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Chapter 1

Logic and Set Theory

To criticize mathematics for its abstraction is to miss the point entirely.

Abstraction is what makes mathematics work. If you concentrate too

closely on too limited an application of a mathematical idea, you rob

the mathematician of his most important tools: analogy, generality, and

simplicity.

– Ian Stewart

Does God play dice? The mathematics of chaos

In mathematics, a proof is a demonstration that, assuming certain axioms, some

statement is necessarily true. That is, a proof is a logical argument, not an empir-

ical one. One must demonstrate that a proposition is true in all cases before it is

considered a theorem of mathematics. An unproven proposition for which there is

some sort of empirical evidence is known as a conjecture. Mathematical logic is

the framework upon which rigorous proofs are built. It is the study of the principles

and criteria of valid inference and demonstrations.

Logicians have analyzed set theory in great details, formulating a collection of

axioms that affords a broad enough and strong enough foundation to mathematical

reasoning. The standard form of axiomatic set theory is denoted ZFC and it consists

of the Zermelo-Fraenkel (ZF) axioms combined with the axiom of choice (C). Each

of the axioms included in this theory expresses a property of sets that is widely

accepted by mathematicians. It is unfortunately true that careless use of set theory

can lead to contradictions. Avoiding such contradictions was one of the original

motivations for the axiomatization of set theory.

1



2 CHAPTER 1. LOGIC AND SET THEORY

A rigorous analysis of set theory belongs to the foundations of mathematics and

mathematical logic. The study of these topics is, in itself, a formidable task. For

our purposes, it will suffice to approach basic logical concepts informally. That is,

we adopt a naive point of view regarding set theory and assume that the meaning of

a set as a collection of objects is intuitively clear. While informal logic is not itself

rigorous, it provides the underpinning for rigorous proofs. The rules we follow

in dealing with sets are derived from established axioms. At some point of your

academic career, you may wish to study set theory and logic in greater detail. Our

main purpose here is to learn how to state mathematical results clearly and how to

prove them.

1.1 Statements

A proof in mathematics demonstrates the truth of certain statement. It is therefore

natural to begin with a brief discussion of statements. A statement, or proposition,

is the content of an assertion. It is either true or false, but cannot be both true and

false at the same time. For example, the expression “There are no classes at Texas

A&M University today” is a statement since it is either true or false. The expression

“Do not cheat and do not tolerate those who do” is not a statement. Note that an

expression being a statement does not depend on whether we personally can verify

its validity. The expression “The base of the natural logarithm, denoted e, is an

irrational number” is a statement that most of us cannot prove.

Statements on their own are fairly uninteresting. What brings value to logic is

the fact that there are a number of ways to form new statements from old ones.

In this section, we present five ways to form new statements from old ones. They

correspond to the English expressions: and; or; not; if, then; if and only if. In the

discussion below, P and Q represent two abstract statements.

A logical conjunction is an operation on two logical propositions that produces

a value of true if both statements are true, and is false otherwise. The conjunction

(or logical AND) of P and Q, denoted by P ∧Q, is precisely defined by
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P Q P ∧Q
T T T

T F F

F T F

F F F

.

Similarly, a logical disjunction is an operator on two logical propositions that

is true if either statement is true or both are true, and is false otherwise. The dis-

junction (or logical OR) of P and Q, denoted P ∨Q, is defined by

P Q P ∨Q
T T T

T F T

F T T

F F F

.

In mathematics, a negation is an operator on the logical value of a proposition

that sends true to false and false to true. The negation (or logical NOT) of P ,

denoted ¬P , is given by

P ¬P
T F

F T

.

The next method of combining mathematical statements is slightly more subtle

than the preceding ones. The conditional connective P → Q is a logical statement

that is read “if P then Q” and defined by the truth table

P Q P → Q

T T T

T F F

F T T

F F T

.

In this statement, P is called the antecedent and Q is called the consequent. The

truth table should match your intuition when P is true. When P is false, students

often think the resulting truth value should be undefined. Although the given def-

inition may seem strange at first glance, this truth table is universally accepted by

mathematicians.
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To motivate this definition, one can think of P → Q as a promise that Q is

true whenever P is true. When P is false, the promise is kept by default. For

example, suppose your friend promises “if it is sunny tomorrow, I will ride my

bike”. We will call this a true statement if they keep their promise. If it rains and

they don’t ride their bike, most people would agree that they have still kept their

promise. Therefore, this definition allows one to combine many statements together

and detect broken promises without being distracted by uninformative statements.

Logicians draw a firm distinction between the conditional connective and the

implication relation. They use the phrase “if P then Q” for the conditional con-

nective and the phrase “P implies Q” for the implication relation. They explain

the difference between these two forms by saying that the conditional is the con-

templated relation, while the implication is the asserted relation. We will discuss

this distinction in the Section 1.2, where we formally study relations between state-

ments. The importance and soundness of the conditional form P → Q will become

clearer then.

The logical biconditional is an operator connecting two logical propositions

that is true if the statements are both true or both false, and it is false otherwise.

The biconditional from P to Q, denoted P ↔ Q, is precisely defined by

P Q P ↔ Q

T T T

T F F

F T F

F F T

.

We read P ↔ Q as “P if and only if Q.” The phrase “if and only if” is often

abbreviated as “iff”.

Using the five basic operations defined above, it is possible to form more com-

plicated compound statements. We sometimes need parentheses to avoid ambiguity

in writing compound statements. We use the convention that ¬ takes precedence

over the other four operations, but none of these operations takes precedence over

the others. For example, let P , Q and R be three propositions. We wish to make a

truth table for the following statement,

(P → R) ∧ (Q ∨ ¬R). (1.1)

We can form the true table for this statement, using simple steps, as follows
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P Q R (P → R) ∧ (Q ∨ ¬R)

T T T T T T T T T F

T T F T F F F T T T

T F T T T T F F F F

T F F T F F F F T T

F T T F T T T T T F

F T F F T F T T T T

F F T F T T F F F F

F F F F T F T F T T

1 5 2 7 3 6 4

.

We conclude this section with a brief mention of two important concepts. A

tautology is a statement that is true in every valuation of its propositional variables,

independent of the truth values assigned to these variables. The proverbial tautology

is P ∨ ¬P ,

P P ∨ ¬P
T T T F

F F T T

1 3 2

.

For instance, the statement “The Aggies won their last football game or the Ag-

gies did not win their last football game” is true regardless of whether the Aggies

actually defeated their latest opponent.

The negation of a tautology is a contradiction, a statement that is necessarily

false regardless of the truth values of its propositional variables. The statement

P ∧ ¬P is a contradiction, and its truth table is

P P ∧ ¬P
T T F F

F F F T

1 3 2

.

Of course, most statements we encounter are neither tautologies nor contra-

dictions. For example, (1.1) is not necessarily either true or false. Its truth value

depends on the values of P , Q and R. Try to see whether the statement

((P ∧Q)→ R)→ (P → (Q→ R))

is a tautology, a contradiction, or neither.
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1.2 Relations between Statements

Strictly speaking, relations between statements are not formal statements them-

selves. They are meta-statements about some propositions. We study two types

of relations between statements, implication and equivalence. An example of an

implication meta-statement is the observation that “if the statement ‘Robert gradu-

ated from Texas A&M University’ is true, then it implies that the statement ‘Robert

is an Aggie’ is also true.” Another example of a meta-statement is “the statement

‘Fred is an Aggie and Fred is honest’ being true is equivalent to the statement ‘Fred

is honest and Fred is an Aggie’ being true.” These two examples illustrate how

meta-statements describe the relationship between statements. It is also instruc-

tive to note that implications and equivalences are the meta-statement analogs of

conditionals and biconditionals.

Consider two compound statements P and Q that depend on other logical state-

ments (e.g., P = (R → S) ∧ (S → T ) and Q = R → T ). A logical implication
from P to Q, read as “P implies Q”, asserts that Q must be true whenever P is true

(i.e., for all possible truth values of the dependent statements R, S, T ). Necessity is

the key aspect of this sentence; the fact that P and Q both happen to be true can-

not be coincidental. To state that P implies Q, denoted by P ⇒ Q, one needs the

conditional P → Q to be true under all possible circumstances.

Meta-statements, such as “P implies Q”, can be defined formally only when

P and Q are both logical functions of other propositions. For example, consider

P = R ∧ (R → S) and Q = S. Then, the truth of the statement P → Q depends

only on the truth of external propositions R and S.

The notion of implication can be rigorously defined as follows, P implies Q if

the statement P → Q is a tautology. We abbreviate P impliesQ by writing P ⇒ Q.

It is important to understand the difference between “P → Q” and “P ⇒ Q.” The

former, P → Q, is a compound statement that may or may not be true. On the

other hand, P ⇒ Q is a relation stating that the compound statement P → Q is

true under all instances of the external propositions.

While the distinction between implication and conditional may seem extrane-

ous, we will soon see that meta-statements become extremely useful in building

valid arguments. In particular, the following implications are used extensively in

constructing proofs.
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Fact 1.2.1. Let P , Q, R and S be statements.

1. (P → Q) ∧ P ⇒ Q.

2. (P → Q) ∧ ¬Q⇒ ¬P .

3. P ∧Q⇒ P .

4. (P ∨Q) ∧ ¬P ⇒ Q.

5. P ↔ Q⇒ P → Q.

6. (P → Q) ∧ (Q→ P )⇒ P → Q.

7. (P → Q) ∧ (Q→ R)⇒ P → R

8. (P → Q) ∧ (R→ S) ∧ (P ∨R)⇒ Q ∨ S.

As an illustrative example, we show that (P → Q)∧ (Q→ R) implies P → R.

To demonstrate this assertion, we need to show that

((P → Q) ∧ (Q→ R))→ (P → R) (1.2)

is a tautology. This is accomplished in the truth table below

P Q R ((P → Q) ∧ (Q → R)) → (P → R)

T T T T T T T T T T T T T T

T T F T T T F T F F T T F F

T F T T F F F F T T T T T T

T F F T F F F F T F T T F F

F T T F T T T T T T T F T T

F T F F T T F T F F T F T F

F F T F T F T F T T T F T T

F F F F T F T F T F T F T F

1 7 2 10 3 8 4 11 5 9 6

.

Column 11 has the truth values for statement (1.2). Since (1.2) is true under all

circumstances, it is a tautology and the implication holds. Showing that the other

relations are valid is left to the reader as an exercise.

Reversing the arrow in a conditional statement gives the converse of that state-

ment. For example, the statement Q→ P is the converse of P → Q. This reversal
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may not preserve the truth of the statement though and therefore logical implica-

tions are not always reversible. For instance, although (P → Q)∧(Q→ R) implies

P → R, the converse is not always true. It can easily be seen from columns 9 & 10

above that

(P → R)→ ((P → Q) ∧ (Q→ R))

is not a tautology. That is, P → R certainly does not imply (P → Q) ∧ (Q→ R).

A logical implication that is reversible is called a logical equivalence. More

precisely, P is equivalent toQ if the statement P ↔ Q is a tautology. We denote the

sentence “P is equivalent to Q” by simply writing “P ⇔ Q.” The meta-statement

P ⇔ Q holds if and only if P ⇒ Q and Q⇒ P are both true. Being able to recog-

nize that two statements are equivalent will become handy. It is sometime possible

to demonstrate a result by finding an alternative, equivalent form of the statement

that is easier to prove than the original form. A list of important equivalences ap-

pears below.

Fact 1.2.2. Let P , Q and R be statements.

1. ¬(¬P )⇔ P .

2. P ∨Q⇔ Q ∨ P .

3. P ∧Q⇔ Q ∧ P .

4. (P ∨Q) ∨R⇔ P ∨ (Q ∨R).

5. (P ∧Q) ∧R⇔ P ∧ (Q ∧R).

6. P ∧ (Q ∨R)⇔ (P ∧Q) ∨ (P ∧R).

7. P ∨ (Q ∧R)⇔ (P ∨Q) ∧ (P ∨R).

8. P → Q⇔ ¬P ∨Q.

9. P → Q⇔ ¬Q→ ¬P (Contrapositive).

10. P ↔ Q⇔ (P → Q) ∧ (Q→ P ).

11. ¬(P ∧Q)⇔ ¬P ∨ ¬Q (De Morgan’s Law).

