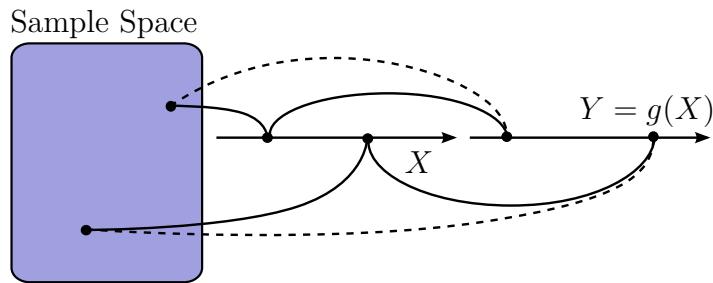


Figure 9.1: A function of a random variable is a random variable itself. In this figure, Y is obtained by applying function $g(\cdot)$ to the value of continuous random variable X .

Suppose X is a continuous random variable and let $g(\cdot)$ be a real-valued function. The function composition $Y = g(X)$ is itself a random variable. The probability that Y falls in a specific set S depends on both the function $g(\cdot)$

and the PDF of X ,

$$\Pr(Y \in S) = \Pr(g(X) \in S) = \Pr(X \in g^{-1}(S)) = \int_{g^{-1}(S)} f_X(\xi) d\xi,$$

where $g^{-1}(S) = \{\xi \in X(\Omega) | g(\xi) \in S\}$ denotes the preimage of S . In particular, we can derive the CDF of Y using the formula

$$F_Y(y) = \Pr(g(X) \leq y) = \int_{\{\xi \in X(\Omega) | g(\xi) \leq y\}} f_X(\xi) d\xi. \quad (9.1)$$

Example 78. Let X be a Rayleigh random variable with parameter $\sigma^2 = 1$, and define $Y = X^2$. We wish to find the distribution of Y . Using (9.1), we can compute the CDF of Y . For $y > 0$, we get

$$\begin{aligned} F_Y(y) &= \Pr(Y \leq y) = \Pr(X^2 \leq y) \\ &= \Pr(-\sqrt{y} \leq X \leq \sqrt{y}) = \int_0^{\sqrt{y}} \xi e^{-\frac{\xi^2}{2}} d\xi \\ &= \int_0^y \frac{1}{2} e^{-\frac{\zeta}{2}} d\zeta = 1 - e^{-\frac{y}{2}}. \end{aligned}$$

In this derivation, we use the fact that $X \geq 0$ in identifying the boundaries of integration, and we apply the change of variables $\zeta = \xi^2$ in computing the integral. We recognize $F_Y(\cdot)$ as the CDF of an exponential random variable. This shows that the square of a Rayleigh random variable possesses an exponential distribution.

In general, the fact that X is a continuous random variable does not provide much information about the properties of $Y = g(X)$. For instance, Y could be a continuous random variable, a discrete random variable or neither. To gain a better understanding of derived distributions, we begin our exposition of functions of continuous random variables by exploring specific cases.

9.1 Monotone Functions

A *monotonic function* is a function that preserves a given order. For instance, $g(\cdot)$ is monotone increasing if, for all x_1 and x_2 such that $x_1 \leq x_2$, we have $g(x_1) \leq g(x_2)$. Likewise, a function $g(\cdot)$ is termed monotone decreasing provided that $g(x_1) \geq g(x_2)$ whenever $x_1 \leq x_2$. If the inequalities above are

replaced by strict inequalities ($<$ and $>$), then the corresponding functions are said to be *strictly monotonic*. Monotonic functions of random variables are straightforward to handle because they admit the simple characterization of their derived CDFs. For non-decreasing function $g(\cdot)$ of continuous random variable X , we have

$$\begin{aligned} F_Y(y) &= \Pr(Y \leq y) = \Pr(g(X) \leq y) = \Pr(g(X) \in (-\infty, y]) \\ &= \Pr(X \in g^{-1}((-\infty, y])) = \Pr(X \leq \sup \{g^{-1}((-\infty, y])\}) \\ &= F_X(\sup \{g^{-1}((-\infty, y])\}). \end{aligned} \quad (9.2)$$

The supremum comes from the fact that multiple values of x may lead to a same value of y ; that is, the preimage $g^{-1}(y) = \{x|g(x) = y\}$ may contain several elements. Furthermore, $g(\cdot)$ may be discontinuous and $g^{-1}(y)$ may not contain any value. These scenarios all need to be accounted for in our expression, and this is accomplished by selecting the largest value in the set $g^{-1}((-\infty, y])$.

