
Chapter 9

Functions and Derived

Distributions

We already know from our previous discussion that it is possible to form new

random variables by applying real-valued functions to existing discrete random

variables. In a similar manner, it is possible to generate a new random variable

Y by taking a well-behaved function g(·) of a continuous random variable X .

The graphical interpretation of this notion is analog to the discrete case and

appears in Figure 9.1.

Sample Space

X

Y = g(X)

Figure 9.1: A function of a random variable is a random variable itself. In

this figure, Y is obtained by applying function g(·) to the value of continuous

random variable X .

Suppose X is a continuous random variable and let g(·) be a real-valued

function. The function composition Y = g(X) is itself a random variable. The

probability that Y falls in a specific set S depends on both the function g(·)
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and the PDF of X ,

Pr(Y ∈ S) = Pr(g(X) ∈ S) = Pr
(

X ∈ g−1(S)
)

=

∫

g−1(S)

fX(ξ)dξ,

where g−1(S) = {ξ ∈ X(Ω)|g(ξ) ∈ S} denotes the preimage of S. In particular,

we can derive the CDF of Y using the formula

FY (y) = Pr(g(X) ≤ y) =

∫

{ξ∈X(Ω)|g(ξ)≤y}
fX(ξ)dξ. (9.1)

Example 78. Let X be a Rayleigh random variable with parameter σ2 = 1,

and define Y = X2. We wish to find the distribution of Y . Using (9.1), we

can compute the CDF of Y . For y > 0, we get

FY (y) = Pr(Y ≤ y) = Pr
(

X2 ≤ y
)

= Pr(−√
y ≤ X ≤ √

y) =

∫

√
y

0

ξe−
ξ2

2 dξ

=

∫ y

0

1

2
e−

ζ

2dζ = 1− e−
y

2 .

In this derivation, we use the fact that X ≥ 0 in identifying the boundaries of

integration, and we apply the change of variables ζ = ξ2 in computing the inte-

gral. We recognize FY (·) as the CDF of an exponential random variable. This

shows that the square of a Rayleigh random variable possesses an exponential

distribution.

In general, the fact thatX is a continuous random variable does not provide

much information about the properties of Y = g(X). For instance, Y could

be a continuous random variable, a discrete random variable or neither. To

gain a better understanding of derived distributions, we begin our exposition

of functions of continuous random variables by exploring specific cases.

9.1 Monotone Functions

A monotonic function is a function that preserves a given order. For instance,

g(·) is monotone increasing if, for all x1 and x2 such that x1 ≤ x2, we have

g(x1) ≤ g(x2). Likewise, a function g(·) is termed monotone decreasing pro-

vided that g(x1) ≥ g(x2) whenever x1 ≤ x2. If the inequalities above are
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replaced by strict inequalities (< and >), then the corresponding functions

are said to be strictly monotonic. Monotonic functions of random variables

are straightforward to handle because they admit the simple characterization

of their derived CDFs. For non-decreasing function g(·) of continuous random
variable X , we have

FY (y) = Pr(Y ≤ y) = Pr(g(X) ≤ y) = Pr(g(X) ∈ (−∞, y])

= Pr(X ∈ g−1((−∞, y])) = Pr
(

X ≤ sup
{

g−1((−∞, y])
})

= FX

(

sup
{

g−1((−∞, y])
})

.

(9.2)

The supremum comes from the fact that multiple values of x may lead to a

same value of y; that is, the preimage g−1(y) = {x|g(x) = y} may contain

several elements. Furthermore, g(·) may be discontinuous and g−1(y) may

not contain any value. These scenarios all need to be accounted for in our

expression, and this is accomplished by selecting the largest value in the set

g−1((−∞, y]).

g−1(y) = {x|g(x) = y}

y

X

Y

Figure 9.2: In this figure, Y is obtained by passing random variable X through

a function g(·). The preimage of point y contains several elements, as seen

above.

