
ECE 586 Application: Least-Squares Solutions

Henry D. Pfister
Duke University

November 22nd, 2020

1 A Few Questions

1.1 How does one fit a polynomial to a set of points?
For a given set of N data points (x1, y1), (x2, y2), . . . , (xN , yN) ∈ R2, what degree-m polynomial,

f(x) =

m∑
j=0

ajx
j ,

best fits the data? Of course, the answer depends on what we mean by “best”. If we focus on the
mean-squared error (MSE), then the goal is to minimize the quantity

1

N

N∑
i=1

(yi − f(xi))2

over the polynomial coefficients a0, a1, . . . , am ∈ R. If N > m+1, then the polynomial may not fit each
point exactly and the result that minimizes this error is called the least-squares solution.

1.2 How can one learn to classify patterns from training examples?
Consider a system, which can be in one of two states, that generates independent random vectors using a
fixed distribution for each state. Suppose we are givenN observations of the system, (x1, y1), (x2, y2), . . . , (xN , yN),
where xi ∈ Rn is the observed vector and yi ∈ {−1, 1} is the system state, and asked to classify a new
observation x ∈ Rn for which the state is unknown.

One approach to this problem is to fit a function f : Rn → {−1, 1} to the given N observations and
then use that function to classify x. This approach is known as empirical risk minimization. Specifically,
we define a non-negative function L : {−1, 1} × {−1, 1} → R≥0 that quantifies the loss L(ŷ, y) incurred
by classifying the true state y to the estimate ŷ. Then, we minimize the empirical risk

RN (f) ,
1

N

N∑
i=1

L (f(xi), yi)

over all functions f in a some class F . The resulting function is denoted by

f̂ = argmin
f∈F

RN (f).

To compare with the optimal function, we assume that the training data is generated by i.i.d. samples
from some true distribution PX,Y (x, y). An important result from learning theory is that, if the space
F of functions has nice properties and N is large enough, then f̂ will be close to the function

f∗ = argmin
f∈F

R(f) = argmin
f∈F

E [L (f(X), Y)]

1

that minimizes the expected risk R(f) , E [L (f(X), Y)], where the expectation over PX,Y (x, y).
For computational reasons, this approach is sometimes relaxed to fit a function f : Rn → R with the

loss function
L(ŷ, y) = (y − ŷ)2.

Then, the vector is classified by rounding the output to the set {−1, 1}.

2 Linear Least-Squares
The most common linear least-squares problem is the solution of an overdetermined system of linear
equations. Let A ∈ RN×M be an N ×M matrix with N > M that defines N linear equations in M
variables,

yi =

M∑
j=1

Ai,jzj .

When N > M , it is likley that there is no z vector that satisfies all of these equations. Thus, one often
asks for a least-squares solution that minimizes the squared error

ẑ = argmin
z

 1

N

N∑
i=1

yi − M∑
j=1

Ai,jzj

2
 .

As we will see in this class, if A is full rank, then this solution can be written as

ẑ = (ATA)−1AT y.

This setup naturally extends to fitting a vector space of functions F = span {f1, f2, . . . , fM}, where
fj : Rn → R for j = 1, . . . ,M , to a set of input/output pairs, (x1, y1), (x2, y2), . . . , (xN , yN). In particular,
we define

f(x; z) ,
M∑
j=1

zjfj
(
x
)
,

choose L(ŷ, y) = (y − ŷ)2, and observe that

RN

(
f
)
,

1

N

N∑
i=1

L
(
f
(
xi; z

)
, yi
)

=
1

N

N∑
i=1

(
yi − f

(
xi; z

))2
=

1

N

N∑
i=1

yi − M∑
j=1

zjfj
(
xi
)2

=
1

N

N∑
i=1

yi − M∑
j=1

Ai,jzj

2

,

where we define Ai,j , fj
(
xi
)
. Thus, using this setup, one can minimize the empirical risk by finding a

least-squares solution to the linear system y = Az. For example, if A has full rank and N > M, then
one can use the formula z = (ATA)−1AT y.

