
ECE 586 Application: Alternating Projection

Henry D. Pfister
Electrical and Computer Engineering

Mathematics
Duke University

December 6th, 2023

1 A Few Simple Questions

1.1 What is the effect of alternating between two orthogonal projections?
Suppose PU and PW are orthogonal projections onto closed subspaces U and W of a Hilbert space V .
For an arbitrary v0 ∈ V , what is the behavior of the alternating projection

vn+1 =

{
PUvn if n is even
PW vn if n is odd.

(1)

Since PUv = v (resp. PW v = v) if and only if v ∈ U (resp. v ∈ W), it is easy to see that any vector
v ∈ U ∩W is a fixed point of this recursion. Letting PU∩W denote the orthogonal projection onto U ∩W ,
one might guess that vn converges to PU∩W v0 and indeed it does.

1.2 Can one use alternating projection to solve a system of linear equations?
Let A ∈ Rm×n and b ∈ Rm be define a set of m linear equations in n variables with at least one solution.
The goal is to use alternating projection find a solution x∗ such that Ax∗ = b. If b = 0, then the set of
solutions is a subspace equal to the null space of A,

N (A) = {x ∈ Rn |Ax = 0} =

m⋂
i=1

{
x ∈ Rn |

∑n
j=0ai,jxj = 0

}
.

In this case, the result follows easily because N (A) also equals the intersection of m subspaces of
dimension n− 1. But, what happens when b ̸= 0 or when no such solution exists?

1.3 Can alternating projection bound the value of a convex optimization?
Let A ⊆ V be a closed convex set of a Hilbert space V . The projection of v ∈ V onto A is defined by

PA(v) ≜ argmin
u∈A

∥u− v∥ ,

where the existence and uniqueness of the minimizer is verified in the course notes. The term projection
is overloaded here because this operation includes standard orthogonal projection (to a closed subspace)
as a special case. Similar to orthogonal projections, alternating between projections onto convex sets
provides a simple way to find a a point in their intersection.

For convex functions fi : V → R where i = 0, 1, . . . ,m, consider the convex optimization

min
x∈V

f0(x) subject to fi(x) ≤ bi i = 1, . . . ,m.

If x ∈ V satisfies the constraints and f0(x) ≤ b0, then there is an x ∈ W where

W ≜
m⋂
i=0

{v ∈ V | fi(v) ≤ bi} .

1

To test this hypothesis, one can apply the alternating projection algorithm to try and find a point in W .
If the iteration converges, then the convex optimization has value at most b0. Otherwise, the algorithm
cycles and W = ∅.

1.4 Can one use alternating projection to train a linear classifier?
Let A ∈ Rm×n and b ∈ {−1, 1}m be define a pattern classification problem where the i-th row of A is
a sample vector with class label bi. For a sample vector v ∈ Rn, a linear classifier with weight vector x
uses the decision rule

n∑
i=1

vixi ≷ 0.

If there is a weight vector that correctly classifies all training samples, then the training set is called
linearly separable. In that case, the set of weight vectors (up to a scale factor) that separates the two
classes is given by

W =
{
x ∈ Rn | bi

∑n
j=0aijxj ≥ 1

}
=

m⋂
i=1

{
x ∈ Rn | bi

∑n
j=0ai,jxj ≥ 1

}
.

Notice that W equals the intersection of m half-spaces. One can apply alternating projection onto these
half-spaces to find a weight vector in W. The performance can be quite reasonable even if the training
set is not exactly separable.

2 What is Alternating Projection?
Alternating projection is a method of finding a point in the intersection of multiple convex sets by
sequentially projecting onto each of the sets. If the sets are all affine shifts of subspaces, then the process
converges to the the orthogonal projection of the initial vector onto the intersection of the sets. For
more complex sets, the algorithm is only guaranteed to produce a vector that lies in the intersection.
But, this vector may not be the closest to the initial vector. There is, however, a simple generalization
of the algorithm by Dykstra that computes the orthogonal projection onto the intersection of general
convex sets.

