
ECE 586 Application: Markov Chains

Henry D. Pfister
ECE Department
Duke University

October 12th, 2020

1 A Few Simple Questions

1.1 What is the chance that a game of Candyland will last m moves?
Candyland is an American boardgame where players draw cards to move and the goal is to reach the
candy castle first. It can be played by very young children because it requires neither reading nor
counting. Players draw cards randomly and, if a colored card is drawn, they move their piece to the
next position of that color. If the card has a picture, they move to the position with that picture. There
are also spaces that allow shortcuts or cause delays. A picture of board can be found at:

https://kim.scarborough.chicago.il.us/images/cl-2010

1.2 What is the chance that a game of Chutes and Ladders lasts m moves?
Chutes and Ladders (aka Snakes and Ladders outside of the US) is a boardgame where a single die
is rolled to determine how far you move on a gameboard defined by a grid. Some locations contain
ladders that let you skip ahead while others contains chutes (aka snakes) that you move you backwards.
Historically, it is based on an ancient game from India that teaches morality by associating ladders with
virtues and snakes with vices. For more information, see:

https://en.wikipedia.org/wiki/Snakes_and_Ladders
http://www.datagenetics.com/blog/november12011/

1.3 What are the best properties to buy in Monopoly?
Monopoly is an American boardgame where players move around the gameboard buying, selling, and
developing properties. Rent is collected from other players who land on your properties. Properties
differ both in their expense (e.g., Park Place is valued much more highly than Baltic Avenue) and the
chance that players will land on them. Markov chains can be used to estimate how often players will
land on each property, which can be used to estimate their value. For way too much information, see:

http://pfister.ee.duke.edu/courses/ece586/monopoly.pdf

2 What is a Markov chain?

2.1 Introduction
A finite-state Markov chain (FSMC) with n states is a sequence of random variables X1, X2, X3, . . .
where each Xi ∈ [n] ≜ {1, 2, . . . , n} and

Pr (Xt+1 = j |Xt = i,X1, X2, . . . , Xt−1) = Pr (Xt+1 = j |Xt = i) .

If Pr(Xt+1 = j |Xt = i) does not depend on t, then the Markov chain is called time invariant (or
homogeneous). In the remainder of this note, we assume the FSMC is time invariant and we let P ∈ Rn×n

denote the transition-probability matrix with entries [P]i,j ≜ Pi,j = Pr(Xt+1 = j |Xt = i). Since each

1

row of P represents a probability distribution, we see that Pi,j ≥ 0 and
∑n

j=1 Pi,j = 1. The Markov
property also implies that

Pr (Xt+2 = j |Xt = i) =

n∑
k=1

Pr (Xt+2 = j |Xt+1 = k) Pr (Xt+1 = k |Xt = i)

=

n∑
k=1

Pk,jPi,k =

n∑
k=1

Pi,kPk,j =
[
P 2

]
i,j

.

By induction, one can also show that Pr(Xt+m = j |Xt = i) = [Pm]i,j . Thus, given a fixed starting
state, one can calculate the probability of being in state i after m steps by computing the m-th power
of a matrix. Using the notation π(t) = (π

(t)
1 , . . . , π

(t)
n) with π

(t)
i ≜ Pr(Xt = i), we also see that

π
(t+1)
j =

n∑
i=1

Pr(Xt+1 = j,Xt = i)

=

n∑
i=1

Pr(Xt+1 = j|Xt = i) Pr(Xt = i)

=

n∑
i=1

Pi,jπ
(t)
i =

[
π(1)P t

]
j
,

where π
(1)
i is the probability that the process starts in state i.

Let the random variable U be uniformly distributed on the interval [0, 1) and let u be a realization
of U . For a discrete random variable X ∈ [n], one can use U to simulate X by assigning subintervals of
[0, 1) to each of the n possibilities for X. Let FX(x) =

∑x
i=1 Pr(X = i) for x ∈ [n] be the cumulative

distribution function of X. Then, we can set X = x if u ∈ [FX(x − 1), FX(x)) (with FX(0) = 0 by
convention). This works because

Pr (U ∈ [FX(x− 1), FX(x))) = FX(x)− FX(x− 1) = Pr(X = x).