12. ¬(P ∨Q)⇔ ¬P ∧ ¬Q (De Morgan’s Law).
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Given a conditional statement of the form P → Q, we call ¬Q → ¬P the

contrapositive of the original statement. The equivalence P → Q ⇔ ¬Q → ¬P
noted above is used extensively in constructing mathematical proofs.

One must be careful not to allow contradictions in logical arguments because,

starting from a contradiction, anything can be proven true. For example, one can

verify that P ∧ ¬P ⇒ Q is a valid logical equivalence. But, Q doesn’t appear on

the LHS. Thus, a contradiction in your assumptions can lead to a “correct” proof

for an arbitrary statement.

Fortunately, propositional logic has an axiomatic formulation that is consistent,

complete, and decidable. In this context, the term consistent means that the logi-

cal implications generated by the axioms do not contain a contradiction, the term

complete means that any valid logical implication can be generated by applying the

axioms, and the term decidable means there is a terminating method that always

determines whether a postulated implication is valid or invalid.

1.2.1 Fallacious Arguments

A fallacy is a component of an argument that is demonstrably flawed in its logic

or form, thus rendering the argument invalid. Recognizing fallacies in mathemat-

ical proofs may be difficult since arguments are often structured using convoluted

patterns that obscure the logical connections between assertions. We give below

examples for three types of fallacies that are often found in attempted mathematical

proofs.

Affirming the Consequent: If the Indian cricket team wins a test match, then all

the players will drink tea together. All the players drank tea together. Therefore the

Indian cricket team won a test match.

Denying the Antecedent: If Diego Maradona drinks coffee, then he will be fid-

gety. Diego Maradona did not drink coffee. Therefore, he is not fidgety.

Unwarranted Assumptions: If Yao Ming gets close to the basket, then he scores

a lot of points. Therefore, Yao Ming scores a lot of points.
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1.2.2 Quantifiers

Consider the statements “Socrates is a person” and “Every person is mortal”. In

propositional logic, there is no formal way to combine these statements to deduce

that “Socrates is mortal”. In the first statement, the noun “Socrates” is called the

subject and the phrase “is a person” is called the predicate. Likewise, in predicate

logic, the statement P (x) = “x is a person” is called a predicate and x is called a

free variable because its value is not fixed in the statement P (x).

Let U be a specific collection of elements and let P (x) be a statement that can

be applied to any x ∈ U . In first-order predicate logic, quantifiers are applied to

predicates in order to make statements about collections of elements. Later, we will

see that quantifiers are of paramount importance in rigorous proofs.

The universal quantifier is typically denoted by ∀ and it is informally read

“for all.” It follows that the statement “∀x ∈ U, P (x)” is true if P (x) is true for all

values of x in U . It can be seen as shorthand for an iterated conjunction because

∀x ∈ U, P (x)⇔
∧
x∈U

P (x),

where⇔ indicates that these statements are equivalent for all sets U and predicates

P . If U = ∅ is the empty set, then ∀x ∈ U, P (x) is vacuously true by convention

because there are no elements in U to test with P (x).

Returning to the motivating example, let us also define Q(x) =“x is mortal”.

With these definitions, we can write the statement “Every person is mortal” as

∀x, (P (x) → Q(x)). In logic, this usage implies that x ranges over the universal

set. In engineering mathematics, however, the range of free variables is typically

stated explicitly.

The other type of quantifier often seen in mathematical proofs is the existential
quantifier, denoted ∃. The statement “∃x ∈ U, P (x)” is true if P (x) is true for at

least one value of x in U . It can be seen as shorthand for an iterated disjunction

because

∃x ∈ U, P (x)⇔
∨
x∈U

P (x),

From these definitions, it follows naturally that ∀x ∈ U, P (x) ⇒ ∃x ∈ U, P (x). If

U = ∅ is the empty set, then ∃x ∈ U, P (x) is false by convention because there are

no elements in U .
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Based on the meaning of these quantifiers, one can infer the logical implications

¬ (∀x ∈ U, P (x))⇔ ∃x ∈ U,¬P (x)

¬ (∃x ∈ U, P (x))⇔ ∀x ∈ U,¬P (x).

Using the connection to conjunction and disjunction, these rules are actually equiv-

alent to De Morgan’s law for iterated conjunctions and disjunctions.

One can also define predicates with multiple free variables such as P (x, y) =“x

contains y”. Once again, these statements are assumed to be true or false for every

choice of x, y. There are 8 possible quantifiers for a 2-variable predicate and they

can be arranged according to their natural implications:

∀x,∀y, P (x, y) ⇒ ∃x,∀y, P (x, y) ⇒ ∀y,∃x, P (x, y) ⇒ ∃y,∃x, P (x, y)

m m
∀y,∀x, P (x, y) ⇒ ∃y,∀x, P (x, y) ⇒ ∀x,∃y, P (x, y) ⇒ ∃x, ∃y, P (x, y)

All of these implications follow from ∀x∀y = ∀y∀x, ∃x∃y = ∃y∃x, and the single

variable inference rule ∀x, P (x) ⇒ ∃x, P (x) except for two: ∃x,∀y, P (x, y) ⇒
∀y,∃x, P (x, y) and its symmetric pair.

To understand this last implication, consider an example where x is in a set I of

images and y is in a set C of colors. Then, ∃x, ∀y, P (x, y) means “there is an image

that contains all the colors” (e.g., an image of a rainbow) and ∀y,∃x, P (x, y) means

“for each color there is an image containing that color”. The first statement implies

the second because, in the second, the rainbow image satisfies the ∃x quantifier for

all y. To see that the implication is not an equivalence, consider a set of pictures

where each image contains exactly one color and there is one such image for each

color. In this case, it is true that “for each color there is an image containing that

color” but it is not true that ‘there is an image that contains all the colors”.

In quantified statements, such as ∃x ∈ U, P (x), the variable x is called a bound
variable because its value cannot be chosen freely. Similarly, in the statement

∃y ∈ U, P (x, y), x is a free variable and y is a bound variable.

Finally, we note that first-order predicate logic has an axiomatic formulation that

is consistent, complete, and semidecidable. In this context, semidecidable means

that there is an algorithm that, if it terminates, correctly determines the truth of any

postulated implication. But, it is only guaranteed to terminate for true postulates.
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1.3 Strategies for Proofs

The relation between intuition and formal rigor is not a trivial matter. Intuition

tells us what is important, what might be true, and what mathematical tools may be

used to prove it. Rigorous proofs are used to verify that a given statement which

appears intuitively true is indeed true. Ultimately, a mathematical proof is a con-

vincing argument that starts from some premises, and logically deduces the desired

conclusion. Most proofs do not mention the logical rules of inference used in the

derivation. Rather, they focus on the mathematical justification of each step, leaving

to the reader the task of filling the logical gaps. The mathematics is the major issue.

Yet, it is essential that you understand the underlying logic behind the derivation as

to not get confused while reading or writing a proof.

True statements in mathematics have different names. They can be called the-

orems, propositions, lemmas, corollaries and exercises. A theorem is a statement

that can be proved on the basis of explicitly stated or previously agreed assump-

tions. A proposition is a statement not associated with any particular theorem; this

term sometimes connotes a statement with a simple proof. A lemma is a proven

proposition which is used as a stepping stone to a larger result rather than an inde-

pendent statement in itself. A corollary is a mathematical statement which follows

easily from a previously proven statement, typically a mathematical theorem. The

distinction between these names and their definitions is somewhat arbitrary. Ulti-

mately, they are all synonymous to a true statement.

A proof should be written in grammatically correct English. Complete sen-

tences should be used, with full punctuation. In particular, every sentence should

end with a period, even if the sentence ends in a displayed equation. Mathemati-

cal formulas and symbols are parts of sentences, and are treated no differently than

words. One way to learn to construct proofs is to read a lot of well written proofs, to

write progressively more difficult proofs, and to get detailed feedback on the proofs

you write.

Direct Proof: The simplest form of proof for a statement of the form P → Q is

the direct proof. First assume that P is true. Produce a series of steps, each one

following from the previous ones, that eventually leads to conclusionQ. It warrants

the name “direct proof” only to distinguish it from other, more intricate, methods
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of proof.

Proof by Contrapositive: A proof by contrapositive takes advantage of the math-

ematical equivalence P → Q ⇔ ¬Q → ¬P . That is, a proof by contrapositive

begins by assuming that Q is false (i.e., ¬Q is true). It then produces a series of

direct implications leading to the conclusion that P is false (i.e., ¬P is true). It

follows that Q cannot be false when P is true, so P → Q.

Proof by Contradiction: A proof by contradiction is based on the mathematical

equivalence ¬(P → Q) ⇔ P ∧ ¬Q. In a proof by contradiction, one starts by

assuming that both P and ¬Q are true. Then, a series of direct implications are

given that lead to a logical contradiction. Hence, P∧¬Q cannot be true and P → Q.

Example 1.3.1. We wish to show that
√

2 is an irrational number.

First, suppose that
√

2 is a rational number. This would imply that there exist

integers p and q with q 6= 0 such that p/q =
√

2. In fact, we can further assume that

the fraction p/q is irreducible. That is, p and q are coprime integers (they have no

common factor greater than 1). From p/q =
√

2, it follows that p =
√

2q, and so

p2 = 2q2. Thus p2 is an even number, which implies that p itself is even (only even

numbers have even squares). Because p is even, there exists an integer r satisfying

p = 2r. We then obtain the equation (2r)2 = 2q2, which is equivalent to 2r2 = q2

after simplification. Because 2r2 is even, it follows that q2 is even, which means that

q is also even. We conclude that p and q are both even. This contradicts the fact

that p/q is irreducible. Hence, the initial assumption that
√

2 is a rational number

must be false. That is to say,
√

2 is irrational.

Example 1.3.2. Consider the following statement, which is related to Example 1.3.1.

“If
√

2 is rational, then
√

2 can be expressed as an irreducible fraction.” The con-

trapositive of this statement is “If
√

2 cannot be expressed as an irreducible frac-

tion, then
√

2 is not rational.” Above, we proved that
√

2 cannot be expressed as an

irreducible fraction and therefore
√

2 is not a rational number.

The final proof strategy we discuss is finite induction.

Definition 1.3.3. Let P (n) be a logical statement for each n ∈ N. The principle of

mathematical induction states that P (n) is true all n ∈ N if:
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1. P (1) is true, and

2. P (n)→ P (n+ 1) for all n ∈ N.

From a foundational perspective, this statement is essentially equivalent to the

existence and uniqueness of the natural numbers. It is taken as an axiom in the

Peano axiomatic formulation of arithmetic. In contrast, the ZF axiomatic formula-

tion of set theory defines the natural numbers as the smallest inductive set and the

existence of an inductive set is taken as an axiom.

Example 1.3.4. Let Sn =
∑n

i=1 i. We wish to show that the statement P (n) =

“Sn = n2+n
2

” is true for all n ∈ N. For n = 1, this is true because both expressions

equal 1. For P (n+ 1), we are given P (n) and can write

Sn+1 = Sn + (n+ 1) =
n2 + n

2
+ n+ 1 =

n2 + 3n+ 2

2
=

(n+ 1)2 + (n+ 1)

2
.

Thus, the result follows from mathematical induction.

More general forms of finite induction are also quite common but they can re-

duced to the original form. For example, letQ(m) be a predicate form ∈ N and de-

fine P (n) =“∀m ∈ Sn, Q(m)” for a sequence nested finite sets S1 ⊂ S2 ⊂ · · · ⊆ N.

Defining S∞ = ∪n∈NSn, we see that “∀n ∈ N, P (n)”⇔“∀m ∈ S∞, Q(m)” follows

from P (1) =“∀m ∈ S1, Q(m)” and “P (n) → P (n + 1)”⇔“∀m ∈ Sn, Q(m) →
∀m ∈ Sn+1, Q(m)”.

1.4 Set Theory

Set theory is generally considered to be the foundation of all modern mathematics.

This means that most mathematical objects (numbers, relations, functions, etc.)

are defined in terms of sets. Unfortunately for engineers, set theory is not quite

as simple as it seems. It turns out that simple approaches to set theory include

paradoxes (e.g., statements which are both true and false). These paradoxes can

be resolved by putting set theory in a firm axiomatic framework, but that exercise

is rather unproductive for engineers. Instead, we adopt what is called naive set
theory which rigorously defines the operations of set theory without worrying about

possible contradictions. This approach is sufficient for most of mathematics and

also acts as a stepping-stone to more formal treatments.
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A set is taken to be any collection of objects, mathematical or otherwise. For

example, one can think of “the set of all books published in 2007”. The objects in

a set are referred to as elements or members of the set. The logical statement “a is

a member of the set A” is written

a ∈ A.