It is worth noting that, while the idea of alternating projection provides algorithms that are simple
and easy to understand, it often does not provide the most computationally efficient solution.

2.1 Proof of Convergence for Two Subspaces
Theorem 1. The sequence vn converges to PU∩W v0, its projection onto U ∩W .

Proof (for the case where (U ∩W)⊥ is finite dimensional). Let U and W be two closed subspaces of a
Hilbert space V . For any v0 ∈ V , let the sequence v1, v2, . . . be defined by (1). Then, clearly we
have vi ∈ span(U,W) for i ≥ 1. Thus, it suffices to assume that V = span(U,W). Using the unique
decomposition

v0 = PU∩W v0 + (I − PU∩W) v0,

we observe that

v1 = PUv0 = PUPU∩W v0 + PU (I − PU∩W) v0 = PU∩W v0 + (I − PU∩W)PUv0

because PUPU∩W = PU∩WPU . Similarly, we have

v2 = PW v1 = PWPU∩W v0 + PW (I − PU∩W)PUv0 = PU∩W v0 + (I − PU∩W)PW v1

because PWPU∩W = PU∩WPW . Defining the error vector as

zn ≜ (I − PU∩W) vn = vn − PU∩W v0,

we see that

z1 = PU (I − PU∩W) v0 = PUz0 = (I − PU∩W)PUv0

z2 = PW (I − PU∩W) v1 = PW z1 = (I − PU∩W)PW v1.

2

This sequence continues by induction and shows both that zn ∈ (U ∩W)⊥ for all n and that

zn+1 =

{
PUzn if n is even
PW zn if n is odd.

satisfies the same recursion as vn starting from z0 = (I − PU∩W) v0.
To show that vn → PU∩W v0, it is sufficient (based on the previous decomposition) to show that

zn → 0. Since orthogonal projections can only decrease the norm, the recursion implies that
∥∥zn+1

∥∥ ≤
∥zn∥ is decreasing. Thus, we know that ∥zn∥ → d for some d ≥ 0. If (U ∩ W)⊥ is finite dimensional,
then any closed subset of (U ∩W)⊥ with bounded norm is compact and there must be a subsequence
zni

that converges. Let z∞ denote the limit of this subsequence and notice that zn ∈ (U ∩W)⊥ for all
n implies z∞ ∈ (U ∩ W)⊥ because (U ∩ W)⊥ is closed. Using this subsequence, the continuity of the
norm implies that limi→∞

∥∥zni

∥∥ = ∥z∞∥ = d.
Now, suppose that z∞ /∈ U ∩ W and recall that ∥PWPUz∞∥ ≤ ∥z∞∥ with equality if and only if

z∞ ∈ U ∩W . Then, ∥PWPUz∞∥ < ∥z∞∥ but

d = lim
n→∞

∥∥z2n+2

∥∥ = lim
n→∞

∥PWPUz2n∥ = ∥PWPUz∞∥ < ∥z∞∥ = d.

This contradiction implies that z∞ ∈ U ∩W . Together with z∞ ∈ (U ∩W)⊥, this implies that z∞ = 0.
Hence, we find that d = 0 and ∥zn∥ → d implies zn → 0.

This proof can be extended in a straightforward manner to the case where a finite number of or-
thogonal projections are applied sequentially. A more technical proof, which avoids the assumption that
(U ∩W)⊥ is finite dimensional, ican be found in Appendix B.

Theorem 2. Let W1, . . . ,Wm be closed subspaces of a Hilbert space and define W0 = ∩m
i=1Wi. Then,

for any v0 ∈ V , the recursion
vn+1 = PW(n mod m)+1

vn

generates a sequence vn that converges to the orthogonal projection PW0v0.

