Chapter 9

Functions and Derived

Distributions

We already know from our previous discussion that it is possible to form new
random variables by applying real-valued functions to existing discrete random
variables. In a similar manner, it is possible to generate a new random variable
Y by taking a well-behaved function g(-) of a continuous random variable X.
The graphical interpretation of this notion is analog to the discrete case and

appears in Figure @11
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Figure 9.1: A function of a random variable is a random variable itself. In
this figure, Y is obtained by applying function g(-) to the value of continuous

random variable X.

Suppose X is a continuous random variable and let g(-) be a real-valued
function. The function composition Y = g(X) is itself a random variable. The

probability that Y falls in a specific set S depends on both the function g(-)
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and the PDF of X,
Pr(Y € §) =Pr(g(X) € S) =P (X e g (8) = [ (e,
g 1(S)

where g71(S) = {£ € X(Q)|g(€) € S} denotes the preimage of S. In particular,

we can derive the CDF of Y using the formula

Fy(y) = Pr(g(X) < y) = / Fr(€)de. (9.1)

{€eX()g(©)<y}

Example 78. Let X be a Rayleigh random variable with parameter o® = 1,
and define Y = X2 We wish to find the distribution of Y. Using (@), we
can compute the CDF of Y. Fory > 0, we get

Fy(y) =Pr(Y <y) =Pr(X*<y)
VR
LSV ES ENIEY AT

yl S y
= —e 2d(=1—e"2.
/0262< e 2

In this derivation, we use the fact that X > 0 in identifying the boundaries of
integration, and we apply the change of variables ¢ = £ in computing the inte-
gral. We recognize Fy(-) as the CDF of an exponential random variable. This
shows that the square of a Rayleigh random variable possesses an exponential

distribution.

In general, the fact that X is a continuous random variable does not provide
much information about the properties of Y = ¢g(X). For instance, Y could
be a continuous random variable, a discrete random variable or neither. To
gain a better understanding of derived distributions, we begin our exposition

of functions of continuous random variables by exploring specific cases.

9.1 Monotone Functions

A monotonic function is a function that preserves a given order. For instance,
g(+) is monotone increasing if, for all z; and z5 such that z; < x5, we have
g(z1) < g(xs). Likewise, a function ¢(-) is termed monotone decreasing pro-

vided that g(z1) > g(z2) whenever z; < xo. If the inequalities above are
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replaced by strict inequalities (< and >), then the corresponding functions
are said to be strictly monotonic. Monotonic functions of random variables
are straightforward to handle because they admit the simple characterization
of their derived CDF's. For non-decreasing function g(-) of continuous random

variable X, we have
Fy(y) = Pr(Y <y) = Pr(g(X) <y) = Pr(¢(X) € (—00,])
— Pr(X € g ((—o0,9])) = Pr (X <suwp {g(—s0,8])})  (92)
= Fx (sup {g7"((~o0,9])}) -
The supremum comes from the fact that multiple values of x may lead to a
same value of y; that is, the preimage ¢g~'(y) = {z|g(x) = y} may contain
several elements. Furthermore, g(-) may be discontinuous and ¢g~'(y) may
not contain any value. These scenarios all need to be accounted for in our
expression, and this is accomplished by selecting the largest value in the set

g9 (=00, 9]).

>
9 ' (y) = {zlg(z) = y} X

Figure 9.2: In this figure, Y is obtained by passing random variable X through
a function g(-). The preimage of point y contains several elements, as seen

above.

Example 79. Let X be a continuous random variable uniformly distributed
over interval [0,1]. We wish to characterize the derived distribution of Y =

2X. This can be accomplished as follows. Fory € [0,2], we get
Fy(y) = Pr(Y <y) = Pr (X < %)
%

Yy
de = Z.
/0 2
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Figure 9.3: If g(-) is monotone increasing and discontinuous, then g~1(y) can be
empty; whereas ¢! ((—o0, y]) is typically a well-defined interval. It is therefore
advisable to define Fy (y) in terms of g=((—o0,y]).

In particular, Y is a uniform random variable with support [0,2]. By taking
derivatives, we obtain the PDF of Y as

fry) = vel2

1
2
0, otherwise.

More generally, an affine function of a uniform random wvariable is also a

uniform random variable.