Example 79. Let X be a continuous random variable uniformly distributed

over interval [0, 1]. We wish to characterize the derived distribution of Y =

2X. This can be accomplished as follows. For y ∈ [0, 2], we get

FY (y) = Pr(Y ≤ y) = Pr
(

X ≤ y

2

)

=

∫
y

2

0

dx =
y

2
.
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g−1((−∞, y])

y

X

Y

Figure 9.3: If g(·) is monotone increasing and discontinuous, then g−1(y) can be

empty; whereas g−1((−∞, y]) is typically a well-defined interval. It is therefore

advisable to define FY (y) in terms of g−1((−∞, y]).

In particular, Y is a uniform random variable with support [0, 2]. By taking

derivatives, we obtain the PDF of Y as

fY (y) =







1
2
, y ∈ [0, 2]

0, otherwise.

More generally, an affine function of a uniform random variable is also a

uniform random variable.

The same methodology applies to non-increasing functions. Suppose that

g(·) is monotone decreasing, and let Y = g(X) be a function of continuous

random variable X . The CDF of Y is then equal to

FY (y) = Pr(Y ≤ y) = Pr
(

X ∈ g−1((−∞, y])
)

= Pr
(

X ≥ inf
{

g−1((−∞, y])
})

= 1− FX

(

inf
{

g−1((−∞, y])
})

.

(9.3)

This formula is similar to the previous case in that the infimum accounts for

the fact that the preimage g−1(y) = {x|g(x) = y} may contain numerous

elements or no elements at all.
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9.2 Differentiable Functions

To further our understanding of derived distributions, we next consider the

situation where g(·) is a differentiable and strictly increasing function. Note

that, with these two properties, g(·) becomes an invertible function. It is

therefore possible to write x = g−1(y) unambiguous, as the value of x is unique.

In such a case, the CDF of Y = g(X) becomes

FY (y) = Pr
(

X ≤ g−1(y)
)

= FX

(

g−1(y)
)

.

Differentiating this equation with respect to y, we obtain the PDF of Y

fY (y) =
d

dy
FY (y) =

d

dy
FX

(

g−1(y)
)

= fX
(

g−1(y)
) d

dy
g−1(y) = fX

(

g−1(y)
) dx

dy
.

With the simple substitution x = g−1(y), we get

fY (y) = fX(x)
dx

dy
=

fX(x)
dg
dx
(x)

.

Note that dg
dx
(x) =

∣

∣

dg
dx
(x)
∣

∣ is strictly positive because g(·) is a strictly increasing

function. From this analysis, we gather that Y = g(X) is a continuous random

variable. In addition, we can express the PDF of Y = g(X) in terms of the

PDF of X and the derivative of g(·), as seen above.

Likewise, suppose that g(·) is differentiable and strictly decreasing. We can

write the CDF of random variable Y = g(X) as follows,

FY (y) = Pr(g(X) ≤ y) = Pr
(

X ≥ g−1(y)
)

= 1− FX

(

g−1(y)
)

.

Its PDF is given by

fY (y) =
d

dy

(

1− FX

(

g−1(y)
))

=
fX(x)

− dg
dx
(x)

,

where again x = g−1(y). We point out that dg
dx
(x) = −

∣

∣

dg
dx
(x)
∣

∣ is strictly

negative because g(·) is a strictly decreasing function. As before, we find that

Y = g(X) is a continuous random variable and the PDF of Y can be expressed

in terms of fX(·) and the derivative of g(·). Combining these two expressions,
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g−1((y1, y1 + δ)) g−1((y2, y2 + δ))

(y1, y1 + δ)

(y2, y2 + δ)

X

Y

Figure 9.4: This figure provides a graphical interpretation of why the derivative

of g(·) plays an important role in determining the value of the derived PDF

fY (·). For an interval of width δ on the y-axis, the size of the corresponding

interval on the x-axis depends heavily on the derivative of g(·). A small slope

leads to a wide interval, whereas a steep slope produces a narrow interval on

the x-axis.

we observe that, when g(·) is differentiable and strictly monotone, the PDF of

Y becomes

fY (y) = fX
(

g−1(y)
)

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

=
fX(x)
∣

∣

dg
dx
(x)
∣

∣

(9.4)

where x = g−1(y). The role of
∣

∣

dg
dx
(·)
∣

∣ in finding the derived PDF fY (·) is

illustrated in Figure 9.4.