Exercise 1. (10 pts program + 5 pts solution) Let U and W be subspaces of R5 that are spanned, re-
spectively, by the columns of the matrices A and B (shown below). Write a function altproj(A,B,v0,n)
that performs 2n steps of alternating projection onto U and W starting from v0. This function should
return the final vector v2n and a vector of error values g2k = ∥v2k − PU∩W (v0)∥∞ for k = 1, 2, . . . , n.
Use this function to estimate the orthogonal projection of v0 (shown below) onto U ∩ W . How large
should n be chosen so that the projection is correct to 4 decimal places (i.e., g2n ≤ 0.0001)?

A =

3 2 3
1 5 7
3 11 13
1 17 19
5 23 29

 B =

1 1 2.5
2 0 6
2 1 12
2 0 18
6 −3 26

 v0 =

1
2
3
4
5

To find the intersection of U and W , we note that the following code snippets returns matrices whose
columns span U ∩W :

% Matlab
basis_UintW = [A B]*null([A -B],’r’);

Python
import numpy as np
from scipy.linalg import svd
def null_space(A, rcond=None):

u, s, vh = svd(A, full_matrices=True)
M, N = u.shape[0], vh.shape[1]
if rcond is None:

rcond = np.finfo(s.dtype).eps * max(M, N)
tol = np.amax(s) * rcond

3

num = np.sum(s > tol, dtype=int)
Q = vh[num:,:].T.conj()
return Q

basis_UintW = np.hstack([A, B]) @ null_space(np.hstack([A, -B]))

3 Kaczmarz’s Algorithm
Kaczmarz’s algorithm is a method of solving a system of linear equations based on iteratively projecting
a candidate vector onto each of the linear equality constraints. For a matrix A ∈ Rm×n and vector
b ∈ Rm, the algorithm starts from v0 = 0 and recursively defines vi+1 to be the projection of vi onto the
set

Wi =

{
v ∈ Rn

∣∣∣∣∣
n∑

k=1

aσ(i),kvk = bσ(i)

}
,

where σ(i) = (i mod m) + 1. Using (6), we can write this explicitly as

vi+1 = vi −
⟨vi|aσ(i)⟩ − bσ(i)

∥aσ(i)∥2
aσ(i), (2)

where aj is the j-th row of the matrix A.

Theorem 3. If the linear system is consistent (e.g., there exists x∗ ∈ Rn such that Ax∗ = b), then the
sequence defined by (2) converges to the minimum norm solution of the linear system.

Proof. To see this, we will analyze the algorithm in a shifted coordinate system. Let xi = vi − x∗ so
that vi = xi + x∗. Then, the update computes

xi+1 = vi+1 − x∗ = (x∗ + xi)−
⟨x∗ + xi|aσ(i)⟩ − bσ(i)

∥aσ(i)∥2
aσ(i) − x∗ = xi −

⟨xi|aσ(i)⟩
∥aσ(i)∥2

aσ(i),

which equals the orthogonal projection of xi onto the subspace given by
{
x ∈ Cn

∣∣∣ ⟨xi|aσ(i)⟩ = 0
}

. The
initialization v0 = 0 implies that x0 = −x∗ and, from Theorem 2, we know that the sequence xi must
converge to

P{x:Ax=0}(−x∗) + x∗.

But, applying (5), we see that

P{x:Ax=0}(−x∗) + x∗ = P{x:Ax=0}+x∗(−x∗ + x∗) + x∗ − x∗ = P{x:Ax=b}(0).

Therefore, Kaczmarz’s algorithm converges to P{x:Ax=b}(0), which is the minimum norm solution of
Ax = b.

Remark 1. Recently, a number of researchers have analyzed the convergence of Kaczmarz’s algorithm for
the case where, for each i, σ(i) is chosen to be a uniform random integer in {1, 2, . . . ,m} [1]. Also, while
Kaczmarz’s algorithm does not converge if the linear system is inconsistent, there is extended version
that converges to the least-squares solution in this case [2].