In some cases, it is more computationally efficient (or convenient) to minimize RN (f) using gradient
descent. Letting ai = [Ai,1, . . . , Ai,M] be the i-th row of A, the gradient of the empirical risk is given by

∇z
1

N

N∑
i=1

(yi − ai · z)
2
=

1

N

N∑
i=1

∇z (yi − ai · z)
2
= − 2

N

N∑
i=1

(yi − ai · z) ai.

2

Figure 1: This hyperplane is designed to separate two classes in three dimensions. It classifies all but
two points correctly.

Since the gradient is the sum of N simple terms, a standard approach is to use the terms separately to
update z during each step. Starting from z(0) = 0, the update for cyclic partial gradient descent is

z(t+1) = z(t) + γt

(
y(t mod N)+1 − a(t mod N)+1 · z

)
a(t mod N)+1,

where γt is the step size.

Exercise 1. (5 pts Vandermonde function) When n = 1, we can fit a degree-m polynomial by choosing
fj(x) = xj−1 and M = m + 1. In this case, it follows that Ai,j = xj−1i and the matrix A is called a
Vandermonde matrix. Implement a function to compute a Vandermonde matrix given the x values and
polynomial degree.

Exercise 2. (10 pts solve_linear_LS function + 5 pts print MSE + 5 pts plot) Using the setup in the
previous example, fit the points (1, 2), (2, 3), (3, 5), (4, 7), (5, 11), (6, 13) to a degree-2 polynomial using
linear algebra. What is the resulting mean squared error? Plot the resulting polynomial (for x ∈ [0, 7])
along with the data points to see the quality of fit.

Exercise 3. (10 pts solve_linear_LS_gd function + 5 pts print MSE + 5 pts plot) Using the setup in
the previous problem, fit the given points to a degree-2 polynomial using cyclic partial gradient descent.
For the fixed step size γt = 0.0002, determine a value of T such that z(T) achieves a mean squared error
that is at most 20% larger than the previous answer. Plot this polynomial (for x ∈ [0, 7]) along the
previous polynomial and the data points.

3 Training a Linear Classifier
A linear classifier is a linear function that classifies points x ∈ Rn by testing

n∑
i=1

xizi ≷ 0, (1)

with ties broken arbitraily (see Figure 1). Since the LHS of (1) equals the standard inner product 〈x|z〉,
this value is quite related to the vector projection of x onto z. In fact, if ‖z‖ = 1, then the LHS of (1)
equals the coefficient of z for the vector projection of x onto z. The orthogonal complement of z is the
hyperplane whose normal vector is z and the LHS of (1) equals zero for all points in that hyperplane.
Therefore, that hyperplane is the decision boundary for the test in (1).

Mathematically, the space Rn is divided into two disjoint sets by a hyperplane containing the origin.
To allow instead for a general hyperplane, which may not contain the origin, one can append a “−1”

3

1 0 1 4 0 0 7 3 5 3 8 9 1 3 3

1 2 0 7 5 8 6 2 0 2 3 6 9 9 7

Figure 2: Sample digits from the MNIST database.

to the end of each x data vector (i.e., extending the length by one). In that case, we may assume that
xn = −1 and this formula can be rewritten as

n−1∑
i=1

xizi ≷ zn,

which defines a general hyperplane separation for x ∈ Rn−1.
One can train a linear classifier using least-squares by performing empirical risk minimization with

the loss function L(ŷ, y) = (y − ŷ)2 and function class

F =

{
f
(
x
)
=

n∑
i=1

xizi

∣∣∣∣∣ z1, . . . , zn ∈ R

}
.

This problem can be solved using the approach described above with fj
(
x
)
=
[
x
]
j
= xj , which implies

that Ai,j =
[
xi
]
j
. To evaluate a trained classifier, one needs additional samples that are independent

from the samples used in training. In practice, this can be achieved by breaking the original data set
into two pieces: a training set and a test set. This is called cross validation1.