Likewise, its logical negation “a is not a member of the set A” is written a /∈ A.

Therefore, exactly one of these two statements is true. In naive set theory, one

assumes the existence of any set that can be described in words. Later, we will see

that this can be problematic when one considers objects like the “set of all sets”.

One may present a set by listing its elements. For example, A = {a, e, i, o, u} is

the set of standard English vowels. It is important to note that the order elements are

presented is irrelevant and the set {i, o, u, a, e} is the same asA. Likewise, repeated

elements have no effect and the set {a, e, i, o, u, e, o} is the same as A. A singleton
set is a set containing exactly one element such as {a}.

There are a number of standard sets worth mentioning: the integers Z, the real
numbers R, and the complex numbers C. It is possible to construct these sets in a

rigorous manner, but instead we will assume their meaning is intuitively clear. New

sets can be defined in terms of old sets using set-builder notation. Let P (x) be a

logical statement about objects x in the set X , then the “set of elements in X such

that P (x) is true” is denoted by

{x ∈ X|P (x)}.

For example, the set of even integers is given by

{x ∈ Z|“x is even”} = {. . . ,−4,−2, 0, 2, 4, . . .}.

If no element x ∈ X satisfies the condition, then the result is the empty set which

is denoted ∅. Using set-builder notation, we can also recreate the natural numbers
N and the rational numbers Q with

N = {n ∈ Z|n ≥ 1}

Q = {q ∈ R|q = a/b, a ∈ Z, b ∈ N}.



16 CHAPTER 1. LOGIC AND SET THEORY

The following standard notation is used for interval subsets of the real numbers:

Open interval: (a, b) , {x ∈ R|a < x < b}

Closed interval: [a, b] , {x ∈ R|a ≤ x ≤ b}

Half-open intervals: (a, b] , {x ∈ R|a < x ≤ b}

[a, b) , {x ∈ R|a ≤ x < b}

Definition 1.4.1. For a finite set A, the cardinality |A| equals the number of el-

ements in A. If there is a bjiective mapping between the set A and the natural

numbers N, then |A| =∞ and the set is called countably infinite. If |A| =∞ and

the set is not countably infinite, then A is called uncountably infinite.

Example 1.4.2. The set of rational numbers is countably infinite while the set of

real numbers is uncountably infinite.

Example 1.4.3 (Russell’s Paradox). Let R be the set of all sets that do not contain

themselves orR = {S|S /∈ S}. Such a set is said to exist in naive set theory (though

it may empty) simply because it can be described in words. The paradox arises from

the fact that the definition leads to the logical contradiction R ∈ R↔ R /∈ R.

What this proves is that naive set theory is not consistent because it allows con-

structions that lead to contradictions. Axiomatic set theory eliminates this paradox

by disallowing self-referential and other problematic constructions. Thus, another

reasonable conclusion is that Russell’s paradox shows that the set R cannot exist in

any consistent theory of sets.

Another common question is whether there are sets that contains themselves. In

naive set theory, the answer is yes and some examples are the “set of all sets” and

the “set of all abstract ideas”. On the other hand, in the ZF axiomatic formulation

of set theory, it is a theorem that no set contains itself.

There are a few standard relationships defined between any two sets A,B.

Definition 1.4.4. We say that A equals B (denoted A = B) if, for all x, x ∈ A iff

x ∈ B. This means that

A = B ⇔ ∀x ((x ∈ A)↔ (x ∈ B)) .
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Definition 1.4.5. We say that A is a subset of B (denoted A ⊆ B) if, for all x, if

x ∈ A then x ∈ B. This means that

A ⊆ B ⇔ ∀x ((x ∈ A)→ (x ∈ B)) .

It is a proper subset (denoted A ⊂ B) if A ⊆ B and A 6= B.

There are also a number of operations between sets. Let A,B be any two sets.

Definition 1.4.6. The union of A and B (denoted A ∪ B) is the set of elements in

either A or B. This means that A ∪B = {x ∈ A or x ∈ B} is also defined by

x ∈ A ∪B ⇔ (x ∈ A) ∨ (x ∈ B).

Definition 1.4.7. The intersection ofA andB (denotedA∩B) is the set of elements

in both A and B. This means that A ∩B = {x ∈ A|x ∈ B} is also defined by

x ∈ A ∩B ⇔ (x ∈ A) ∧ (x ∈ B).

Two sets are said to be disjoint if A ∩B = ∅.

Definition 1.4.8. The set difference between A and B (denoted A−B or A \B) is

the set of elements in A but not in B. This means that

x ∈ A−B ⇔ (x ∈ A) ∧ (x /∈ B).

If there is some implied universal set U , then the complement (denoted Ac) is de-

fined by Ac = U − A

One can apply De Morgan’s Law in set theory to verify that

(A ∪B)c = Ac ∩Bc

(A ∩B)c = Ac ∪Bc,

which allows us to interchange union or intersection with set difference.

We can also form the union or the intersection of arbitrarily many sets. This is

defined in a straightforward way,⋃
α∈I

Sα = {x|x ∈ Sα for some α ∈ I}⋂
α∈I

Sα = {x|x ∈ Sα for all α ∈ I}.
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It is worth noting that the definitions apply whether the index set is finite, countably

infinite, or even uncountably infinite.

Another way to build sets is by grouping elements into pairs, triples, and vectors.

Definition 1.4.9. The Cartesian Product, denoted A × B, of two sets is the set of

ordered pairs {(a, b)|a ∈ A, b ∈ B}. For n-tuples taken from the same set, the

notation An denotes the n-fold product A× A× · · · × A.

Example 1.4.10. If A = {a, b}, then the set of all 3-tuples from A is given by

A3 = {(a, a, a), (a, a, b), (a, b, a), (a, b, b), (b, a, a), (b, a, b), (b, b, a), (b, b, b)}.

The countably infinite product ofX , denotedXω, is the set of infinite sequences

(x1, x2, x3, . . .) where xn ∈ X is arbitrary for n ∈ N. If the sequences are restricted

to have only a finite number of non-zero terms, then the set is usually denoted X∞.

One can also formalize relationships between elements of a set. A relation ∼
between elements of the set A is defined by the pairs (x, y) ∈ A × A for which

the relation holds. Specifically, the relation is defined by the subset of ordered pairs

E ⊆ A × A where the relation a ∼ b holds; so x ∼ y if and only if (x, y) ∈ E. A

relation on A is said to be:

1. Reflexive if x ∼ x holds for all x ∈ A

2. Symmetric if x ∼ y implies y ∼ x for all x, y ∈ A

3. Transitive if x ∼ y and y ∼ z, then x ∼ z for all x, y, z ∈ A

A relation is called an equivalence relation if it is reflexive, symmetric, and

transitive. For example, let A be a set of people and P (x, y) be the statement “x

has the same birthday (month and day) as y.” Then, we can define ∼ such that

a ∼ b holds if and only if P (x, y) is true. In this case, the set E is given by

E = {(x, y) ∈ A× A|P (x, y)}. One can verify that this is an equivalence relation

by checking that it is reflexive, symmetric, and transitive.

One important characteristic of an equivalence relation is that it partitions the

entire setA into disjoint equivalence classes. The equivalence class associated with

a ∈ A is given by [a] = {x ∈ A|x ∼ a}. In the birthday example, there is a natural

equivalence class associated with each day of the year. The set of all equivalence

classes is called the quotient set and is denoted A/∼= {[a]|a ∈ A}.
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In fact, there is a natural equivalence relation defined by any disjoint partition

of a set. For example, let Ai,j be the set of people in A whose birthday was on the

j-th day of the i-th month. It follows that x ∼ y if and only if there exists a unique

pair i, j such that x, y ∈ Ai,j . In this case, the days of year are used as equivalence

classes to define the equivalence relation.

Example 1.4.11. Consider the set N × N = {(a, b)|a, b ∈ N} of ordered pairs of

natural numbers. If one associates the element (a, b) with the fraction a/b, then the

entire set is associated with the set of (possibly reducible) fractions. Now, consider

the equivalence relation (a, b) ∼ (c, d) if ad = bc. In this case, two ordered pairs

are equivalent if their associated fractions evaluate to the same real number. The

quotient set N/∼ can therefore be associated with the set of reduced fractions.

Unfortunately, this section will not end on a happy note by saying that the ZFC

axiomatic formulation of set theory is consistent. Instead, we observe that Kurt

Gödel’s Incompleteness Theorems imply that, if ZFC is consistent, then this cannot

be proven using statements in ZFC and, moreover, it cannot be complete. On the

other hand, if ZFC is inconsistent, then it contains a paradox and one can prove any-

thing using statements in ZFC. Since ZFC manages to avoid all known paradoxes

and no contradictions have been so far, it is still the most popular formal system in

which to define mathematics.

1.5 Functions

In elementary mathematics, functions are typically described in terms of graphs and

formulas. The drawback of this approach is that one tends to picture only “nice”

functions. In fact, Cauchy himself published in 1821 an incorrect proof of the false

assertion that “a sequence of continuous functions that converges everywhere has a

continuous limit function.” Nowadays, every teacher warns their students that one

must be careful because the world is filled with “not so nice” functions.

The modern approach to defining functions is based on set theory. A function
f : X → Y is a rule that assigns a single value f(x) ∈ Y to each element x ∈ X .

The notation f : X → Y is used to emphasize the role of the domain X and the

codomain Y . The range of f is the subset of Y which is actually achieved by f ,

{f(x) ∈ Y |x ∈ X}. Since the term codomain is somewhat uncommon, people
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often use the term range instead of codomain either intentionally (for simplicity) or

unintentionally (due to confusion).

Definition 1.5.1. Formally, a function f : X → Y from X to Y is defined by a

subset F ⊂ X × Y such that Ax = {y ∈ Y |(x, y) ∈ F} has exactly one element

for each x ∈ X . The value of f at x ∈ X , denoted f(x), is the unique element of

Y contained in Ax.

Two functions are said to be equal if they have the same domain, codomain, and

value for all elements of the domain. A function f is called:

1. one-to-one or injective if, for all x, x′ ∈ X , if f(x) = f(x′) then x = x′;

2. onto or surjective if its range {f(x)|x ∈ X} equals Y ;

3. a one-to-one correspondence or bijective if it is both one-to-one and onto.

A bijective function f : X → Y has a unique inverse function f−1 : Y → X such

that f−1(f(x)) = x for all x ∈ X and f(f−1(y)) = y for all y ∈ Y . In fact,

any one-to-one function f : X → Y can be transformed into a bijective function

g : X → R with g(x) = f(x) by restricting its codomain Y to its range R.

Functions can also be applied to sets in a natural way. For a function f : X → Y

and subset A ⊆ X , the image of A under f is

f(A) , {y ∈ Y |∃x ∈ A s.t. f(x) = y} = {f(x)|x ∈ A}.

Using this definition, we see that the range of f is simply f(X). One benefit of

allowing functions to have set-valued images is that a set-valued inverse function

always exists. The inverse image or preimage of a subset B ⊆ Y is

f−1(B) , {x ∈ X|f(x) ∈ B}.

For a one-to-one function f , the inverse image of any singleton set {f(x)} is the

singleton set {x}. It is worth noting that the notation f−1(B) for the preimage of B

can be somewhat misleading because, in some cases, f−1(f(A)) 6= A. In general, a

function gives rise to the following property, f(f−1(B)) ⊆ B and f−1(f(A)) ⊇ A.

Example 1.5.2. Let the function f : R→ R be defined by f(x) = x2. LetA = [1, 2]

and notice that B = f(A) = [1, 4]. Then,

f−1(B) = f−1([1, 4]) = [−2,−1] ∪ [1, 2] ⊇ A.
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Example 1.5.3. Let the function f : R → R be defined by f(x) = x2 + 1. Let

B = [0, 2] and notice that A = f−1(B) = [−1, 1]. Then,

f(A) = f([−1, 1]) = [1, 2] ⊆ B.