Exercise 2. (10 pts program + 5 pts solution) Write a function kaczmarz(A,b,I) that performs the
Kaczmarz algorithm for matrix A and right-hand side b using I full passes through the rows (e.g., one
full pass equals m steps). It should return a matrix X with I columns corresponding to the vector after
each full pass and a vector containing the error gk = ∥Avkm − b∥∞ for k = 1, 2, . . . , I. Use this function
to estimate the minimum-norm solution of linear system Ax = b for

A =

[
2 5 11 17 23
3 7 13 19 29

]
b =

[
228
277

]
.

For I = 500, plot the error gk on a log scale for k = 1, 2, . . . , I.

4

Exercise 3. (10 pts) Repeat the experiment with I = 100 for a random system where A is a 500× 1000
standard Gaussian matrix, b is a 500×1 vector defined by b = Ax where x is a 1000×1 standard Gaussian
vector. Compare the iterative solution with the true minimum-norm solution x̂ = AH(AAH)−1b.

% Matlab
A = randn(500,1000);
b = A*randn(1000,1);

Python
from numpy.random import randn
A = randn(500, 1000)
b = A @ randn(1000)

4 Bounding the Value of a Convex Optimization
The value of a convex optimization problem can also be bounded by determining whether or not the
intersection of a collection of convex sets is empty or not. The alternating projection algorithm can be
used to find a point in the intersection of all the sets but it is not guaranteed to find the closest point in
the intersection. Let C1, C2, . . . , Cm be closed convex subsets of a Hilbert space V . Then, starting from
any x0 ∈ V , the alternating projection algorithm computes

xi+1 = (1− s)xi + s PCσ(i)
(xi), (3)

where σ(i) = (i mod m) + 1 and s ∈ (0, 1] is step-size parameter.

Theorem 4 (Bregman). For some x ∈ ∩m
i=1Ci, the sequence generated by the above iteration with s = 1

satisfies
⟨xi − x|u⟩ → 0

for all u ∈ V . This type of convergence is known as weak convergence. If V is finite-dimensional, then
weak convergence implies (strong) convergence and xi → x.

Consider the linear program

min cTx subject to Ax ≥ b, x ≥ 0, (4)

where c ∈ Rn, x ∈ Rn, A ∈ Rm×n, and b ∈ Rm. For a concrete example, we will choose

c =

 3
−1
2

 A =

 2 −1 1
1 0 2
−7 4 −6

 b =

−1
2
1

 .

Let p∗ denote the optimum value of this program. Then, p∗ ≤ 0 is satisfied if and only if there is a
non-negative vector x = (x1, x2, x3)

T satisfying

2x1 − x2 + x3 ≥ −1

x1 + 2x3 ≥ 2

−7x1 + 4x2 − 6x3 ≥ 1

−3x1 + x2 − 2x3 ≥ 0,

where the last inequality restricts the value of the program to be at most 0. One can find the optimum
value p and an optimizer x with the commands:

% Matlab
[x,p]=linprog(c,-A,-b,[],[],zeros(1,length(c)),[]);

Python
from scipy.optimize import linprog
res = linprog(c, Aub=-A, bub=-b, bounds=[(0, None)] * c.size, method=’interior-point’)
x, p = res.x, res.fun

5

Exercise 4. (10 pts program + 5 pts solution) Write a function x=lp_altproj(A,b,I,s) that uses (3)
(starting from x0 = 0) to implement alternating projections onto half spaces (see (7)). The program
should use I passes through the entire set of inequality constraints (with step size s) to find a non-
negative vector x that satisfies Ax ≥ b. It should output the final vector xmI and a vector containing
the maximum feasibilty gap gk = maxj

[
b−Axkm

]
j

for k = 1, 2, . . . , I.
Apply this program with s = 1 to the above set of 4 inequalities in 3 variables. Warning: don’t forget

to also project onto the half spaces defined by the non-negativity constraints x1 ≥ 0, x2 ≥ 0, x3 ≥ 0. Use
this result to find a vector (e.g., by rounding) that satisfies all the inequalities. The goal of this problem
is to satisfy x ≥ 0 and Ax ≥ b. How many full passes are required so that gk is at most 0.0001?