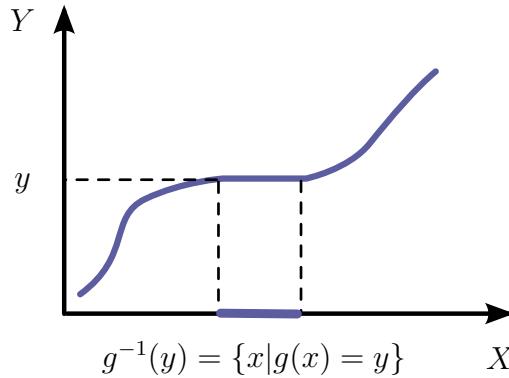


Figure 9.2: In this figure, Y is obtained by passing random variable X through a function $g(\cdot)$. The preimage of point y contains several elements, as seen above.

Example 79. Let X be a continuous random variable uniformly distributed over interval $[0, 1]$. We wish to characterize the derived distribution of $Y = 2X$. This can be accomplished as follows. For $y \in [0, 2]$, we get

$$\begin{aligned} F_Y(y) &= \Pr(Y \leq y) = \Pr\left(X \leq \frac{y}{2}\right) \\ &= \int_0^{\frac{y}{2}} dx = \frac{y}{2}. \end{aligned}$$

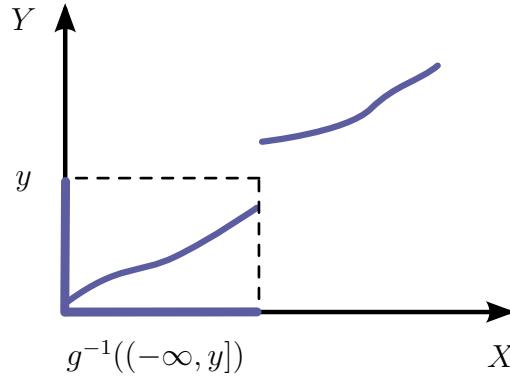


Figure 9.3: If $g(\cdot)$ is monotone increasing and discontinuous, then $g^{-1}(y)$ can be empty; whereas $g^{-1}((-\infty, y])$ is typically a well-defined interval. It is therefore advisable to define $F_Y(y)$ in terms of $g^{-1}((-\infty, y])$.

In particular, Y is a uniform random variable with support $[0, 2]$. By taking derivatives, we obtain the PDF of Y as

$$f_Y(y) = \begin{cases} \frac{1}{2}, & y \in [0, 2] \\ 0, & \text{otherwise.} \end{cases}$$

More generally, an affine function of a uniform random variable is also a uniform random variable.

The same methodology applies to non-increasing functions. Suppose that $g(\cdot)$ is monotone decreasing, and let $Y = g(X)$ be a function of continuous random variable X . The CDF of Y is then equal to

$$\begin{aligned} F_Y(y) &= \Pr(Y \leq y) = \Pr(X \in g^{-1}((-\infty, y])) \\ &= \Pr(X \geq \inf\{g^{-1}((-\infty, y])\}) \\ &= 1 - F_X(\inf\{g^{-1}((-\infty, y])\}). \end{aligned} \tag{9.3}$$

This formula is similar to the previous case in that the infimum accounts for the fact that the preimage $g^{-1}(y) = \{x | g(x) = y\}$ may contain numerous elements or no elements at all.

9.2 Differentiable Functions

To further our understanding of derived distributions, we next consider the situation where $g(\cdot)$ is a differentiable and strictly increasing function. Note that, with these two properties, $g(\cdot)$ becomes an invertible function. It is therefore possible to write $x = g^{-1}(y)$ unambiguous, as the value of x is unique. In such a case, the CDF of $Y = g(X)$ becomes

$$F_Y(y) = \Pr(X \leq g^{-1}(y)) = F_X(g^{-1}(y)).$$

Differentiating this equation with respect to y , we obtain the PDF of Y

$$\begin{aligned} f_Y(y) &= \frac{d}{dy} F_Y(y) = \frac{d}{dy} F_X(g^{-1}(y)) \\ &= f_X(g^{-1}(y)) \frac{d}{dy} g^{-1}(y) = f_X(g^{-1}(y)) \frac{dx}{dy}. \end{aligned}$$

With the simple substitution $x = g^{-1}(y)$, we get

$$f_Y(y) = f_X(x) \frac{dx}{dy} = \frac{f_X(x)}{\frac{dg}{dx}(x)}.$$

Note that $\frac{dg}{dx}(x) = |\frac{dg}{dx}(x)|$ is strictly positive because $g(\cdot)$ is a strictly increasing function. From this analysis, we gather that $Y = g(X)$ is a continuous random variable. In addition, we can express the PDF of $Y = g(X)$ in terms of the PDF of X and the derivative of $g(\cdot)$, as seen above.