Example 80. Suppose that X is a Gaussian random variable with PDF

fX(x) =
1√
2π

e−
x2

2 .

We wish to find the PDF of random variable Y where Y = aX + b and a 6= 0.

In this example, we have g(x) = ax+ b and g(·) is immediately recognized

as a strictly monotonic function. The inverse of function of g(·) is equal to

x = g−1(y) =
y − b

a
,

and the desired derivative is given by

dx

dy
=

1
dg
dx
(x)

=
1

a
.
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The PDF of Y can be computed using (9.4), and is found to be

fY (y) = fX
(

g−1(y)
)

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

=
1√
2π|a|

e−
(y−b)2

2a2 ,

which is itself a Gaussian distribution.

Using a similar progression, we can show that the affine function of any

Gaussian random variable necessarily remains a Gaussian random variable

(provided a 6= 0).

Example 81 (Channel Fading and Energy). Suppose X is a Rayleigh random

variable with parameter σ2 = 1, and let Y = X2. We wish to derive the

distribution of random variable Y using the PDF of X.

Recall that the distribution of Rayleigh random variable X is given by

fX(x) = xe−
x2

2 x ≥ 0.

Since Y is the square of X, we have g(x) = x2. Note that X is a non-negative

random variable and g(x) = x2 is strictly monotonic over [0,∞). The PDF of

Y is therefore found to be

fY (y) =
fX(x)
∣

∣

dg
dx
(x)
∣

∣

=
fX
(√

y
)

∣

∣

dg
dx

(√
y
)
∣

∣

=

√
y

2
√
y
e−

y
2 =

1

2
e−

y
2 ,

where y ≥ 0. Thus, random variable Y possesses an exponential distribution

with parameter 1/2. It may be instructive to compare this derivation with the

steps outlined in Example 78.

Finally, suppose that g(·) is a differentiable function with a finite number

of local extrema. Then, g(·) is piecewise monotonic and we can write the PDF

of Y = g(X) as

fY (y) =
∑

{x∈X(Ω)|g(x)=y}

fX(x)
∣

∣

dg
dx
(x)
∣

∣

(9.5)

for (almost) all values of y ∈ R. That is, fY (y) is obtained by first identi-

fying the values of x for which g(x) = y. The PDF of Y is then computed

explicitly by finding the local contribution of each of these values to fY (y)

using the methodology developed above. This is accomplished by applying

(9.4) repetitively to every value of x for which g(x) = y. It is certainly useful

to compare (9.5) to its discrete equivalent (5.4), which is easier to understand

and visualize.
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y

x1 x2 x3 x4 x5 X

Y

Figure 9.5: The PDF of Y = g(X) when X is a continuous random variable

and g(·) is differentiable with a finite number of local extrema is obtained by

first identifying all the values of x for which g(x) = y, and then calculating

the contribution of each of these values to fY (y) using (9.4). The end result

leads to (9.5).

Example 82 (Signal Phase and Amplitude). Suppose X is a continuous ran-

dom variable uniformly distributed over [0, 2π). Let Y = cos(X), the random

sampling of a sinusoidal waveform. We wish to find the PDF of Y .

For y ∈ (−1, 1), the preimage g−1(y) contains two values in [0, 2π), namely

arccos(y) and 2π − arccos(y). Recall that the derivative of cos(x) is given by

d

dx
cos(x) = − sin(x).

Collecting these results, we can write the PDF of Y as

fY (y) =
fX(arccos(y))

|− sin(arccos(y))| +
fX(2π − arccos(y))

|− sin(2π − arccos(y))|
=

1

2π
√

1− y2
+

1

2π
√

1− y2
=

1

π
√

1− y2
,

where −1 < y < 1. The CDF of Y can be obtained by integrating fY (y). Not

surprisingly, solving this integral involves a trigonometric substitution.