Remark 2. For j = 1, 2, . . . , n, the projection of x onto the constraint xj ≥ 0 is given by x̃ where
x̃j = max(0, xj) and x̃k = xk for k ̸= j. One can handle these constraints either by appending them to
A and b or by building this operation in after each projection step. For maximum flexibility, we ask you
to include the projection minimum value (0 in this case) as an optional argument xmin with the value
None indicating that no projection is required. Both approaches are guaranteed to converge though they
may have different convergence rates.

Exercise 5. (10 pts) Use the function x=lp_altproj(A,b,I,1) to find a non-negative vector x that
satisfies Ax ≥ b for the “random” convex optimization problem defined by:

% Matlab
rng(0,’twister’);
c=randn(1000,1);
A=[-ones(1,1000);randn(500,1000)];
b=[-1000; A(2:end,:)*rand(1000,1)];

Python
import numpy as np
from numpy.random import randn
np.random.seed(0)
c = randn(1000)
A = np.vstack([-np.ones((1,1000)),randn(500,1000)])
b = np.concatenate([[-1000], A[1:] @ rand(1000)])

Then, modify A and b (by adding one row and one element) so that your function can be used to prove
that the value of the convex optimization problem, in (4), is at most −1000. Try using I = 1000 passes
through all 501 inequality constraints.

This type of iteration typically terminates with an “almost feasible” x. To find a strictly feasible
point, for some small ϵ > 0 (e.g., try ϵ = 10−6), try running the same algorithm with the argument
b+ ϵ and projecting onto strictly positive set

{
x ∈ R1000 |xi ≥ ϵ, i ∈ [1000]

}
. Then, the resulting x will

satisfy all constraints. The code below checks if all constrainst are satisfied.

% Matlab
all(x>0)
all((A*x-b)>0)

Python
import numpy as np
np.all(x>0)
np.all((A@x-b)>0)

5 Training a Linear Classifier
Let A ∈ Rm×n and b ∈ {−1, 1}m be define a pattern classification problem where the i-th row of A is
a sample vector with class label bi. For a sample vector v ∈ Rn, a linear classifier with weight vector x
uses the decision rule

n∑
i=1

vixi ≷ 0.

6

If the training data is linearly separable, then there exists a weight vector x such that∑n
j=0ai,jxj ≥ 1 if bi = 1∑n

j=0ai,jxj ≤ −1 if bi = −1.

Notice that these two inequalities can be written in a unified fashion using

bi
∑n

j=0ai,jxj ≥ 1.

Thus, the set of weight vectors satisfying the separation condition is given by

W =

m⋂
i=1

{
x ∈ Rn | bi

∑n
j=0ai,jxj ≥ 1

}
.

Let Ã ∈ Rm×n be defined by ãi,j = biai,j and observe that W =
{
x ∈ Rn | Ãx ≥ 1

}
. Thus, the function

in the previous section can also be used to solve this problem.
Remark. While the above setup finds a separating hyperplane in W, it is often desirable to find the
maximum-margin hyperplane defined by

max
(x,γ)∈Rn+1

γ subject to Ãx ≥ γ1, ∥x∥ ≤ 1.

By absorbing γ into x, one can show that this is equivalent to the problem

min
x∈Rn

∥x∥ subject to Ãx ≥ 1.

These are the well-known problems that one must solve to train a support vector machine (SVM). The
next section discusses Dykstra’s modified alternating-projection iteration that can be used to solve the
second problem and, thus, train an SVM.

Exercise 6. (10 pts) Repeat the MNIST training exercise from the Least-Squares Handout using the
training method described above. First, extract the indices of all the 2’s and randomly separate the
samples into equal-sized training and testing groups. Second, do the same for the 3’s. Now, extend
each vector to length 785 by appending a −1. This will allow the system to learn a general hyperplane
separation.