Likewise, suppose that $g(\cdot)$ is differentiable and strictly decreasing. We can write the CDF of random variable $Y = g(X)$ as follows,

$$F_Y(y) = \Pr(g(X) \leq y) = \Pr(X \geq g^{-1}(y)) = 1 - F_X(g^{-1}(y)).$$

Its PDF is given by

$$f_Y(y) = \frac{d}{dy} (1 - F_X(g^{-1}(y))) = \frac{f_X(x)}{-\frac{dg}{dx}(x)},$$

where again $x = g^{-1}(y)$. We point out that $\frac{dg}{dx}(x) = -|\frac{dg}{dx}(x)|$ is strictly negative because $g(\cdot)$ is a strictly decreasing function. As before, we find that $Y = g(X)$ is a continuous random variable and the PDF of Y can be expressed in terms of $f_X(\cdot)$ and the derivative of $g(\cdot)$. Combining these two expressions,

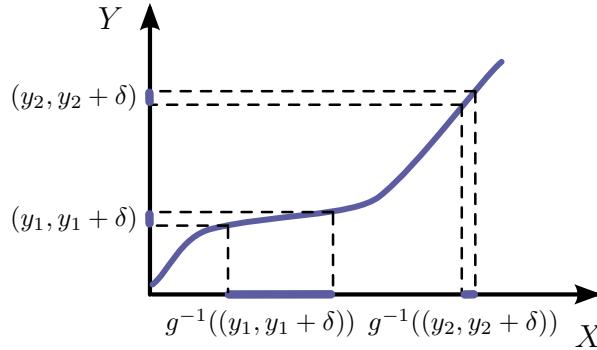


Figure 9.4: This figure provides a graphical interpretation of why the derivative of $g(\cdot)$ plays an important role in determining the value of the derived PDF $f_Y(\cdot)$. For an interval of width δ on the y -axis, the size of the corresponding interval on the x -axis depends heavily on the derivative of $g(\cdot)$. A small slope leads to a wide interval, whereas a steep slope produces a narrow interval on the x -axis.

we observe that, when $g(\cdot)$ is differentiable and strictly monotone, the PDF of Y becomes

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{dx}{dy} \right| = \frac{f_X(x)}{\left| \frac{dg}{dx}(x) \right|} \quad (9.4)$$

where $x = g^{-1}(y)$. The role of $\left| \frac{dg}{dx}(\cdot) \right|$ in finding the derived PDF $f_Y(\cdot)$ is illustrated in Figure 9.4.

Example 80. Suppose that X is a Gaussian random variable with PDF

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$$

We wish to find the PDF of random variable Y where $Y = aX + b$ and $a \neq 0$.

In this example, we have $g(x) = ax + b$ and $g(\cdot)$ is immediately recognized as a strictly monotonic function. The inverse of function of $g(\cdot)$ is equal to

$$x = g^{-1}(y) = \frac{y - b}{a},$$

and the desired derivative is given by

$$\frac{dx}{dy} = \frac{1}{\frac{dg}{dx}(x)} = \frac{1}{a}.$$

The PDF of Y can be computed using (9.4), and is found to be

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{dx}{dy} \right| = \frac{1}{\sqrt{2\pi|a|}} e^{-\frac{(y-b)^2}{2a^2}},$$

which is itself a Gaussian distribution.

Using a similar progression, we can show that the affine function of any Gaussian random variable necessarily remains a Gaussian random variable (provided $a \neq 0$).

Example 81 (Channel Fading and Energy). Suppose X is a Rayleigh random variable with parameter $\sigma^2 = 1$, and let $Y = X^2$. We wish to derive the distribution of random variable Y using the PDF of X .