9.3 Generating Random Variables

In many engineering projects, computer simulations are employed as a first

step in validating concepts or comparing various design candidates. Many
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such tasks involve the generation of random variables. In this section, we

explore a method to generate arbitrary random variables based on a routine

that outputs a random value uniformly distributed between zero and one.

9.3.1 Continuous Random Variables

First, we consider a scenario where the simulation task requires the generation

of a continuous random variable. We begin our exposition with a simple

observation. LetX be a continuous random variable with PDF fX(·). Consider
the random variable Y = FX(X). Since FX(·) is differentiable and strictly

increasing over the support of X , we get

fY (y) =
fX(x)
∣

∣

dFX

dx
(x)
∣

∣

=
fX(x)

|fX(x)|
= 1

where y ∈ (0, 1) and x = F−1
X (y). The PDF of Y is zero outside of this interval

because 0 ≤ FX(x) ≤ 1. Thus, using an arbitrary continuous random variable

X , we can generate a uniform random variable Y with PDF

fY (y) =







1 y ∈ (0, 1)

0 otherwise.

This observation provides valuable insight about our original goal. Suppose

that Y is a continuous random variable uniformly distributed over [0, 1]. We

wish to generate continuous random variable with CDF FX(·). First, we note

that, when FX(·) is invertible, we have

F−1
X (FX(X)) = X.

Thus, applying F−1
X (·) to uniform random variable Y should lead to the desired

result. Define V = F−1
X (Y ), and consider the PDF of V . Using our knowledge

of derived distributions, we get

fV (v) =
fY (y)
∣

∣

∣

dF−1
X

dy
(y)
∣

∣

∣

= fY (y)
dFX

dv
(v) = fX(v)

where y = FX(v). Note that fY (y) = 1 for any y ∈ [0, 1] because Y is uniform

over the unit interval. Hence the PDF of F−1
X (Y ) possesses the structure
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wanted. We stress that this technique can be utilized to generate any random

variable with PDF fX(·) using a computer routine that outputs a random

value uniformly distributed between zero and one. In other words, to create

a continuous random variable X with CDF FX(·), one can apply the function

F−1
X (·) to a random variable Y that is uniformly distributed over [0, 1].

Example 83. Suppose that Y is a continuous random variable uniformly dis-

tributed over [0, 1]. We wish to create an exponential random variable X with

parameter λ by taking a function of Y .

Random variable X is nonnegative, and its CDF is given by FX(x) =

1− e−λx for x ≥ 0. The inverse of FX(·) is given by

F−1
X (y) = −1

λ
log(1− y).

We can therefore generate the desired random variable X with

X = −1

λ
log(1− Y ).

Indeed, for x ≥ 0, we obtain

fX(x) =
fY (y)

1
λ(1−y)

= λe−λx

where we have implicitly defined y = 1− e−λx. This is the desired distribution.

9.3.2 Discrete Random Variables

It is equally straightforward to generate a discrete random variable from a

continuous random variable that is uniformly distributed between zero and

one. Let pX(·) be a PMF, and denote its support by {x1, x2, . . .} where xi < xj

whenever i < j. We know that the corresponding CDF is given by

FX(x) =
∑

xi≤x

pX(xi).

We can generate a random variable X with PMF pX(·) with the following case

function,

g(y) =







xi, if FX(xi−1) < y ≤ FX(xi)

0, otherwise.
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Note that we have used the convention x0 = 0 to simplify the definition of

g(·). Taking X = g(Y ), we get

Pr(X = xi) = Pr(FX(xi−1) < Y ≤ FX(xi))

= FX(xi)− FX(xi−1) = pX(xi).

Of course, implementing a discrete random variable through a case statement

may lead to an excessively slow routine. For many discrete random variables,

there are much more efficient ways to generate a specific output.
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