For built-in sampling functions in Matlab and Python, see randsrc and np.random.choice, respectively.
Similarly, one can simulate a Markov chain by using pseudo-random numbers to generate realizations

of the process. Let u1, u2, . . . be a realization of a sequence of independent and identically distributed
(i.i.d.) copies of U . Then, a realization x1, x2, . . . of X1, X2, . . . is generated by choosing xt to be the
unique value satisfying

xt−1∑
i=1

Pr(Xt = i|Xt−1 = xt−1) ≤ ut <

xt∑
i=1

Pr(Xt = i|Xt−1 = xt−1).

2.2 Absorbing States and Hitting Times
State j is called reachable from state i if [Pm]i,j > 0 for some m ∈ N. For a Markov chain starting from
state i, the first hitting time of state j is a random variable Ti,j with distribution

Pr (Ti,j = m) = Pr (Xm+1 = j,Xm ̸= j,Xm−1 ̸= j, . . . , X2 ̸= j |X1 = i) ,

where, by convention, Pr
(
Ti,j = 0

)
= δi,j and δi,j is Kronecker delta function. If state j is not reachable

from state i, then Ti,j = ∞ (i.e., Pr(Ti,j = ∞) = 1) by convention. Note that it is also possible to
construct examples where 0 < Pr(Ti,j = ∞) < 1.

If the process can become stuck in a single state (e.g., let j be the state at the end of a game), then
that state is called absorbing and Pj,j = 1. If state j is absorbing, then the distribution of the hitting
time Ti,j satisfies

Pr (Ti,j ≤ m) = Pr (Xm+1 = j |X1 = i) = [Pm]i,j .

This follows from initializing X1 = i and observing the equality of the two events “Ti,j ≤ m” and
“Xm+1 = j”. Since X1 = i, if Xm+1 = j, then we clearly have Ti,j ≤ m. On the other hand, if Ti,j ≤ m,
then Xt = j for some t ≤ m + 1 and, thus, Xm+1 = j because state j is absorbing. Hence, for m ≥ 1,
we find that

Pr(Ti,j = m) = Pr (Ti,j ≤ m)− Pr (Ti,j ≤ m− 1) =
[
Pm − Pm−1

]
i,j

.

2

Figure 1: Miniature chutes and ladders game

More generally, if state j is not absorbing and m ≥ 0, then extending all paths by one shows that

Pr (Ti,j ≤ m+ 1) =

{
1 if i = j∑n

k=1 Pi,k Pr (Tk,j ≤ m) otherwise.

This implies that ϕ
(m)
i,j ≜ Pr

(
Ti,j ≤ m

)
satisfies the recursion, starting from ϕ

(0)
i,j = δi,j , given by

ϕ
(m+1)
i,j = δi,j + (1− δi,j)

n∑
k=1

Pi,kϕ
(m)
k,j .

Exercise 1. (15 pts for compute_Phi_ET function + 10 pts for E [T1,4] + 15 pts for simulate_hitting_time
function + 10 pts for histogram/mean) What is the distribution of the number of fair coin tosses before
one observes 3 heads in a row? To solve this, consider a 4-state Markov chain with transition probability
matrix

P =


0.5 0.5 0 0
0.5 0 0.5 0
0.5 0 0 0.5
0 0 0 1

 ,

where Xt = 1 if the previous toss was tails, Xt = 2 if the last two tosses were tails then heads, Xt = 3 if
the last three tosses were tails then heads twice, and Xt = 4 is an absorbing state that is reached when
the last three tosses are heads. Write a computer program (e.g., in Python, Matlab, ...) to compute
Pr(T1,4 = m) for m = 1, 2, . . . , 100 and use this to compute and print an estimate of the expected number
of tosses E [T1,4]. Write a computer program that generates 500 realizations from this Markov chain.
Then, use them to plot a histogram of T1,4 and compute/print an estimate of the expected number of
tosses E [T1,4].