Problem 1.5.4. For all f : X → Y , A ⊆ X , and B ⊆ Y , we have the rules:

(a) x ∈ A⇒ f(x) ∈ f(A) (b) y ∈ f(A)⇒ ∃x ∈ A s.t. f(x) = y

(c) x ∈ f−1(B)⇒ f(x) ∈ B (d) f(x) ∈ B ⇒ x ∈ f−1(B).

Use these rules to show that f−1(f(A)) ⊇ A and f(f−1(B)) ⊆ B.

Solution 1.5.4. The first result follows from

x ∈ A (a)⇒ f(x) ∈ f(A)
(d)⇒ x ∈ f−1(f(A)),

and the definition of subset. The second result follows from

y ∈ f(f−1(B))
(b)⇒ ∃x ∈ f−1(B) s.t. f(x) = y

(c)⇒ y ∈ B,

and the definition of subset.

Problem 1.5.5. Let f : X → Y , Ai ⊆ X for all i ∈ I , and Bi ⊆ Y for all i ∈ I .

Show that the following expressions hold:

(1) f

(⋃
i∈I

Ai

)
=
⋃
i∈I

f (Ai) (2) f

(⋂
i∈I

Ai

)
⊆
⋂
i∈I

f (Ai)

(3) f−1

(⋃
i∈I

Bi

)
=
⋃
i∈I

f−1 (Bi) (4) f−1

(⋂
i∈I

Bi

)
=
⋂
i∈I

f−1 (Bi) .
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Chapter 2

Metric Spaces and Topology

From an engineering perspective, the most important way to construct a topology on

a set is to define the topology in terms of a metric on the set. This approach underlies

our intuitive understanding of open and closed sets on the real line. Generally

speaking, a metric captures the notion of a distance between two elements of a set.

Topologies that are defined through metrics possess a number of properties that

make them suitable for analysis. Identifying these common properties permits the

unified treatment of different spaces that are useful in solving engineering problems.

To gain better insight into metric spaces, we need to review the notion of a metric

and to introduce a definition for topology.

2.1 Metric Spaces

A metric space is a set that has a well-defined “distance” between any two ele-

ments. Mathematically, a metric space abstracts a few basic properties of Euclidean

space. Formally, a metric space (X, d) is a set X and a function d called a metric.

Definition 2.1.1. A metric on a set X is a function

d : X ×X → R

that satisfies the following properties,

1. d(x, y) ≥ 0 ∀x, y ∈ X; equality holds if and only if x = y

2. d(x, y) = d(y, x) ∀x, y ∈ X

23
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3. d(x, y) + d(y, z) ≥ d(x, z) ∀x, y, z ∈ X .

Example 2.1.2. The set of real numbers equipped with the metric of absolute dis-

tance d(x, y) = |x− y| defines the standard metric space of real numbers R.

Example 2.1.3. Given x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, the Euclidean
metric d on Rn is defined by the equation

d
(
x, y
)

=
√

(x1 − y1)2 + · · ·+ (xn − yn)2.

As implied by its name, the function d defined above is a metric.

Problem 2.1.4. Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn and consider the

function ρ given by

ρ
(
x, y
)

= max {|x1 − y1|, . . . , |xn − yn|} .

Show that ρ is a metric.

Problem 2.1.5. Let X be a metric space with metric d. Define d̄ : X ×X → R by

d̄(x, y) = min {d(x, y), 1} .

Show that d̄ is also a metric.

Let (X, d) be a metric space. Then, elements of X are called points and the

number d(x, y) is called the distance between x and y. Let ε > 0 and consider the

set Bd(x, ε) = {y ∈ X|d(x, y) < ε}. This set is called the d-open ball (or open

ball) of radius ε centered at x.

Problem 2.1.6. Suppose a ∈ Bd(x, ε) with ε > 0. Show that there exists a d-open

ball centered at a of radius δ, say Bd(a, δ), that is contained in Bd(x, ε).

One of the main benefits of having a metric is that it provides some notion of

“closeness” between points in a set. This allows one to discuss limits, convergence,

open sets, and closed sets.

Definition 2.1.7. A sequence of elements from a set X is an infinite list x1, x2, . . .

where xi ∈ X for all i ∈ N. Formally, a sequence is equivalent to a function

f : N→ X where xi = f(i) for all i ∈ N.
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Definition 2.1.8. Consider a sequence x1, x2, . . . of points in a metric space (X, d).

We say that xn converges to x ∈ X (denoted by xn → x) if, for any ε > 0, there is

natural number N such that d(x, xn) < ε for all n > N .

Problem 2.1.9. For a sequence xn, show that xn → a and xn → b implies a = b.

Definition 2.1.10. A sequence x1, x2, . . . in (X, d) is a Cauchy sequence if, for any

ε > 0, there is a natural number N (depending on ε) such that, for all m,n > N ,

d (xm, xn) < ε.

Theorem 2.1.11. Every convergent sequence is a Cauchy sequence.

Proof. Since x1, x2, . . . converges to some x, there is an N , for any ε > 0, such that

d(x, xn) < ε/2 for all n > N . The triangle inequality for d(xm, xn) shows that, for

all m,n > N ,

d(xm, xn) ≤ d(xm, x) + d(x, xn) ≤ ε/2 + ε/2 = ε.

Therefore, x1, x2, . . . is a Cauchy sequence.

Example 2.1.12. Let (X, d) be the metric space of rational numbers defined by

X = Q and d(x, y) = |x − y|. The sequence x1 = 2, xn+1 = 1
2
xn + 1

xn
satisfies

xn ∈ Q and, using xn+1−
√

2 = 1
2xn

(xn−
√

2)2, one can show it is Cauchy. But, it

does not converge in (X, d) because its limit point is the irrational number
√

2 /∈ Q.

2.1.1 Metric Topology

Definition 2.1.13. Let W be a subset of a metric space (X, d). The set W is called

open if, for every w ∈ W , there is an ε > 0 such that Bd(w, ε) ⊆ W .

Theorem 2.1.14. For any metric space (X, d),

1. ∅ and X are open

2. any union of open sets is open

3. any finite intersection of open sets is open

Proof. This proof is left as an exercise for the reader.
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One might be curious why only finite intersections are allowed in Theorem 2.1.14.

The following example highlights the problem with allowing infinite intersections.

Example 2.1.15. Let In =
(
− 1
n
, 1
n

)
⊂ R, for n ∈ N, be a sequence of open real

intervals. The infinite intersection⋂
n∈N

In = {x ∈ R|∀n ∈ N, x ∈ In} = {0}.

But, it is easy to verify that {0} is not an open set.

Definition 2.1.16. A subset W of a metric space (X, d) is closed if its complement

W c = X −W is open.

Corollary 2.1.17. For any metric space (X, d),

1. ∅ and X are closed

2. any intersection of closed sets is closed

3. any finite union of closed sets is closed

Sketch of proof. Using the definition of closed, one can apply De Morgan’s Laws

to Theorem 2.1.14 verify this result.

Actually, the sets ∅ andX are both open and closed. Such sets are called clopen.

For a non-trivial example, consider the standard metric space of rational numbers

and choose W = {x ∈ Q |x <
√

2}. This set is open because, for all x ∈ W , we

have B(x,
√

2− x) ⊆ W . Since
√

2 /∈ Q, it follows that U = {x ∈ Q |x ≥
√

2} =

{x ∈ Q |x >
√

2} which is open by the same argument. But U c = W , so W is

also closed.

Definition 2.1.18. For any metric space (X, d) and subset W ⊆ X , a point w ∈ W
is in the interior of W if there is a δ > 0 such that, for all x ∈ X with d(x,w) < δ,

it follows that x ∈ W .

Definition 2.1.19. For any metric space (X, d) and subset W ⊆ X , a point w ∈ X
is a limit point of W if there is a sequence w1, w2, . . . ∈ W of distinct elements that

converges to w.
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Definition 2.1.20. For any metric space (X, d) and subset W ⊆ X , a point x ∈ X
is in the closure of W if, for all δ > 0, there is a w ∈ W such that d(x,w) < δ.

The interior of A is denoted by A◦ and the closure of A is denoted by A. Using

Definition 2.1.13, it is easy to verify that A◦ is open. One can show that closure

of W is equal to the union of W and its limit points. Thus, A is closed because

a subset of a metric space is closed if and only if it contains all of its limit points.

Finally, the boundary ∂A of a set A is defined by ∂A , A \ A◦.

2.1.2 Continuity

Let f : X → Y be a function between the metric spaces (X, dX) and (Y, dY ).

Definition 2.1.21. The function f is continuous at x0 if, for any ε > 0, there exists

a δ > 0 such that, for all x ∈ X satisfying dX(x0, x) < δ,

dY (f(x0), f(x)) < ε.

In precise mathematical notation, one has

(∀ ε > 0)(∃ δ > 0)(∀x ∈ {x′ ∈ X | dX(x0, x
′) < δ}), dY (f(x0), f(x)) < ε.

Theorem 2.1.22. If f is continuous at x0, then f(xn) → f(x0) for all sequences

x1, x2, . . . ∈ X such that xn → x0. Conversely, if f(xn)→ f(x0) for all sequences

x1, x2, . . . ∈ X such that xn → x0, then f is continuous at x0.

Proof. If f is continuous at x0, then, for any ε > 0, there is a δ > 0 such that

dY (f(x0), f(x)) < ε if dX(x0, x) < δ. If xn → x0, then there is an N ∈ N such

that dX(xn, x0) < δ for all n > N . Thus, dY (f(x0), f(xn)) < ε for all n > N and

f(xn)→ f(x0).

For the converse, we show the contrapositive. If f is not continuous at x0, then

there exists an ε > 0 such that, for all δ > 0, there is an x ∈ X with dX(x0, x) < δ

and dY (f(x0), f(x)) ≥ ε. For this ε and any positive sequence δn → 0, let xn be the

promised x. Then, xn → x0 because dX(x0, xn) < δn → 0 but dY (f(x0), f(xn)) ≥
ε. Thus, f(xn) does not converge to f(x0) for some sequence where xn → x0.

Definition 2.1.23. The limit of f at x0, limx→x0 f(x), exists and equals f(x0) if

f(xn)→ f(x0) for all sequences xn ∈ X such that xn → x0. Thus, Theorem 2.1.22

implies that the limit of f exists at x0 if and only if f is continuous at x0.
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Definition 2.1.24. The function f is called continuous if, for all x0 ∈ X , it is

continuous at x0. In precise mathematical notation, one has

(∀x0 ∈ X)(∀ ε > 0)(∃ δ > 0)

(∀x ∈ {x′ ∈ X | dX(x0, x
′) < δ}), dY (f(x0), f(x)) < ε.

Definition 2.1.25. The function f is called uniformly continuous if it is continu-

ous and, for all ε > 0, the δ > 0 can be chosen independently of x0. In precise

mathematical notation, one has

(∀ ε > 0)(∃ δ > 0)(∀x0 ∈ X)

(∀x ∈ {x′ ∈ X | dX(x0, x
′) < δ}), dY (f(x0), f(x)) < ε.

Definition 2.1.26. A function f : X → Y is called Lipschitz continuous onA ⊆ X

if there is a constant L ∈ R such that dY (f(x), f(y)) ≤ LdX(x, y) for all x, y ∈ A.

Let fA denote the restriction of f to A ⊆ X defined by fA : A → Y with

fA(x) = f(x) for all x ∈ A. It is easy to verify that, if f is Lipschitz continuous on

A, then fA is uniformly continuous.

Problem 2.1.27. Let (X, d) be a metric space and define f : X → R by f(x) =

d(x, x0) for some fixed x0 ∈ X . Show that f is Lipschitz continuous with L = 1.

2.1.3 Completeness

Suppose (X, d) is a metric space. From Definition 2.1.8, we know that a sequence

x1, x2, . . . of points in X converges to x ∈ X if, for every δ > 0, there exists an

integer N such that d(xi, x) < δ for all i ≥ N .

It is possible for a sequence in a metric space X to satisfy the Cauchy criterion,

but not to converge in X .

Example 2.1.28. Let X = C[−1, 1] be the space of continuous functions that map

[−1, 1] to R and satisfy ‖f‖2 <∞, where ‖f‖2 denotes the L2 norm

‖f‖2 ,

(∫ 1

−1

|f(t)|2dt
) 1

2

.