Recall that the distribution of Rayleigh random variable X is given by

$$f_X(x) = xe^{-\frac{x^2}{2}} \quad x \geq 0.$$

Since Y is the square of X , we have $g(x) = x^2$. Note that X is a non-negative random variable and $g(x) = x^2$ is strictly monotonic over $[0, \infty)$. The PDF of Y is therefore found to be

$$f_Y(y) = \frac{f_X(x)}{\left| \frac{dg}{dx}(x) \right|} = \frac{f_X(\sqrt{y})}{\left| \frac{dg}{dx}(\sqrt{y}) \right|} = \frac{\sqrt{y}}{2\sqrt{y}} e^{-\frac{y}{2}} = \frac{1}{2} e^{-\frac{y}{2}},$$

where $y \geq 0$. Thus, random variable Y possesses an exponential distribution with parameter $1/2$. It may be instructive to compare this derivation with the steps outlined in Example 78.

Finally, suppose that $g(\cdot)$ is a differentiable function with a finite number of local extrema. Then, $g(\cdot)$ is piecewise monotonic and we can write the PDF of $Y = g(X)$ as

$$f_Y(y) = \sum_{\{x \in X(\Omega) | g(x) = y\}} \frac{f_X(x)}{\left| \frac{dg}{dx}(x) \right|} \quad (9.5)$$

for (almost) all values of $y \in \mathbb{R}$. That is, $f_Y(y)$ is obtained by first identifying the values of x for which $g(x) = y$. The PDF of Y is then computed explicitly by finding the local contribution of each of these values to $f_Y(y)$ using the methodology developed above. This is accomplished by applying (9.4) repetitively to every value of x for which $g(x) = y$. It is certainly useful to compare (9.5) to its discrete equivalent (5.4), which is easier to understand and visualize.

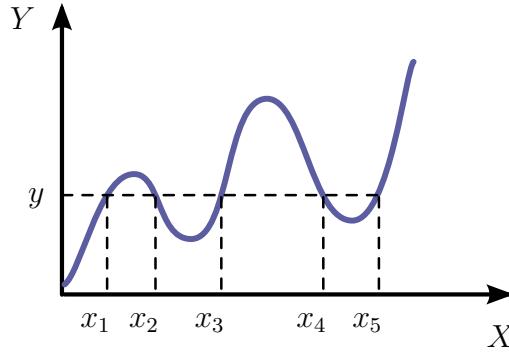


Figure 9.5: The PDF of $Y = g(X)$ when X is a continuous random variable and $g(\cdot)$ is differentiable with a finite number of local extrema is obtained by first identifying all the values of x for which $g(x) = y$, and then calculating the contribution of each of these values to $f_Y(y)$ using (9.4). The end result leads to (9.5).

Example 82 (Signal Phase and Amplitude). *Suppose X is a continuous random variable uniformly distributed over $[0, 2\pi]$. Let $Y = \cos(X)$, the random sampling of a sinusoidal waveform. We wish to find the PDF of Y .*

For $y \in (-1, 1)$, the preimage $g^{-1}(y)$ contains two values in $[0, 2\pi]$, namely $\arccos(y)$ and $2\pi - \arccos(y)$. Recall that the derivative of $\cos(x)$ is given by

$$\frac{d}{dx} \cos(x) = -\sin(x).$$

Collecting these results, we can write the PDF of Y as

$$\begin{aligned} f_Y(y) &= \frac{f_X(\arccos(y))}{|-\sin(\arccos(y))|} + \frac{f_X(2\pi - \arccos(y))}{|-\sin(2\pi - \arccos(y))|} \\ &= \frac{1}{2\pi\sqrt{1-y^2}} + \frac{1}{2\pi\sqrt{1-y^2}} = \frac{1}{\pi\sqrt{1-y^2}}, \end{aligned}$$

where $-1 < y < 1$. The CDF of Y can be obtained by integrating $f_Y(y)$. Not surprisingly, solving this integral involves a trigonometric substitution.

9.3 Generating Random Variables

In many engineering projects, computer simulations are employed as a first step in validating concepts or comparing various design candidates. Many

such tasks involve the generation of random variables. In this section, we explore a method to generate arbitrary random variables based on a routine that outputs a random value uniformly distributed between zero and one.