For the trained classifier, one should report the classification error rate (i.e., the fraction of data
set that is misclassified) for both the training and test sets. Also, a more detailed way to present
classification error rates is with a confusion matrix. A confusion matrix C is a matrix that contains
whose Ci,j entry equals the number of times a data vector is predicted to be in class j (by the classifier)
when the its true class is i.

Definition 1. The MNIST database is a set of digitized handwritten digits that is used for testing and
training classifiers (see Figure 2). Each sample in the dataset is stored as a 28×28 pixel image with each
pixel taking on 256 grayscale levels. To download the version for this class, go to http://pfister.ee.
duke.edu/mnist_train.csv.zip. After unzipping, each line contains a comma separated vector with
785 elements. The first element is the digit label (from 0-9) and the remaining 784 = 28 ∗ 28 elements
are the pixel values for that sample. The following Python snippet loads the MNIST training data and
plots the first 30 images.

Python Code
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

Read MNIST csv file into dataframe
df = pd.read_csv(’mnist_train.csv ’)
Merge pixels into feature column and keep only feature and label
df[’feature ’] = df.apply(lambda row: row.values[1:], axis=1)
df = df[[’feature ’, ’label ’]]

Plot MNIST

1More generally, the set can be broken into k pieces and one can use k-fold cross validation.

4

plt.figure(figsize=(15, 2.5))
for i, row in df.iloc[:30].iterrows():

x, y = row[’feature ’], row[’label ’]
plt.subplot(2, 15, i + 1)
plt.imshow(x.reshape(28, 28), cmap= ’gray ’)
plt.axis(’off ’)
plt.title(y)

Exercise 4. (10 pts extract_and_split function + 15 pts mnist_pairwise_LS function) In this problem,
we will use least-squares via linear algebra to train a linear classifier to distinguish between handwritten
0’s and 1’s. First, extract the indices of all the 0’s and randomly separate the samples into equal-sized
training and testing groups. Second, do the same for the 1’s. Now, extend each vector to length 785 by
appending a −1. This will allow the system to learn a general hyperplane separation. Now, use least
squares to find a linear function that tries to map 0-samples to −1 and 1-samples to +1. Optional: Try
also solving this problem with cyclic partial gradient descent and compare the two methods.

For the resulting linear function, report the classification error rate and confusion matrices for the
both the training and test sets. Also, for the test set, compute the histogram of the function output
separately for each class and then plot the two histograms together. This shows easy or hard it is to
separate the two classes.

Note: If the A matrix is not full-rank (e.g., suppose a single pixel is 0 for all samples) then the
ATA matrix will be singular. In this case, the Matlab expression z=A\y still finds a reasonable (i.e.,
minimum-norm) least-squares solution. In Python, the NumPy function np.linalg.lstsq also finds a
reasonable solution for all A.

Exercise 5. (10 pts for results) Repeat the above problem (solving only via the normal equations) for
all pairs of digits. For each pair of digits, report the classification error rates for the training and testing
sets. The error rates can be formatted nicely into a triangular matrix. For storage and display efficiency,
store the testing error in the lower triangle and the training error in the upper triangle.

Exercise 6. (20 pts for multiclass code and results) But, what about a multi-class classifier for MNIST
digits? For multi-class linear classification with d classes, one standard approach is to learn a linear
mapping f : Rn → Rd where the “y”-value for the i-th class is chosen to be the standard basis vector
ei ∈ Rd. This is sometimes called one-hot encoding. Using the same A matrix as before and a matrix
Y , defined by Yi,j = 1 if observation i in class j and Yi,j = 0 otherwise, we can solve for the coefficient
matrix Z ∈ Rn×d coefficients with the Matlab expression Z=A\Y. Then, the classifier maps a vector
x to class i if the i-th element of ZTx is the largest element in the vector. Report both the overall
classification error rate and confusion matrices for the both the training and test sets.

5