This set forms a metric space (X, d) when equipped with the distance

d(f, g) , ‖f − g‖2 =

(∫ 1

−1

|f(t)− g(t)|2dt
) 1

2

.
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Figure 2.1: The sequence of continuous functions in Example 2.1.28 satisfies the

Cauchy criterion. But, it does not converge to a continuous function in C[−1, 1].

Consider the sequence of functions fn(t) given by

fn(t) ,


0 t ∈

[
−1,− 1

n

]
nt
2

+ 1
2

t ∈
(
− 1
n
, 1
n

)
1 t ∈

[
1
n
, 1
]
.


Assuming that m ≥ n, a bit of calculus shows that

d(fn, fm) = ‖fn(t)− fm(t)‖2 =

(∫ 1

−1

|fn(t)− fm(t)|2dt
) 1

2

=
(m− n)2

6m2n
.

Since m ≥ n, this distance is upper bounded by 1
6n

and the sequence satisfies the

Cauchy criterion. But, it does not converge to a continuous function in C[−1, 1].

Definition 2.1.29. A metric space (X, d) is said to be complete if every Cauchy

sequence in (X, d) converges to a limit x ∈ X .

The standard metric space of real numbers with absolute distance is a complete

metric space. This fact and other foundational properties of the real numbers can

be derived formally using the techniques described below. However, a formal con-

struction of the real numbers will not be provided in these notes.

Example 2.1.30. Consider the sequence x1 = 2, xn+1 = 1
2
xn+ 1

xn
and observe that

xn ∈ Q for all n ∈ N. We saw earlier that xn is a Cauchy sequence with limit point
√

2 ∈ R. But,
√

2 is irrational and thus the rational numbers Q are not complete.
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Theorem 2.1.31. A closed subset A of a complete metric space X is itself a com-

plete metric space.

Proof. Any Cauchy sequence x1, x2, . . . ∈ A is also a Cauchy sequence in X . This

implies that xn → x ∈ X and it follows that x ∈ A. Since A is closed, x ∈ A.

Definition 2.1.32. An isometry is a mapping φ : X → Y between two metric

spaces (X, dX) and (Y, dY ) that is distance preserving (i.e., it satisfies dX(x, x′) =

dY (φ(x), φ(x′)) for all x, x′ ∈ X).

Definition 2.1.33. A subsetA of a metric space (X, d) is dense inX if every x ∈ X
is a limit point of the set A. This is equivalent to its closure A being equal to X .

Definition 2.1.34. The completion of a metric space (X, dX) consists of a complete

metric space (Y, dY ) and an isometry φ : X → Y such that φ(X) is a dense subset

of Y . Moreover, the completion is unique up to isometry.

Example 2.1.35. Consider the metric space Q of rational numbers equipped with

the metric of absolute distance. The completion of this metric space is R because

the isometry is given by the identity mapping and Q is a dense subset of R.

Cauchy sequences have many applications in analysis and signal processing.

For example, they can be used to construct the real numbers from the rational num-

bers. In fact, the same approach is used to construct the completion of any metric

space.

Definition 2.1.36. Two Cauchy sequences x1, x2, . . . and y1, y2, . . . are equivalent

if, for every ε > 0, there exists an integer N such that d(xk, yk) ≤ ε for all k ≥ N .

Example 2.1.37. Let C(Q) denote the set of all Cauchy sequences q1, q2, . . . of

rational numbers where ∼ represents the equivalence relation on this set defined

above. Then, the set of equivalence classes (or quotient set) C(Q)/ ∼ is in one-

to-one correspondence with the real numbers. This construction is the standard

completion of Q. Since every Cauchy sequence of rationals converges to a real

number, the isometry is given by mapping each equivalence class to its limit point

in R.

Definition 2.1.38. Let A be a subset of a metric space (X, d) and f : X → X be

a function. Then, f is a contraction on A if f(A) ⊆ A and there exists a constant

γ < 1 such that d (f(x), f(y)) ≤ γd(x, y) for all x, y ∈ A.
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Consider the following important results in applied mathematics: Picard’s unique-

ness theorem for differential equations, the implicit function theorem, and the exis-

tence of stationary optimal policies for Markov decision processes. What do they

have in common? They each establish the existence and uniqueness of a function

and have relatively simple proofs based on the contraction mapping theorem.

Theorem 2.1.39 (Contraction Mapping Theorem). Let (X, d) be a complete metric

space and f be contraction on a closed subset A ⊆ X . Then, f has a unique fixed

point x∗ in A such that f(x∗) = x∗ and the sequence xn+1 = f(xn) converges

to x∗ for any point x1 ∈ A. Moreover, xn satisfies the error bounds d(x∗, xn) ≤
γn−1d(x∗, x1) and d(x∗, xn+1) ≤ d(xn, xn+1)γ/(1− γ).

Proof. Suppose f has two fixed points y, z ∈ A. Then, d(y, z) = d (f(y), f(z)) ≤
γd(y, z) and d(y, z) = 0 because γ ∈ [0, 1). This shows that y = z and any two

fixed points in A must be identical.

Since d(f(xn), f(xn+1)) ≤ γd(xn, xn+1), induction shows that d(xn, xn+1) ≤
γn−1d(x1, x2). Using this, we can bound the distance d(xm, xn) (for m < n) with

d(xm, xn) ≤ d(xm, xm+1) + d(xm+1, xn)

≤
n−1∑
i=m

d(xi, xi+1) ≤
n−1∑
i=m

γi−1d(x1, x2)

≤
∞∑
i=m

γi−1d(x1, x2) ≤ γm−1

1− γ
d(x1, x2).

The sequence xn is Cauchy because d(xm, xn) can be made arbitrarily small (for

all n > m) by increasing m. As (X, d) is complete, it follows that xn → x∗ for

some x∗ ∈ X . Since f is Lipschitz continuous, this implies that x∗ = limn xn =

limn f(xn) = f(x∗) the unique fixed point of f in A.

Arguments similar to the above can be used to prove the stated error bounds.

Example 2.1.40. Consider the cosine function restricted to the subset [0, 1] ⊆ R.

Since cos(x) is decreasing for 0 ≤ x < π, we have cos([0, 1]) = [cos(1), 1] with

cos(1) ≈ 0.54. The mean value theorem of calculus also tells us that cos(y) −
cos(x) = cos′(t)(y − x) for some t ∈ [x, y]. Since cos′(t) = − sin(t) and sin(t) is

increasing on [0, 1], we find that sin([0, 1]) = [0, sin(1)] with sin(1) ≈ 0.84.
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Figure 2.2: Starting from x1 = 0.2, the iteration in Example 2.1.40 maps xn to

xn+1 = cos(xn). The points are also connected to the slope-1 line to show the path.

Taking the absolute value, shows that | cos(y)− cos(x)| ≤ 0.85|y − x|. There-

fore, cos(t) is a contraction on [0, 1] and the sequence xn+1 = cos(xn) (e.g., see

Figure 2.2) converges to the unique fixed point x∗ = cos(x∗) for all x1 ∈ [0, 1].

2.1.4 Compactness

Definition 2.1.41. A metric space (X, d) is totally bounded if, for any ε > 0, there

exists a finite set of Bd(x, ε) balls that cover (i.e., whose union equals) X .

Definition 2.1.42. A metric space is compact if it is complete and totally bounded.

The closed interval [0, 1] ⊂ R is compact. In fact, a subset of Rn is compact if

and only if it is closed and bounded. On the other hand, the standard metric space

of real numbers is not compact because it is not totally bounded.

Theorem 2.1.43. A closed subsetA of a compact spaceX is itself a compact space.

The following theorem highlights one of the main reasons that compact spaces

are desirable in practice.

Theorem 2.1.44. Let (X, d) be a compact metric space and x1, x2, . . . ∈ X be a

sequence. Then, there is a subsequence xn1 , xn2 , . . ., defined by some increasing

sequence n1, n2, . . . ∈ N, that converges.
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Proof. We proceed by recursively constructing subsequences z(k)
n starting from

z
(0)
n = xn. Since X is totally bounded, let Ck ⊂ X be the centers of a finite

set of balls with radius 2−k that cover X (i.e., ∪x∈Ck
B(x, 2−k) = X). Then, one

of these balls (say centered at x′) must contain infinitely many elements in z(k−1)
n

(i.e., ∃x′ ∈ Ck, |{n ∈ N | z(k−1)
n ∈ B(x′, 2−k)}| =∞). Next, we extract the subse-

quence contained in this ball by choosing z(k)
n to be the subsequence of z(k−1)

n con-

tained in B(x′, 2−k). From the triangle inequality, it follows that d(y, y′) < 2(2−k)

for all y, y′ ∈ B(x′, 2−k). Thus, d(z
(k′)
m , z

(k)
n ) < 2−k+1 for all m > n ≥ 1 and

k′ ≥ k ≥ 1.

Let I(k, n) be the index in the original sequence associated with z(k)
n . Since

each stage only removes elements from the previous subsequence and relabels, it

follows that I(k+ 1, k+ 1) ≥ I(k, k+ 1) > I(k, k). This implies that the sequence

yk = z
(k)
k = xI(k,k) is a subsequence of xn and d(ym, yk) ≤ 2−k+1 for allm > k and

k ≥ 1. Thus, for any ε > 0, choosing N = dlog2
1
ε
e + 1 shows that yk is a Cauchy

sequence. Since X is complete, it follows that yk converges to some y ∈ X .

Functions from compact sets to the real numbers are very important in prac-

tice. To keep the discussion self-contained, we first review the extreme values

of sets of real numbers. First, we must define the extended real numbers R
by augmenting the real numbers to include limit points for unbounded sequences

R , R∪{∞,−∞}. Using the metric dR(x, y) , | x
1+|x| −

y
1+|y| |, this set becomes a

compact metric space. The main difference from R is that, for xn ∈ R, the statement

xn →∞ is well defined and equivalent to ∀M > 0, ∃N ∈ N, ∀n > N, xn > M .

Definition 2.1.45. The supremum (or least upper bound) of X ⊆ R, denoted

supX , is the smallest extended real number M ∈ R such that x ≤ M for all

x ∈ X . It is always well-defined and equals −∞ if X = ∅.

Definition 2.1.46. The maximum of X ⊆ R, denoted maxX , is the largest value

achieved by the set. It equals supX if supX ∈ X and is undefined otherwise.

Definition 2.1.47. The infimum (or greatest lower bound) of X ⊆ R, denoted

inf X , is the largest extended real number m ∈ R such that x ≥ m for all x ∈ X .

It is always well-defined and equals∞ if X = ∅.

Definition 2.1.48. The minimum of X ⊆ R, denoted minX , is the smallest value

achieved by the set. It equals inf X if inf X ∈ X and is undefined otherwise.
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Lemma 2.1.49. Let X be a metric space and f : X → R be a function from X to

the real numbers. Let M = sup f(A) for some non-empty A ⊆ X . Then, there

exists a sequence x1, x2, . . . ∈ A such that limn f(xn) = M .

Proof. If M = ∞, then f(A) has no finite upper bound and, for any y ∈ R, there

exists an x ∈ A such that f(x) > y. In this case, we can let x1 be any element of A

and xn+1 be any element of A such that f(xn+1) > f(xn) + 1. In the metric space

(R, dR), this implies that dR(xn,∞) = | f(xn)
1+|f(xn)| − 1| → 0 and thus f(xn)→∞.

If M <∞, then f(A) has a finite upper bound and, for any ε > 0, there is an x

such thatM−f(x) < ε. Otherwise, one arrives at the contradiction sup f(A) < M .

Therefore, we can construct the sequence x1, x2, . . . by choosing xn ∈ A to be any

point that satisfies M − f(xn) ≤ 1
n

.

Theorem 2.1.50. LetX be a metric space and f : X → R be a continuous function

from X to the real numbers. If A is a compact subset of X , then there exists x ∈ A
such that f(x) = sup f(A) (i.e., f achieves a maximum on A).

Proof. Using Lemma 2.1.49, one finds that there is a sequence x1, x2, . . . ∈ A such

that limn f(xn) = sup f(A). Since A is compact, there must also be a subsequence

xn1 , xn2 , . . . that converges. As A is closed, this subsequence must converge to

some x∗ ∈ A. Finally, the continuity of f shows that

sup f(A) = lim
n
f(xn) = lim

k
f(xnk

) = f(lim
k
xnk

) = f(x∗).

Corollary 2.1.51. Let (X, d) be a metric space. Then, a continuous function from

a compact subset A ⊆ X to the real numbers achieves a minimum on A.