Next, use the function lp_altproj(A,b,I,s) to design a linear classifier to separate 2’s and 3’s
(note: the entries of x are not required to be non-negative). For the resulting linear function, report
the classification error rate and confusion matrices for the both the training and test sets. Is there any
benefit to choosing s < 1? If so, why? Also, for the test set, compute the histogram of the function
output separately for each class and then plot the two histograms together. This shows how hard or
easy it is to separate the two classes.

Depending on your randomized separation into training and test sets, the training data may or may
not be linearly separable. Comment on what happens to the test set performance when the error rate
converges to zero for the training set.

Exercise 7. (10 pts program + 5 pts solution) Describe how this approach could be extended to multi-
class linear classification (weights parameterized by Z ∈ Rn×d) where the classifier maps a vector v to
class j if the j-th element of ZT v is the largest element in the vector. Conceptually, we can think of
Z as defining d different linear functions of v that compute a score for each class. Then, the classifier
chooses the class with the highest score.

For each training sample, one can project onto the set of weights such that that the correct element
of the output vector has the largest value (e.g., this gives 9 inequalities per training sample). Then, use
the implied alternating-projection solution to design a multi-class classifier for MNIST. Report both the
overall classification error rate and confusion matrices for the both the training and test sets. Is there
any benefit to choosing s < 1?

Remark 3. If one wants to use lp_altproj to solve this problem, then it is necessary to flatten the
coefficient matrix Z into a vector

x = vec(Z) = (Z1,1, Z2,1, . . . , Zn,1, Z1,2, Z2,2, . . . , Zn,2, . . . Z1,d, Z2,d, . . . , Zn,d).

7

For a flattened image vector with correct label a ∈ {1, 2, . . . d}, the inequality for the incorrect label
b ∈ {1, 2, . . . d} can thus be written in two equivalent ways

n∑
i=1

Zi,avi ≥
n∑

j=1

Zj,bvj ⇔
n∑

i=1

x(a−1)n+ivi −
n∑

j=1

x(b−1)n+jvj ≥ 0.

6 Orthogonal Projection Onto the Intersection of Convex Sets
The alternating projection algorithm in Section 4 finds a point in the intersection of all the sets but it
is not guaranteed to find the closest point in the intersection. Fortunately, there is a modification by
Dykstra that rectifies this problem [3].

Let C1, C2, . . . , Cm be closed convex subsets of a Hilbert space V . Then, Dykstra’s Algorithm com-
putes the projection P∩m

i=1Ci
(v0) via the iteration

vi+1 = PCσ(i)
(vi − wσ(i))

wσ(i) = vi+1 − (vi − wσ(i)),

where w1, . . . , wm are initialized to 0.

Theorem 5 ([3]). The sequence generated by the above iteration satisfies

lim
i→∞

vi = P∩m
i=1Ci(v0).

Exercise 8. (optional) Let V = R2 and consider the orthogonal projection of u = (1,−2) onto the
intersection of

C1 = {v ∈ V | v2 ≥ 0}

C2 =

{
v ∈ V

∣∣∣∣ v21 + (v2 − √
3
2

)2
≤ 1

}
.

Draw a picture illustrating the alternating projections (without Dykstra’s modification) defined by:
PC2

(PC1
(u)) and PC1

(PC2
(u)). Does either give the desired result PC1∩C2

(u)? Now, try Dykstra’s
algorithm for 10 iterations using both projection orders (i.e., C1 first or C2 first). Do these approach
PC1∩C2

(u)?

7 Conclusion
The goal of this note is to highlight the utility of alternating projection for understanding and solving
problems. While it may not provide the most computationally efficient solution, it does lead to simple
and geometrically interpretable algorithms that can be easily adapted to many problems.