The same methodology applies to non-increasing functions. Suppose that
g(+) is monotone decreasing, and let Y = ¢(X) be a function of continuous
random variable X. The CDF of Y is then equal to

Fy(y) =Pr(Y <y) =Pr(X € g7'((—o0,9)))
=Pr (X >inf {g7"((—o0,9])}) (9.3)
=1~ Fx (inf {g7" (o0, y])}) -

This formula is similar to the previous case in that the infimum accounts for
the fact that the preimage ¢7'(y) = {z|g(z) = y} may contain numerous

elements or no elements at all.
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9.2 Differentiable Functions

To further our understanding of derived distributions, we next consider the
situation where g() is a differentiable and strictly increasing function. Note
that, with these two properties, g(-) becomes an invertible function. It is
therefore possible to write z = ¢g~!(y) unambiguous, as the value of x is unique.
In such a case, the CDF of Y = g(X) becomes

Fy(y) =Pr(X <g7'(y) =Fx (97" ().

Differentiating this equation with respect to y, we obtain the PDF of Y

nwzgﬂwz%&@%m
=fX@*@»§%r%w=fx@*@»§§

With the simple substitution z = g~ !(y), we get

o) = (@) = )

Note that Z—Z(:)s) = Z—Z(x)‘ is strictly positive because g(-) is a strictly increasing
function. From this analysis, we gather that Y = g(X) is a continuous random
variable. In addition, we can express the PDF of Y = ¢(X) in terms of the
PDF of X and the derivative of g(+), as seen above.

Likewise, suppose that g(-) is differentiable and strictly decreasing. We can

write the CDF of random variable Y = ¢(X) as follows,

Fy(y) =Pr(g(X)<y)=Pr(X >g7'(y)) =1-Fx (¢ '(v)) -

Its PDF is given by

d - fx(z)
= (1=-F 1 =
fr(y) dy ( X (97 () _Z_g(f)7
where again * = ¢~ '(y). We point out that g—g(x) = — g—g(x)‘ is strictly

negative because g(-) is a strictly decreasing function. As before, we find that
Y = ¢g(X) is a continuous random variable and the PDF of Y can be expressed

in terms of fx(-) and the derivative of ¢g(-). Combining these two expressions,
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Figure 9.4: This figure provides a graphical interpretation of why the derivative
of g(+) plays an important role in determining the value of the derived PDF
fy(+). For an interval of width 0 on the y-axis, the size of the corresponding
interval on the z-axis depends heavily on the derivative of g(-). A small slope
leads to a wide interval, whereas a steep slope produces a narrow interval on

the z-axis.

we observe that, when ¢(-) is differentiable and strictly monotone, the PDF of

Y becomes

de|  fx(z)

dy| [ @)

where z = g~ '(y). The role of }Z—g(-)‘ in finding the derived PDF fy-(-) is
illustrated in Figure 0.4

) =rfx(a7'®)

(9.4)

Example 80. Suppose that X is a Gaussian random variable with PDF

1 2
fx(x) = \/%6_7.

We wish to find the PDF of random variable Y where Y = aX +b and a # 0.

In this ezample, we have g(x) = ax + b and g(-) is immediately recognized

as a strictly monotonic function. The inverse of function of g(+) is equal to

_ —b
v=g" )=,

and the desired derivative is given by

dx 1

dy  Y(z) a
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The PDF of Y can be computed using ([0.4), and is found to be

d 1 ysz
W) = fx (7' W) 5 — mm‘f%’

which 1s itself a Gaussian distribution.

Using a similar progression, we can show that the affine function of any
Gaussian random variable necessarily remains a Gaussian random variable

(provided a # 0).

Example 81 (Channel Fading and Energy). Suppose X is a Rayleigh random
variable with parameter 0> = 1, and let Y = X?%. We wish to derive the
distribution of random variable Y using the PDF of X.

Recall that the distribution of Rayleigh random variable X is given by

22

fx(x)=ze" 2 x>0.

Since Y is the square of X, we have g(x) = x2. Note that X is a non-negative
random variable and g(x) = x? is strictly monotonic over [0,00). The PDF of
Y is therefore found to be

_ fx(w)  Sx (v9) _ \/ge—
MO =160 = 1 ()] " 205

where y > 0. Thus, random variable Y possesses an exponential distribution

ke

_Yy
2

1
= —e
2 Y

with parameter 1/2. It may be instructive to compare this derivation with the

steps outlined in Example[78

Finally, suppose that ¢(-) is a differentiable function with a finite number
of local extrema. Then, ¢(+) is piecewise monotonic and we can write the PDF
of Y = g(X) as

NOEEDY ‘ZQX—(I) (9.5)

ex@@—n | @)]

for (almost) all values of y € R. That is, fy(y) is obtained by first identi-
fying the values of = for which g(z) = y. The PDF of YV is then computed
explicitly by finding the local contribution of each of these values to fy(y)
using the methodology developed above. This is accomplished by applying
(@A) repetitively to every value of = for which g(x) = y. It is certainly useful
to compare (0.5)) to its discrete equivalent (5.4]), which is easier to understand

and visualize.
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Figure 9.5: The PDF of Y = ¢g(X) when X is a continuous random variable
and g¢(-) is differentiable with a finite number of local extrema is obtained by
first identifying all the values of x for which g(x) = y, and then calculating
the contribution of each of these values to fy(y) using (@4]). The end result

leads to (@.5).