Exercise 2. (10 pts for Markov chain + 10 pts for CDF/mean + 10 pts for histogram/mean) Consider
the miniature chutes and ladders game shown in Figure 1. Assume a player starts on the space labeled
1 and plays by rolling a fair four-sided die and then moves that number of spaces. If a player lands
on the bottom of a ladder, then they automatically climb to the top. If a player lands at the top of
a slide, then they automatically slide to the bottom. This process can be modeled by a Markov chain
with n = 16 states where each state is associated with a square where players can start their turn (i.e.,
players never start at the bottom of a ladder or the top of a slide). To finish the game, players must land
exactly on space 20 (i.e., if your roll would take you beyond 20, then no move is made). Compute the
transition probability matrix P of the implied Markov chain. For this Markov chain, use the program
from Exercise 1 to compute and plot the cumulative distribution of the number turns a player takes
to finish (i.e., the probability Pr

(
T1,20 ≤ m

)
where T1,20 is the hitting time from state 1 to state 20).

Compute and print the mean E[T1,20]. Use the program from Exercise 1 to generate 500 realizations
from this Markov chain. Then, use them to plot a histogram of T1,20 and compute/print an estimate of
the expected number of tosses E [T1,20] .

Optional Challenge Question: If the first player rolls 3 and climbs the ladder to square 8, then
what is the probability that the second player will win.

3

2.3 Recurrent States and Stationary Probabilities
A state is called recurrent if it is expected to return to itself infinitely many times. Two states reachable
from each other are called communicating. If all pairs of states are communicating, the Markov chain
is called irreducible and all states are recurrent. A state distribution π is called stationary if it satisfies
πP = π. A matrix A is called positive if Ai,j > 0 for all i, j ∈ [n].

If the transition-probability matrix is positive (i.e., the process can transition to any state in one
step), then the Markov chain has a unique stationary distribution. More generally, this holds for any
Markov chain that is irreducible [1]. If the n-step transition-probability matrix Pn is positive, then the
stationary distribution π also satisfies the steady-state limit

πi = lim
t→∞

Pr(Xt = i),

which equals the expected fraction of time that the process spends in state i.
One can find the stationary distribution by first rewriting πP = π as

(I − P)TπT = 0.

Then, one can solve for πT (up to normalization) by applying row reduction to (I −P)T and computing
the one-dimensional basis of the null space. This can be computed in Matlab and Python using the
functions null and scipy.linalg.null_space. Lastly, one must normalize the resulting basis vector
by enforcing the condition

∑n
j=1 πj = 1 (e.g., by dividing by the sum of its entries).

Example 1. In a certain city, it is said that the weather is rainy with a 90% probability if it was rainy
the previous day and with a 50% probability if it not rainy the previous day. If we assume that only
the previous day’s weather matters, then we can model the weather of this city by a Markov chain with
n = 2 states whose transitions are governed by

P =

[
0.9 0.1
0.5 0.5

]
.

Under this model, what is the steady-state probability of rainy weather?
To find this, we solve for the stationary distribution. As described above, we write

(I − P)T =

[
0.1 −0.5
−0.1 0.5

]
=⇒

[
1 −5
0 0

]
,

where =⇒ denotes row reduction. Thus, π1 − 5π2 = 0 and π1 + π2 = 1 imply that π1 = 1− π2 = 5/6
is the steady state-probability of rainy weather.

Exercise 3. (10 pts for stationary_distribution function + 5 pts for MC1 + 5 pts for MC2) Write a
program to compute the stationary distribution of a Markov chain when it is unique. Consider a game
where the gameboard has 8 different spaces arranged in a circle. During each turn, a player rolls two
4-sided dice and moves clockwise by a number of spaces equal to their sum. Define the transition matrix
for this 8-state Markov chain and compute its stationary distribution.

Next, suppose that one space is special (e.g., state-1 of the Markov chain) and a player can only
leave this space by rolling doubles (i.e., when both dice show the same value). Again, the player moves
clockwise by a number of spaces equal to their sum. Define the transition matrix for this 8-state Markov
chain and compute its stationary probability distribution.

3 Convergence to the Stationary Distribution
Consider the vector space V = Rn of row vectors equipped with the norm ∥v∥1 =

∑n
i=1 |vi| and let

X = {x ∈ V |xi ≥ 0,
∑n

i=1 xi = 1} be the subset of probability vectors.