Remark 4. The point values of the exercises in this assignment add up to 90 points. The last 10 points
will be assigned based on the overall quality of the presentation.

A Projections onto Standard Sets
Let A be a closed convex subset of a Hilbert space V . Then, for all v, v0 ∈ V , the projection onto V
satisfies

PA+v0
(v + v0) = arg min

u∈A+v0

∥u− v − v0∥

= v0 + arg min
u′∈A

∥(u′ + v0)− v − v0∥

= v0 + arg min
u′∈A

∥u′ − v∥

= v0 + PA(v). (5)

8

In words, this means that translating the set A and the vector v by the same vector v0 results in an
output that is also translated by v0. This also leads to the following trick. If a projection is easy when
the set is centered, then one can: (i) translate the problem so that the set is centered, (ii) project onto
the centered set, and (iii) translate back.

A.1 Subspaces of Dimension 1, Linear Equalities, and Half Spaces
Using the best approximation theorem, it is easy to verify that the orthogonal projection of v ∈ V onto
a one-dimensional subspace W = span(w) is given by

PW (v) =
⟨v|w⟩
∥w∥2

w.

A closed subspace U with co-dimension one (e.g., if V has dimension n, then this is a subspace of
dimension n − 1) is a subset of V that satisfies a single linear equality of the form ⟨v|w⟩ = 0. Thus, U
can be seen as the orthogonal complement of a one-dimensional subspace (e.g., U = W⊥) and we can
write

PU (v) = PW⊥(v) = v − ⟨v|w⟩
∥w∥2

w.

Similarly, a linear equality such as ⟨v|w⟩ = c defines a shifted subspace U+v0 (where v0 is any vector
in V satisfying ⟨v0|w⟩ = c) with co-dimension one because

⟨v|w⟩ = ⟨u+ v0|w⟩ = ⟨u|w⟩+ ⟨v0|w⟩ = 0 + c = c.

Thus, we can project onto U + v0 by translating, projecting, and then translating back. This gives

PU+v0
(v) =

(
(v − v0)−

⟨v − v0|w⟩
∥w∥2

w

)
+ v0 = v − ⟨v|w⟩ − c

∥w∥2
w, (6)

which does not depend on the choice of v0.
Finally, let H be the subset of v ∈ V satisfying the linear inequality ⟨v|w⟩ ≥ c. Then, H is a closed

convex set known as a half space. For any v ∈ H, we have PH(v) = v and, for any v /∈ H, we have
PH(v) = PU+v0

(v) because the closest point must achieve the inequality with equality. Putting these
together, for any v ∈ H, we find that

PH(v) =

{
v if ⟨v|w⟩ ≥ c

v − ⟨v|w⟩−c

∥w∥2 w if ⟨v|w⟩ < c.
(7)

A.2 The Unit Ball
In section, we consider orthogonal projections onto convex bodies similar to the unit ball. Using (5), we
now know that it is sufficient to consider convex bodies centered at 0. For a Hilbert space V over R, the
unit ball is defined to be

B ≜ {w ∈ V | ∥w∥ ≤ 1} .
By drawing a picture, it is easy to see that

PB(v) =

{
v if ∥v∥ ≤ 1
v

∥v∥ if ∥v∥ > 1.

For ∥v∥ ≤ 1, the statement is trivial. For ∥v∥ > 1, it follows from the generalized orthogonality
principle for projections onto convex sets and〈

v − v

∥v∥

∣∣∣∣w − v

∥v∥

〉
= ⟨v |w⟩ − 1

∥v∥
⟨v |w⟩ − ∥v∥+ 1

=

(
1− 1

∥v∥

)
⟨v |w⟩ − ∥v∥+ 1

≤
(
1− 1

∥v∥

)
∥v∥ ∥w∥ − ∥v∥+ 1

≤ 0

9

for all w ∈ B, where the inequalities rely on 1− 1/ ∥v∥ ≥ 0, ⟨v |w⟩ ≤ ∥v∥ ∥w∥, and ∥w∥ ≤ 1.
For the scaled and translated unit ball, aB + v0, the formula becomes

PaB+v0
(v) =

v if
∥∥v − v0

∥∥ ≤ a
a(v−v0)
∥v−v0∥

+ v0 if
∥∥v − v0

∥∥ > a.