Theorem 2.1.52. Any bounded non-decreasing sequence of real numbers converges

to its supremum.

Proof. Let x1, x2, . . . ∈ R be a sequence satisfying xn+1 ≥ xn and xn ≤ M < ∞
for all n ∈ N. Without loss of generality, we can choose the upper bound M to be

the supremum sup{x1, x2, . . .}. Now, we will prove directly that xn →M .

First, we note that the definition of the supremum implies that xn ≤ M for all

n ∈ N and, for any ε > 0, there is an N ∈ N such that xN > M − ε. Second, since

xn is non-decreasing, this implies that xn > M − ε for all n > N . Third, since

xn ≤M by definition, it follows that |M−xn| = M−xn < ε for all n > N . Thus,

the constructed N satisfies all elements in the definition of xn →M .
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Lemma 2.1.53. Let yn ∈ R be a real sequence and xn =
∑n

i=1 yi be its sequence

of partial sums. Then,
∑∞

i=1 yi , limn→∞ xn exists if and only if the tail of the sum

is negligible:

∀ε > 0, ∃N ∈ N, ∀m,n > N,

∣∣∣∣∣
m∑

i=n+1

yi

∣∣∣∣∣ < ε.

Proof. Since R is complete, limn→∞ xn exists if and only if xn is a Cauchy se-

quence. Thus, xn converges if and only if “∀ε > 0, ∃N ∈ N, ∀m,n > N, |xm −
xn| < ε”. Thus, the result follows from the fact that |xm − xn| =

∣∣∑m
i=n+1 yi

∣∣.
Lemma 2.1.54. Let yn ∈ R be a real sequence. If

∑∞
i=1 |yi| = M < ∞, then

xn =
∑n

i=1 yi satisfies xn → x with |x| < M .

Proof. Let wn =
∑n

i=1 |yi| and observe that the following inequality holds,

|xm − xn| =

∣∣∣∣∣
m∑

i=n+1

yi

∣∣∣∣∣ ≤
m∑

i=n+1

|yi| = |wm − wn|.

Since wn converges, it is Cauchy and the inequality implies that xm is Cauchy.

Thus, xn converges to some x ∈ R and |x| < M follows from |xn| ≤ wn ≤M .

2.1.5 Sequences of Functions

Let (X, dX) and (Y, dY ) be metric spaces and fn : X → Y for n ∈ N be a sequence

of functions mapping X to Y .

Definition 2.1.55. The sequence fn converges pointwise to f : X → Y if

lim
n→∞

fn(x) = f(x)

for all x ∈ X . Using mathematical symbols, we can write

∀x ∈ X, ∀ε > 0, ∃N ∈ N, ∀n ∈ {n′ ∈ N |n′ > N}, dY (fn(x), f(x)) < ε.

Definition 2.1.56. The sequence fn converges uniformly to f : X → Y if

∀ε > 0, ∃N ∈ N, ∀n ∈ {n′ ∈ N |n′ > N}, ∀x ∈ X, dY (fn(x), f(x)) < ε.

This condition is also equivalent to

lim
n→∞

sup
x∈X

dY (fn(x), f(x)) = 0.
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Theorem 2.1.57. If each fn is continuous and fn converges uniformly to f : X →
Y , then f is continuous.

Proof. The goal is to show that, for all x ∈ X and any ε > 0, there is a δ > 0

such that dY (f(x), f(y)) < ε if dX(x, y) < δ. Since fn → f uniformly, for any

ε > 0, there is an N ∈ N such that dY (fn(x), f(x)) < ε/3 for all n > N and all

x ∈ X . Now, we can fix ε > 0 use the N promised above. Then, for any n > N ,

the continuity of fn implies that, for all x ∈ X and any ε > 0, there is a δ > 0 such

that dY (fn(x), fn(y)) < ε/3 if dX(x, y) < δ. Thus, if dX(x, y) < δ, then

dY (f(x), f(y)) ≤ dY (f(x), fn(x)) + dY (fn(x), fn(y)) + dY (fn(y), f(y))

<
ε

3
+
ε

3
+
ε

3
= ε.

2.2 General Topology*

While topology originated with the study of sets of finite-dimensional real vectors,

its mathematical abstraction can also be useful. We note that some of the terms used

above, for metric spaces, are redefined below. Fortunately, these new definitions are

compatible with the old ones when the topology is generated by a metric.

Definition 2.2.1. A topology on a set X is a collection J of subsets of X that

satisfies the following properties,

1. ∅ and X are in J

2. the union of the elements of any subcollection of J is in J

3. the intersection of the elements of any finite subcollection of J is in J .

A subset A ⊆ X is called an open set of X if A ∈ J . Using this terminology,

a topological space is a set X together with a collection of subsets of X , called

open sets, such that ∅ and X are both open and such that arbitrary unions and finite

intersections of open sets are open.

Definition 2.2.2. If X is a set, a basis for a topology on X is a collection B of

subsets of X (called basis elements) such that:
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1. for each x ∈ X , there exists a basis element B containing x.

2. if x ∈ B1 and x ∈ B2 where B1, B2 ∈ B, then there exists a basis element B3

containing x such that B3 ⊆ B1 ∩B2.

3. a subset A ⊆ X is open in the topology on X generated by B if and only if,

for every x ∈ A, there exists a basis element B ∈ B such that x ∈ B and

B ⊆ A.

Probably the most important and frequently used way of imposing a topology

on a set is to define the topology in terms of a metric.

Example 2.2.3. If d is a metric on the set X , then the collection of all ε-balls

{Bd(x, ε)|x ∈ X, ε > 0}

is a basis for a topology on X . This topology is called the metric topology induced

by d.

Applying the meaning of open set from Definition 2.2.2 to this basis, one finds

that a set A is open if and only if, for each x ∈ A, there exists a δ > 0 such that

Bd(x, δ) ⊂ A. Clearly, this condition agrees with the definition of d-open from

Definition 2.1.13.

Definition 2.2.4. Let X be a topological space. This space is said to be metrizable
if there exists a metric d on the set X that induces the topology of X .

We note that definitions and results in Sections 2.1.3 and 2.1.4 for metric spaces

actually apply to any metrizable space. For example, a metrizable space is complete

if and only if there the metric that induces its topology also defines a complete

metric space.

Example 2.2.5. While most of the spaces discussed in these notes are metrizable,

there is a very common notion of convergence that is not metrizable. The topology

on the set of functions f : [0, 1] → R where the open sets are defined by pointwise

convergence is not metrizable.
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2.2.1 Closed Sets and Limit Points

Definition 2.2.6. A subset A of a topological space X is closed if the set

Ac = X − A = {x ∈ X|x /∈ A}

is open.

Note that a set can be open, closed, both, or neither! It can be shown that the

collection of closed subsets of a space X has properties similar to those satisfied by

the collection of open subsets of X .

Fact 2.2.7. Let X be a topological space. The following conditions hold,

1. ∅ and X are closed

2. arbitrary intersections of closed sets are closed

3. finite unions of closed sets are closed.

Definition 2.2.8. Given a subset A of a topological space X , the interior of A is

defined as the union of all open sets contained in A. The closure of A is defined as

the intersection of all closed sets containing A.

The interior of A is denoted by A◦ and the closure of A is denoted by A. We

note that A◦ is open and A is closed. Furthermore, A◦ ⊆ A ⊆ A.

Theorem 2.2.9. Let A be a subset of the topological space X . The element x is in

A if and only if every open set B containing x intersects A.

Proof. We prove instead the equivalent contrapositive statement: x /∈ A if and only

if there is an open set B containing x that does not intersect A. Clearly, if x /∈ A,

then A
c

= X −A is an open set containing x that does not intersect A. Conversely,

if there is an open set B containing x that does not intersect A, then Bc = X − B
is a closed set containing A. The definition of closure implies that Bc must also

contain A. But x /∈ Bc, so x /∈ A.

Definition 2.2.10. An open set O containing x is called a neighborhood of x.

Definition 2.2.11. Suppose A is a subset of the topological space X and let x be

an element of X . Then x is a limit point of A if every neighborhood of x intersects

A in some point other than x itself.
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In other words, x ∈ X is a limit point of A ⊂ X if x ∈ A− {x}, the closure of

A− {x}. The point x may or may not be in A.

Theorem 2.2.12. A subset of a topological space is closed if and only if it contains

all its limit points.

Definition 2.2.13. A subsetA of a topological spaceX is dense inX if every x ∈ X
is a limit point of the set A. This is equivalent to its closure A being equal to X .

Definition 2.2.14. A topological space X is separable if it contains a countable

subset that is dense in X .

Example 2.2.15. Since every real number is a limit point of rational numbers, it

follows that Q is a dense subset of R. This also implies that R, the standard metric

space of real numbers, is separable.

2.2.2 Continuity

Definition 2.2.16. Let X and Y be topological spaces. A function f : X → Y is

continuous if for each open subset O ⊆ Y , the set f−1(O) is an open subset of X .

Recall that f−1(B) is the set {x ∈ X|f(x) ∈ B}. Continuity of a function

depends not only upon the function f itself, but also on the topologies specified for

its domain and range!

Theorem 2.2.17. Let X and Y be topological spaces and consider a function

f : X → Y . The following are equivalent:

1. f is continuous

2. for every subset A ⊆ X , f
(
A
)
⊆ f(A)

3. for every closed set C ⊆ Y , the set f−1(C) is closed in X .

Proof. (1 ⇒ 2). Assume f is a continuous function. We wish to show f
(
A
)
⊆

f(A) for every subset A ⊆ X . To begin, suppose A is fixed and let y ∈ f
(
A
)
.

Then, there exists x ∈ A such that f(x) = y. Let O ⊆ Y be a neighborhood

of f(x). Preimage f−1(O) is an open set containing x because f is continuous.

Since x ∈ A ∩ f−1(O), we gather that f−1(O) must intersect with A in some point
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Figure 2.3: The function f(x) = 1
1+|x| is continuous. The set of integers Z is closed.

Yet, the image of this set, f(Z) = {1/n : n ∈ N}, is not closed. Thus, this is an

example of a continuous function along with a set for which f
(
Z
)
( f (Z).

x′. Moreover, f(x′) ∈ f (f−1(O)) ⊆ O and f(x′) ∈ f(A). Thus, O intersects

with f(A) in the point f(x′). Since O is an arbitrary neighborhood of f(x), we

deduce that f(x) ∈ f(A) by Theorem 2.2.9. Collecting these results, we get that

any y ∈ f
(
A
)

is also in f(A).

(2⇒ 3). For this step, we assume that f
(
A
)
⊆ f(A) for every subset A ⊆ X .

Let C ⊆ Y be a closed set and let A = f−1(C). Then, f(A) = f (f−1(C)) ⊆ C.

If x ∈ A, we get

f(x) ∈ f
(
A
)
⊆ f(A) ⊆ C = C.

So that x ∈ f−1(C) = A and, as a consequence, A ⊆ A. Thus, A = A is closed.

(3 ⇒ 1). Let O be an open set in Y . Let Oc = Y − O; then Oc is closed in Y .

By assumption, f−1(Oc) is closed in X . Using elementary set theory, we have

X − f−1(Oc) = {x ∈ X|f(x) /∈ Oc} = {x ∈ X|f(x) ∈ O} = f−1(O).

That is, f−1(O) is open.

Theorem 2.2.18. SupposeX and Y are two metrizable spaces with metrics dX and

dY . Consider a function f : X → Y . The function f is continuous if and only if it

is d-continuous with respect to these metrics.
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Figure 2.4: Given a function with a discontinuity and a set A, the image of the

closure, f
(
A
)
, need not be a subset of the closure of the image, f(A), as seen in

the example above.

Proof. Suppose that f is continuous. For any x1 ∈ X and ε > 0, let Oy =

BdY (f(x1), ε) and consider the set

Ox = f−1 (Oy)

which is open in X and contains the point x1. Since Ox is open and x1 ∈ Ox,

there exists a d-open ball BdX (x1, δ) of radius δ > 0 centered at x1 such that

BdX (x1, δ) ⊂ Ox. We also see that f(x2) ∈ Oy for any x2 ∈ BdX (x1, δ) be-

cause A ⊆ Ox implies f(A) ⊆ Oy. It follows that dY (f(x1), f(x2)) < ε for all

x2 ∈ BdX (x1, δ).