Lemma 1. Let P be the n× n transition matrix of a Markov chain (i.e., Pi,j ≥ 0 and
∑n

j=1 Pi,j = 1).
If Pi,j ≥ α ≥ 0 for all i, j ∈ [n], then, for all x, y ∈ X, one finds that∥∥xP − yP

∥∥
1
≤ (1− nα)

∥∥x− y
∥∥
1

4

Proof. For x, y ∈ X, observe that

∥∥xP − yP
∥∥
1
=

n∑
j=1

∣∣∣∣∣
n∑

i=1

(xi − yi)(Pi,j − α+ α)

∣∣∣∣∣
=

n∑
j=1

∣∣∣∣∣
n∑

i=1

(xi − yi)(Pi,j − α) +

n∑
i=1

(xi − yi)α

∣∣∣∣∣
(a)
=

n∑
j=1

∣∣∣∣∣
n∑

i=1

(xi − yi)(Pi,j − α)

∣∣∣∣∣
(b)

≤
n∑

j=1

n∑
i=1

|xi − yi| (Pi,j − α)

=

n∑
i=1

|xi − yi|
n∑

j=1

(Pi,j − α)

≤
n∑

i=1

|xi − yi| (1− nα)

= (1− nα)
∥∥x− y

∥∥
1
,

where (a) follows from
∑n

i=1(xi − yi) = 0 and (b) holds because Pi,j − α ≥ 0 and |
∑

i zi| ≤
∑

i |zi|.

Theorem 1 (Perron). Let P be the transition matrix of a Markov chain (i.e., Pi,j ≥ 0 and
∑n

j=1 Pi,j =

1). If there is a fixed N such that
[
PN

]
i,j

≥ α > 0 for all i, j ∈ [n], then the iteration

π(t+1) = Pπ(t)

has a unique fixed-point π∗ and
∥∥π(t) − π∗

∥∥
1
≤ 2(1 − αn)⌊(t−1)/N⌋ from any starting point π(1) ∈ X.

A Markov chain satisfying this condition is called irreducible and aperiodic. In addition, the fixed-point
vector is strictly positive and satisfies π∗

i ≥ α for all i ∈ [n].

Proof. First, we define f(x) ≜ xP and observe that f : X → X because [xP]j =
∑n

i=1 xiPi,j ≥ 0 and

n∑
j=1

[xP]j =

n∑
j=1

n∑
i=1

xiPi,j =

n∑
i=1

xi

n∑
j=1

Pi,j = 1.

Next, we apply Lemma 1 to see that fN (x) ≜ xPN is a contraction on (X, d) with d
(
x, y

)
=

∥∥x− y
∥∥
1

because
d
(
fN (x), fN (y)

)
=

∥∥xPN − yPN
∥∥
1
≤ (1− αn)

∥∥x− y
∥∥
1
= (1− αn)d

(
x, y

)
.

Thus, the contraction mapping theorem shows that fN has a unique fixed-point π∗ ∈ X and that
π(t+N) = fN (π(t)) converges (along the subsequence tk = kN+1) to π∗ for any π(1) ∈ X . For t = tk+s
with s ∈ [N − 1], we note that π(tk+s) = fkN

(
fs(π(1))) also converges to to π∗ as k → ∞.

The rate of convergence follows from ∥π − π∗∥1 ≤ 2 and∥∥fkN
(
π
)
− π∗∥∥

1
=

∥∥fkN
(
π − π∗)∥∥

1
≤ (1− αn)k ∥π − π∗∥1 ≤ 2(1− αn)k,

which both hold for π ∈ X. This construction leads to k = ⌊(t− 1)/N⌋ and gives the stated bound.
Lastly, we observe that the elements of any vector in the range of fN satisfy the following strictly positive
lower bound [

xPN
]
j
=

n∑
i=1

xi

[
PN

]
i,j

≥ min
i,j

[
PN

]
i,j

n∑
k=1

xk = min
i,j

[
PN

]
i,j

≥ α.

This implies that π∗
i is lower bounded by the same quantity for all i ∈ [n].

References
[1] R. Durrett, Elementary probability for applications. Cambridge University Press, 2009.

5