Example 82 (Signal Phase and Amplitude). Suppose X is a continuous ran-
dom wvariable uniformly distributed over [0,2m). Let Y = cos(X), the random
sampling of a sinusoidal waveform. We wish to find the PDF of Y.

Fory € (—1,1), the preimage g~'(y) contains two values in [0, 27), namely
arccos(y) and 2w — arccos(y). Recall that the derivative of cos(x) is given by

e cos(r) = —sin(x).

Collecting these results, we can write the PDF of Y as

_ [x(arccos(y)) fx(2m — arccos(y))
friy) = |— siri(arccos(y)ﬂ - |- sin(27 — arccos(y))|

1 1
= —'— prmm— 5
2y /1 —y? 2wy /1—9y? w1 —9?
where —1 <y < 1. The CDF of Y can be obtained by integrating fy(y). Not

surprisingly, solving this integral involves a trigonometric substitution.

9.3 Generating Random Variables

In many engineering projects, computer simulations are employed as a first

step in validating concepts or comparing various design candidates. Many
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such tasks involve the generation of random variables. In this section, we
explore a method to generate arbitrary random variables based on a routine

that outputs a random value uniformly distributed between zero and one.

9.3.1 Continuous Random Variables

First, we consider a scenario where the simulation task requires the generation
of a continuous random variable. We begin our exposition with a simple
observation. Let X be a continuous random variable with PDF fx(-). Consider
the random variable Y = Fx(X). Since Fx(-) is differentiable and strictly

increasing over the support of X, we get

_ Sx()  fx(=)
fr(y) = ddL;c(x)‘ | fx ()]

where y € (0,1) and x = Fy'(y). The PDF of Y is zero outside of this interval

because 0 < F'y(z) < 1. Thus, using an arbitrary continuous random variable

=1

X, we can generate a uniform random variable Y with PDF

fr(y) = boe oy

0 otherwise.

This observation provides valuable insight about our original goal. Suppose
that Y is a continuous random variable uniformly distributed over [0,1]. We
wish to generate continuous random variable with CDF F'x(-). First, we note

that, when Fx(-) is invertible, we have
it (Fy(X)) = X,

Thus, applying Fix'() to uniform random variable Y should lead to the desired
result. Define V = F5'(Y), and consider the PDF of V. Using our knowledge

of derived distributions, we get

o) = ’fyﬂ = KB () = fx(v)

dFg?
)

where y = Fx(v). Note that fy(y) =1 for any y € [0, 1] because Y is uniform

over the unit interval. Hence the PDF of Fy'(Y) possesses the structure
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wanted. We stress that this technique can be utilized to generate any random
variable with PDF fx(:) using a computer routine that outputs a random
value uniformly distributed between zero and one. In other words, to create
a continuous random variable X with CDF Fx(-), one can apply the function

F3'(-) to a random variable Y that is uniformly distributed over [0, 1].

Example 83. Suppose that Y is a continuous random variable uniformly dis-
tributed over [0,1]. We wish to create an exponential random variable X with
parameter X\ by taking a function of Y.

Random wvariable X is nonnegative, and its CDF is given by Fx(x) =

1—e forx > 0. The inverse of Fx(-) is given by

_ 1
F'(y) = = log(1 — y).
We can therefore generate the desired random variable X with
1

Indeed, for x > 0, we obtain

A(1-y)

where we have implicitly defined y = 1 —e~**. This is the desired distribution.

9.3.2 Discrete Random Variables

It is equally straightforward to generate a discrete random variable from a
continuous random variable that is uniformly distributed between zero and
one. Let px(-) be a PMF, and denote its support by {x1, z2, ...} where z; < z;
whenever i < j. We know that the corresponding CDF is given by

Fx(z) = px(z).
x;<x
We can generate a random variable X with PMF px(-) with the following case

function,

x;, if Fx(zio1) <y < Fx(x;)
9(y) =
0, otherwise.
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Note that we have used the convention zy = 0 to simplify the definition of
g(+). Taking X = g(Y), we get
Pr(X = ;) = Pr(Fx(z;1) <Y < Fx(zy))
= FX(l"z) - FX(IEi—l) = PX(ZEi)-

Of course, implementing a discrete random variable through a case statement
may lead to an excessively slow routine. For many discrete random variables,

there are much more efficient ways to generate a specific output.
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