B General Proof of Subspace Alternating Projection Theorem
Earlier in this note, we presented an intuitive proof of the alternating projection theorem under the
assumption that (U ∩ W)⊥ is finite dimensional. Here, we present a shorter but more technical proof
that does not require this assumption [4]. Both proofs can be extended in a straightforward manner to
the case where a finite number of orthogonal projections are applied sequentially.

Proof of Theorem 1. For even n, Lemma 1 shows that∥∥∥(PWPU)
n/2(I − PWPU)v0

∥∥∥ =
∥∥vn − vn+2

∥∥2 → 0

as n → ∞ for all v0 ∈ V . This implies that (PWPU)
n/2w → 0 for all w ∈ R(I − PWPU). Next, we

observe that

R(I − PWPU) = N
(
(I − PWPU)

H
)⊥

= N (I − PUPW)⊥

= (U ∩W)⊥,

where the 3rd step holds because “PUPW v = v if and only if v ∈ U∩W ” implies that “v ∈ N (I−PUPW) if
and only if v ∈ U∩W ”. Applying this result separately to the two terms in v0 = PU∩W v0+(I − PU∩W) v0,
we see that the first term is preserved while the second term is driven to zero. Thus, we find that vn →
PU∩W v0 along the even n subsequence. Of course, convergence along any subsequence follows by noting
that PU is continuous.

Lemma 1 (Kakutani). For all n ≥ 0, the upper bound∥∥vn+2 − vn
∥∥2 ≤ 2

(
∥vn∥

2 −
∥∥vn+2

∥∥2)
implies that

∥∥vn+2 − vn
∥∥2 → 0 as n → ∞.

Proof. We start by assuming n is even and writing∥∥vn+2 − vn
∥∥2 = ∥PWPUvn − PUvn + PUvn − vn∥

(a)

≤ (∥PWPUvn − PUvn∥+ ∥PUvn − vn∥)
2

(b)

≤ 2
(
∥PWPUvn − PUvn∥

2
+ ∥PUvn − vn∥

2
)

(c)
= 2

(
∥PUvn∥

2 − ∥PWPUvn∥
2
+ ∥vn∥

2 − ∥PUvn∥
2
)

≤ 2
(
∥vn∥

2 −
∥∥vn+2

∥∥2) ,
where (a) follows from the triangle inequality, (b) holds because (a + b)2 ≤ 2(a2 + b2), and (c) follows
from

∥PUvn − vn∥
2
= ∥vn∥

2 − ∥PUvn∥
2
.

The same argument works when n is odd by switching PU and PW . To see the convergence to 0, we
note that ∥vn∥

2 ≤
∥∥vn+1

∥∥2 implies that ∥vn∥
2 converges to a limit. Thus, ∥vn∥

2 −
∥∥vn+2

∥∥2 converges
to 0.

10

References
[1] T. Strohmer and R. Vershynin, “A randomized Kaczmarz algorithm with exponential convergence,”

J. Four. Anal. Appl., vol. 15, no. 2, pp. 262–278, 2009.

[2] S. Petra and C. Popa, “Single projection Kaczmarz extended algorithms,” Numerical Algorithms,
pp. 1–16, 2015.

[3] J. P. Boyle and R. L. Dykstra, “A method for finding projections onto the intersection of convex sets
in Hilbert spaces,” in Advances in order restricted statistical inference, pp. 28–47, 1986.

[4] D. C. S. Anupan Netyanun, “Iterated products of projections in Hilbert space,” The American Math-
ematical Monthly, vol. 113, no. 7, pp. 644–648, 2006.

11