Conversely, let Oy be an open set in Y and suppose that the function f is d-

continuous with respect to dX and dY . For any x ∈ f−1(Oy), there exists a d-open

ball BdY (f(x), ε) of radius ε > 0 centered at f(x) that is entirely contained in

Oy. By the definition of d-continuous, there exits a d-open ball BdX (x, δ) of radius

δ > 0 centered at x such that f (BdX (x, δ)) ⊂ BdY (f(x), ε). Therefore, every

x ∈ f−1(Oy) has a neighborhood in the same set, and that implies f−1(Oy) is

open.

Definition 2.2.19. A sequence x1, x2, . . . of points inX is said to converge to x ∈ X
if for every neighborhood O of x there exists a positive integer N such that xi ∈ O
for all i ≥ N .
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A sequence need not converge at all. However, if it converges in a metrizable

space, then it converges to only one element.

Theorem 2.2.20. Suppose that X is a metrizable space, and let A ⊆ X . There

exists a sequence of points of A converging to x if and only if x ∈ A.

Proof. Suppose xn → x, where xn ∈ A. Then, for every open set O containing

x, there is an N , such that xn ∈ O for all n > N . By Theorem 2.2.9, this implies

that x ∈ A. Let d be a metric for the topology of X and x be a point in A. For

each positive integer n, consider the neighborhood Bd

(
x, 1

n

)
. Since x ∈ A, the set

A ∩ Bd

(
x, 1

n

)
is not empty and we choose xn to be any point in this set. It follows

that the sequence x1, x2, . . . converges to x. Notice that the “only if” proof holds

for any topological space, while “if” requires a metric.

Theorem 2.2.21. Let f : X → Y where X is a metrizable space. The function f is

continuous if and only if for every convergent sequence xn → x in X , the sequence

f(xn) converges to f(x).

Proof. Suppose that f is continuous. Let O be a neighborhood of f(x). Then

f−1(O) is a neighborhood of x, and so there exists an integer N such that xn ∈
f−1(O) for n ≥ N . Thus, f(xn) ∈ O for all n ≥ N and f(xn)→ f(x).

To prove the converse, assume that the convergent sequence condition is true.

Let A ⊆ X . Since X is metrizable, one finds that x ∈ A implies that there exists a

sequence x1, x2, . . . of points of A converging to x. By assumption, f(xn)→ f(x).

Since f(xn) ∈ f(A), Theorem 2.2.21 implies that f(x) ∈ f(A). Hence f
(
A
)
⊆

f(A) and f is continuous.



Chapter 3

Linear Algebra

3.1 Fields

This section focuses on key properties of the real and complex numbers that make

them useful for linear algebra. Consider a set F of objects and two operations on

the elements of F , addition and multiplication. For every pair of elements s, t ∈ F
then their sum (s + t) ∈ F . For every pair of elements s, t ∈ F then their product

st ∈ F . Suppose that these two operations satisfy

1. addition is commutative: s+ t = t+ s ∀s, t ∈ F

2. addition is associative: r + (s+ t) = (r + s) + t ∀r, s, t ∈ F

3. to each s ∈ F there exists a unique element (−s) ∈ F such that s+(−s) = 0

4. multiplication is commutative: st = ts ∀s, t ∈ F

5. multiplication is associative: r(st) = (rs)t ∀r, s, t ∈ F

6. there is a unique non-zero element 1 ∈ F such that s1 = s ∀s ∈ F

7. to each s ∈ F − 0 there exists a unique element s−1 ∈ F such that ss−1 = 1

8. multiplication distributes over addition: r(s+ t) = rs+ rt ∀r, s, t ∈ F .

Then, the set F together with these two operations is a field.

43
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Example 3.1.1. The real numbers with the usual operations of addition and multi-

plication form a field. The complex numbers with these two operations also form a

field.

Example 3.1.2. The set of integers with addition and multiplication is not a field.

Problem 3.1.3. Is the set of rational numbers a subfield of the real numbers?

Example 3.1.4. Is the set of all real numbers of the form s + t
√

2, where s and t

are rational, a subfield of the complex numbers?

The set F =
{
s+ t

√
2 : s, t ∈ Q

}
together with the standard addition and

multiplication is a field. Let s, t, u, v ∈ Q,

s+ t
√

2 + u+ v
√

2 = (s+ u) + (t+ v)
√

2 ∈ F(
s+ t

√
2
)(

u+ v
√

2
)

= (su+ 2tv) + (sv + tu)
√

2 ∈ F(
s+ t

√
2
)−1

=
s− t

√
2

s2 + 2t2
=

s

s2 + 2t2
− t

s2 + 2t2

√
2 ∈ F

Again, the remaining properties are straightforward to prove. The field s + t
√

2,

where s and t are rational, is a subfield of the complex numbers.

3.2 Matrices

Let F be a field and consider the problem of finding n scalars x1, . . . , xn which

satisfy the conditions

a11x1 + a12x2 + · · · + a1nxn = y1

a21x1 + a22x2 + · · · + a2nxn = y2

...
...

...
...

am1x1 + am2x2 + · · · + amnxn = ym

(3.1)

where y1, . . . , yn ∈ F and aij ∈ F for 1 ≤ i ≤ m and 1 ≤ j ≤ n. These conditions

form a system of m linear equations in n unknowns. A shorthand notation for (3.1)

is the matrix equation

Ax = y,
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where x = (x1, . . . , xn)T , y = (y1, . . . , ym)T , and A is the matrix given by

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
... . . . ...

am1 am2 · · · amn

 .

We also use [A]i,j to denote the entry of A in the i-th row and j-th column (i.e., aij)

and [xi] to denote the i-th entry in x (i.e., xi).

Definition 3.2.1. Let A be an m × n matrix over F and let B be an n × p matrix

over F . The matrix product AB is the m× p matrix C whose i, j entry is

cij =
n∑
r=1

airbrj. (3.2)

Remark 3.2.2. Consider (3.2) when j is fixed and i is eliminated by grouping the

elements of C and A into column vectors c1, . . . , cp and a1, . . . , an. For this case,

(3.2) shows that the j-th column of C is a linear combination of the columns of A,

cj =
n∑
r=1

arbrj,

Similarly, one can fix i and eliminate the index j by grouping the elements of C and

B into row vectors c1, . . . , cm and b1, . . . , bn. Then, (3.2) shows that the i-th row of

C is a linear combination of the rows of B,

ci =
n∑
r=1

airbr.

Definition 3.2.3. Consider anm×nmatrixAwith elements aij ∈ F . The transpose
of A is the n×m matrix B = AT with elements defined by bij = aji.

Definition 3.2.4. Consider a complex m × n matrix A with elements aij ∈ C. Its

Hermitian transpose B = AH is the n×m matrix with elements defined bij = aji,

where a denotes the complex conjugate of a.

Problem 3.2.5. For matrices A ∈ Cm×p and B ∈ Cp×n, show (AB)H = BHAH .

Definition 3.2.6. An m× n matrix A over F is in row echelon form if
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1. all rows containing only zeros, if they exist, are the bottom of the matrix, and

2. For non-zero rows, the leading coefficient (i.e., the first non-zero element from

the left) is strictly to the right of the leading coefficient of the row above it.

These two conditions imply that entries below the leading coefficient in a column

are zero. A matrix is column echelon form if its transpose is in row echelon form.

Definition 3.2.7. An m × n matrix A over F is in reduced row echelon form if it

is in row echelon form and

1. every leading coefficient is 1, and

2. every leading coefficient is the only non-zero element in its column.

Definition 3.2.8. Let A be an n×n matrix over F . An n×n matrix B is called the

inverse of A if

AB = BA = I.

In this case, A is called invertible and its inverse is denoted by A−1.

Problem 3.2.9. For a matrixA ∈ Cn×n, show that (AH)−1 = (A−1)H ifA−1 exists.

Definition 3.2.10. An elementary row operation on an m× n matrix consists of

1. multiplying a row by a non-zero scalar,

2. swapping two rows, or

3. adding a non-zero scalar multiple of one row to another row.

An elementary column operation is the same but applied to the columns.

Lemma 3.2.11. For any m × n matrix A over F , there is an invertible m × m

matrix P over F such that R = PA is in reduced row echelon form.

Sketch of Proof. This follows from the fact that elementary row operations (i.e.,

Gaussian elimination) can be used to reduce any matrix to reduced row echelon

form. To construct the P matrix, one applies Gaussian elimination to the augmented

matrix A′ = [A I]. This results in an augmented matrix R′ = [R P ] in reduced

row echelon form. It follows that R is also in reduced row echelon form. Since

elementary row operations can be implemented by (invertible) matrix multiplies on

the left side, one also finds that R′ = PA′, R = PA, and P is invertible.
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Lemma 3.2.12. Let A be an m × n matrix over F with m < n. Then, there exists

a length-n column vector x 6= 0 (over F ) such that Ax = 0.

Proof. First, we use row reduction to compute the reduced row echelon form R =

PA of A, where P is invertible. Then, we observe that the columns of R contain-

ing leading elements can be combined in a linear combination to cancel any other

column of R. This allows us to construct a vector x satisfying Rx = 0 and thus

Ax = P−1Rx = 0.

3.3 Vector Spaces

Definition 3.3.1. A vector space consists of the following,

1. a field F of scalars

2. a set V of objects, called vectors

3. an operation called vector addition, which associates with each pair of vec-

tors v, w ∈ V a vector v + w ∈ V such that

(a) addition is commutative: v + w = w + v

(b) addition is associative: u+ (v + w) = (u+ v) + w

(c) there is a unique vector 0 ∈ V such that v + 0 = v, ∀v ∈ V

(d) to each v ∈ V there is a unique vector −v ∈ V such that v + (−v) = 0

4. an operation called scalar multiplication, which associates with each s ∈ F
and v ∈ V a vector sv ∈ V such that

(a) 1v = v, ∀v ∈ V

(b) (s1s2)v = s1(s2v)

(c) s(v + w) = sv + sw

(d) (s1 + s2)v = s1v + s2v.

Example 3.3.2. Let F be a field, and let V be the set of all n-tuples v = (v1, . . . , vn)

of scalar vi ∈ F . If w = (w1, . . . , wn) with wi ∈ F , the sum of v and w is defined

by

v + w = (v1 + w1, . . . , vn + wn).
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The product of a scalar s ∈ F and vector v is defined by

sv = (sv1, . . . , svn).

The set of n-tuples, denoted by F n, with the vector addition and scalar product

defined above forms a vector space. This is the standard vector space for F n.

Example 3.3.3. Let X be a non-empty set and let Y be a vector space over F .

Consider the set V of all functions from X into Y . The sum of two vectors f, g ∈ V
is the function from X into Y defined by

(f + g)(x) = f(x) + g(x) ∀x ∈ X,

where the RHS uses vector addition from Y . The product of scalar s ∈ F and the

function f ∈ V is the function sf defined by

(sf)(x) = sf(x) ∀x ∈ X,

where the RHS uses scalar multiplication from Y . This is the standard vector space

of functions from a set X to a vector space Y .

Definition 3.3.4. A vector w ∈ V is said to be a linear combination of the vectors

v1, . . . , vn ∈ V provided that there exist scalars s1, . . . , sn ∈ F such that

w =
n∑
i=1

sivi.

3.3.1 Subspaces

Definition 3.3.5. Let V be a vector space over F . A subspace of V is a subset

W ⊂ V which is itself a vector space over F .

Fact 3.3.6. A non-empty subset W ⊂ V is a subspace of V if and only if for every

pair w1, w2 ∈ W and every scalar s ∈ F the vector sw1 + w2 is again in W .

If V is a vector space then the intersection of any collection of subspaces of V

is a subspace of V .

Example 3.3.7. Let A be an m × n matrix over F . The set of all n × 1 column

vectors V such that

v ∈ V =⇒ Av = 0

is a subspace of F n×1.
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Definition 3.3.8. Let U be a set (or list) of vectors in V . The span of U , denoted

span(U), is defined to be the set of all finite linear combinations of vectors in U .

The subspace spanned by U can be defined equivalently as the intersection of

all subspaces of V that contain U . To see this, we note that the intersection of

all subspaces containing U is a subspace containing U because the intersection of

subspaces is also a subspace. The intersection cannot be larger than U , however,

because U is a subspace containing U .