9.3.1 Continuous Random Variables

First, we consider a scenario where the simulation task requires the generation of a continuous random variable. We begin our exposition with a simple observation. Let X be a continuous random variable with PDF $f_X(\cdot)$. Consider the random variable $Y = F_X(X)$. Since $F_X(\cdot)$ is differentiable and strictly increasing over the support of X , we get

$$f_Y(y) = \frac{f_X(x)}{\left| \frac{dF_X}{dx}(x) \right|} = \frac{f_X(x)}{|f_X(x)|} = 1$$

where $y \in (0, 1)$ and $x = F_X^{-1}(y)$. The PDF of Y is zero outside of this interval because $0 \leq F_X(x) \leq 1$. Thus, using an arbitrary continuous random variable X , we can generate a uniform random variable Y with PDF

$$f_Y(y) = \begin{cases} 1 & y \in (0, 1) \\ 0 & \text{otherwise.} \end{cases}$$

This observation provides valuable insight about our original goal. Suppose that Y is a continuous random variable uniformly distributed over $[0, 1]$. We wish to generate continuous random variable with CDF $F_X(\cdot)$. First, we note that, when $F_X(\cdot)$ is invertible, we have

$$F_X^{-1}(F_X(X)) = X.$$

Thus, applying $F_X^{-1}(\cdot)$ to uniform random variable Y should lead to the desired result. Define $V = F_X^{-1}(Y)$, and consider the PDF of V . Using our knowledge of derived distributions, we get

$$f_V(v) = \frac{f_Y(y)}{\left| \frac{dF_X^{-1}}{dy}(y) \right|} = f_Y(y) \frac{dF_X}{dv}(v) = f_X(v)$$

where $y = F_X(v)$. Note that $f_Y(y) = 1$ for any $y \in [0, 1]$ because Y is uniform over the unit interval. Hence the PDF of $F_X^{-1}(Y)$ possesses the structure

wanted. We stress that this technique can be utilized to generate any random variable with PDF $f_X(\cdot)$ using a computer routine that outputs a random value uniformly distributed between zero and one. In other words, to create a continuous random variable X with CDF $F_X(\cdot)$, one can apply the function $F_X^{-1}(\cdot)$ to a random variable Y that is uniformly distributed over $[0, 1]$.

Example 83. Suppose that Y is a continuous random variable uniformly distributed over $[0, 1]$. We wish to create an exponential random variable X with parameter λ by taking a function of Y .

Random variable X is nonnegative, and its CDF is given by $F_X(x) = 1 - e^{-\lambda x}$ for $x \geq 0$. The inverse of $F_X(\cdot)$ is given by

$$F_X^{-1}(y) = -\frac{1}{\lambda} \log(1 - y).$$

We can therefore generate the desired random variable X with

$$X = -\frac{1}{\lambda} \log(1 - Y).$$

Indeed, for $x \geq 0$, we obtain

$$f_X(x) = \frac{f_Y(y)}{\frac{1}{\lambda(1-y)}} = \lambda e^{-\lambda x}$$

where we have implicitly defined $y = 1 - e^{-\lambda x}$. This is the desired distribution.

9.3.2 Discrete Random Variables

It is equally straightforward to generate a discrete random variable from a continuous random variable that is uniformly distributed between zero and one. Let $p_X(\cdot)$ be a PMF, and denote its support by $\{x_1, x_2, \dots\}$ where $x_i < x_j$ whenever $i < j$. We know that the corresponding CDF is given by

$$F_X(x) = \sum_{x_i \leq x} p_X(x_i).$$

We can generate a random variable X with PMF $p_X(\cdot)$ with the following case function,

$$g(y) = \begin{cases} x_i, & \text{if } F_X(x_{i-1}) < y \leq F_X(x_i) \\ 0, & \text{otherwise.} \end{cases}$$

Note that we have used the convention $x_0 = 0$ to simplify the definition of $g(\cdot)$. Taking $X = g(Y)$, we get

$$\begin{aligned}\Pr(X = x_i) &= \Pr(F_X(x_{i-1}) < Y \leq F_X(x_i)) \\ &= F_X(x_i) - F_X(x_{i-1}) = p_X(x_i).\end{aligned}$$

Of course, implementing a discrete random variable through a case statement may lead to an excessively slow routine. For many discrete random variables, there are much more efficient ways to generate a specific output.

Further Reading

1. Ross, S., *A First Course in Probability*, 7th edition, Pearson Prentice Hall, 2006: Section 5.7.
2. Bertsekas, D. P., and Tsitsiklis, J. N., *Introduction to Probability*, Athena Scientific, 2002: Section 3.6.
3. Miller, S. L., and Childers, D. G., *Probability and Random Processes with Applications to Signal Processing and Communications*, 2004: Section 4.6.
4. Gubner, J. A., *Probability and Random Processes for Electrical and Computer Engineers*, Cambridge, 2006: Sections 1.1, 1.3–1.4.
5. Mitzenmacher, M., and Upfal, E., *Probability and Computing: Randomized Algorithms and Probabilistic Analysis*, Cambridge, 2005: Chapters 1 & 10.