Definition 3.3.9. Let V be a vector space and U,W be subspaces. If U,W are

disjoint (i.e., U ∩W = {0}), their direct sum U ⊕W is defined by

U ⊕W , {u+ w|u ∈ U,w ∈ W}.

An important property of a direct sum is that any vector v ∈ U⊕W has a unique

decomposition v = u+ w where u ∈ U and w ∈ W .

3.3.2 Bases and Dimensions

The dimension of a vector space is defined using the concept of a basis.

Definition 3.3.10. Let V be a vector space over F . A list of vectors u1, . . . , un ∈ V
is called linearly dependent if there are scalars s1, . . . , sn ∈ F , not all of which

are 0, such that
n∑
i=1

siui = 0.

A list that is not linearly dependent is called linearly independent. Similarly, a

subset U ⊂ V is called linearly dependent if there is a finite list u1, . . . , un ∈
U of distinct vectors that is linearly dependent. Otherwise, it is called linearly

independent.

A few important consequences follow immediately from this definition. Any

subset of a linearly independent set is also linearly independent. Any set which

contains the 0 vector is linearly dependent. A set U ⊂ V is linearly independent if

and only if each finite subset of U is linearly independent.

Definition 3.3.11. Let V be a vector space over F . Let B = {vα|α ∈ A} be a

subset of linearly independent vectors from V such that every v ∈ V can be written
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as a finite linear combination of vectors from B. Then, the set B is a Hamel basis
for V . The space V is finite-dimensional if it has a finite basis.

Using this definition, we note that a basis decomposition v =
∑n

i=1 sivαi
must

be unique because the difference between any two distinct decompositions produces

a finite linear dependency in the basis and, hence, a contradiction.

Theorem 3.3.12. Every vector space has a Hamel basis.

Proof. Let X be the set of linearly independent subsets of V . Furthermore, for

x, y ∈ X consider the strict partial order defined by proper inclusion. By the maxi-

mum principle, if x is an element of X , then there exists a maximal simply ordered

subset Z of X containing x. This element is a Hamel basis for V .

Example 3.3.13. Let F be a field and let U ⊂ F n be the subset consisting of the

vectors e1, . . . , en defined by

e1 = (1, 0, . . . , 0)

e2 = (0, 1, . . . , 0)
... =

...

en = (0, 0, . . . , 1).

For any v = (v1, . . . , vn) ∈ F n, we have

v =
n∑
i=1

viei. (3.3)

Thus, the collection U = {e1, . . . , en} spans F n. Since v = 0 in (3.3) if and only if

v1 = · · · = vn = 0, U is linearly independent. Accordingly, the set U is a basis for

F n×1. This basis is termed the standard basis of F n.

Lemma 3.3.14. Let A ∈ F n×n be an invertible matrix. Then, the columns of A

form a basis for F n. Similarly, the rows of A will also form a basis for F n

Proof. If v = (v1, . . . , vn)T is a column vector, then

Av =
n∑
i=1

viai,

where the columns of A are denoted by a1, . . . , an. Since A is invertible,

Av = 0 =⇒ Iv = A−10 =⇒ v = 0.
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Thus, {a1, . . . , an} is a linearly independent set. Next, for any column vector w ∈
F n, let v = A−1w. It follows that w = Av and, thus, {a1, . . . , an} is a basis for F n.

If A is invertible, then (AT )−1 exists. Thus, the same holds for the rows.

Theorem 3.3.15. Let V be a finite-dimensional vector space that is spanned by a

finite set of vectors W = {w1, . . . , wn}. If U = {u1, . . . , um} ⊂ V is a linearly

independent set of vectors, then m ≤ n.

Proof. Suppose that U = {u1, . . . , um} ⊂ V is linearly independent and m > n.

Since W spans V , there exists scalars aij such that

uj =
n∑
i=1

aijwi.

For any m scalars s1, . . . , sm we have

m∑
j=1

sjuj =
m∑
j=1

sj

n∑
i=1

aijwi =
m∑
j=1

n∑
i=1

(aijsj)wi =
n∑
i=1

(
m∑
j=1

aijsj

)
wi.

Collecting the aij coefficients into an n by m matrix A shows that
t1
...

tn

 = A


s1

...

sm

 .
Since A ∈ F n×m with n < m, Lemma 3.2.12 implies there are scalars s1, . . . , sn,

not all 0, such that t1 = t2 = · · · = tm = 0. For these scalars,
∑m

j=1 sjuj = 0.

Thus, the set U is linearly dependent. and the contradiction implies m ≥ n.

Now, suppose that V is a finite-dimensional vector space with bases U =

{u1, . . . , un} andW = {w1, . . . , wm}wherem 6= n. Then, without loss of general-

ity, we can assumem > n and apply Theorem 3.3.15 to see thatW must be linearly

dependent. Since a basis must be linearly independent, this gives a contradiction

and implies that m = n. Hence, if V is a finite-dimensional vector space, then

any two bases of V have the same number of elements. Therefore, the dimension

of a finite-dimensional vector space is uniquely defined. Thus, our intuition about

dimension from Rn does not break down for other vector spaces and fields.
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Definition 3.3.16. The dimension of a finite-dimensional vector space is the num-

ber of elements in any basis for V . We denote the dimension of a finite-dimensional

vector space V by dim(V ).

The zero subspace of a vector space V is the subspace spanned by the vector

0. Since the set {0} is linearly dependent and not a basis, we assign a dimension

0 to the zero subspace. Alternatively, it can be argue that the empty set ∅ spans

{0} because the intersection of all the subspaces containing the empty set is {0}.
Though this is only a minor point.

Theorem 3.3.17. Let A be an n × n matrix over F whose columns, denoted by

a1, . . . , an, form a linearly independent set of vectors in F n. Then A is invertible.

Proof. Let W be the subspace of V = F n spanned by a1, . . . , an. Since a1, . . . , an

are linearly independent, dim(W ) = n = dim(V ). Now, suppose W 6= V . Since

W ⊆ V , that implies there is a vector v ∈ V such that v /∈ W . It would follow that

dim(V ) > dim(W ) but this contradicts dim(V ) = dim(W ). Thus, W = V .

Since W = V , one can write the standard basis vectors e1, . . . , en ∈ F n in

terms of the columns of A. In particular, there exist scalars bij ∈ F such that

ej =
n∑
i=1

bijai, 1 ≤ j ≤ n.

Then, for the matrix B with entries bij , we have AB = I

Next, suppose that the columns of B are linearly dependent. Then, there is a

non-zero v ∈ F n such that Bv = 0. But, that gives the contradiction that A(Bv) =

0 and (AB)v = Iv = v. Thus, the columns of B are linearly independent.

Using the first argument again, one finds that there is a matrix C such that

BC = I . This also implies that A = AI = A(BC) = (AB)C = IC = C. Thus,

A−1 exists and equals B.

3.3.3 Coordinate System

Let {v1, . . . , vn} be a basis for the n-dimensional vector space V and recall that

every vector w ∈ V can be expressed uniquely as

w =
n∑
i=1

sivi.
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While standard vector and matrix notation requires that the basis elements be or-

dered, a set is an unordered collection of objects. Ordering this set (e.g., v1, . . . , vn)

allows the first element in the coordinate vector to be associated with the first vector

in our basis and so on.

Definition 3.3.18. If V is a finite-dimensional vector space, an ordered basis for V

is a finite list of vectors that is linearly independent and spans V .

In particular, if the sequence v1, . . . , vn is an ordered basis for V , then the set

{v1, . . . , vn} is a basis for V . The ordered basis B, denoted by (v1, . . . , vn), defines

the set and a specific ordering of the vectors. Based on this ordered basis, a vector

v ∈ V can be unambiguously represented as an n-tuple (s1, . . . , sn) ∈ F n such that

v =
n∑
i=1

sivi.

Definition 3.3.19. For a finite-dimensional vector space V with ordered basis B =

(v1, . . . , vn), the coordinate vector of v ∈ V is denoted by [v]B and equals the

unique vector s = F n such that

v =
n∑
i=1

sivi.

The dependence of the coordinate vector [v]B on the basis is explicitly speci-

fied using the subscript. This can be particularly useful when multiple coordinates

systems are involved.

Example 3.3.20. The canonical example of an ordered basis is the standard basis

for F n introduced in Section 3.3.2. Note that the standard basis contains a natural

ordering: e1, . . . , en. Vectors in F n can therefore be unambiguously expressed as

n-tuples.

Problem 3.3.21. Suppose that A = v1, . . . , vn is an ordered basis for V . Let P be

an n×n invertible matrix. Show that there exists an ordered basis B = w1, . . . , wn

for V such that

[u]A = P [u]B

[u]B = P−1 [u]A

for every u ∈ V .



54 CHAPTER 3. LINEAR ALGEBRA

S 3.3.21. Consider the ordered basis A = v1, . . . , vn and let Q = P−1. For all

u ∈ V , we have u =
∑n

i=1 sivi, where

[u]A =


s1

...

sn

 .
If we define

wi =
n∑
k=1

pkivk and ti =
n∑
j=1

qijsj,

then we find that
n∑
i=1

tiwi =
n∑
i=1

n∑
j=1

qijsjwi =
n∑
i=1

n∑
j=1

qijsj

n∑
k=1

pkivk

=
n∑
j=1

sj

n∑
k=1

vk

n∑
i=1

pkiqij =
n∑
j=1

sj

n∑
k=1

vkδjk

=
n∑
j=1

sjvj = u.

This shows that B = w1, . . . , wn is an ordered basis for V and

[u]B =


t1
...

tn

 .
The definition of ti also shows that [u]B = P−1 [u]A and therefore [u]A = P [u]B.

3.4 Linear Transformations

3.4.1 Definitions

Definition 3.4.1. Let V and W be vector spaces over a field F . A linear transform
from V to W is a function T from V into W such that

T (sv1 + v2) = sTv1 + Tv2

for all v1 and v2 in V and all scalars s in F .
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Definition 3.4.2. Let L(V,W ) denote the set of all linear transforms from V into

W , where V and W are vector spaces over a field F .

Example 3.4.3. Let A be a fixed m × n matrix over F . The function T defined by

T (v) = Av is a linear transformation from F n×1 into Fm×1.

Example 3.4.4. Let P ∈ Fm×m and Q ∈ F n×n be fixed matrices. Define the func-

tion T from Fm×n into itself by T (A) = PAQ. Then T is a linear transformation

from Fm×n into Fm×n. In particular,

T (sA+B) = P (sA+B)Q

= sPAQ+ PBQ

= sT (A) + T (B) .

Example 3.4.5. Let V be the space of continuous functions from [0, 1] to R, and

define T by

(Tf)(x) =

∫ x

0

f(t)dt.

Then T is a linear transformation from V into V . The function Tf is continuous

and differentiable.

It is important to note that if T is a linear transformation from V to W , then

T (0) = 0. This is essential since

T (0) = T (0 + 0) = T (0) + T (0) .

Definition 3.4.6. A linear transformation T : V → W is singular if there is a non-

zero vector v ∈ V such that Tv = 0. Otherwise, it is called non-singular.

3.4.2 Properties

The following theorem illuminates a very important structural element of linear

transformations: they are uniquely defined by where they map a set of basis vectors

for their domain.

Theorem 3.4.7. Let V,W be vector spaces over F and B = {vα|α ∈ A} be a

Hamel basis for V . For each mapping G : B → W , there is a unique linear trans-

formation T : V → W such that Tvα = G (vα) for all α ∈ A.
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Proof. Since B is a Hamel basis for V , every vector w ∈ V has a unique expansion

w =
∑
α∈A

sα(w) vα,

where sα(w) is the unique α coefficient for w and sα(w) 6= 0 only for a finite subset

of A. Using the unique expansion and vector space properties, one can show that

sα(tw1 + w2) = tsα(w1) + sα(w2).

Next, we define the mapping T : V → W in terms of sα(·) and G(·) with

Tw =
∑
α∈A

sα(w)G(vα) .

Using the linearity of sα(·), it is easy to verify that T is a linear transform.

To show that T is unique, we let U : V → W be any other linear mapping

satisfying Uvα = G (vα) for all α ∈ A. In this case, the linearity of U guarantees

that

Uw = U

(∑
α∈A

sα(w) vα

)
=
∑
α∈A

sα(w)U(vα) =
∑
α∈A

sα(w)G(vα) .

From this, we see that Uw = Tw for all w ∈ V and therefore that U = T .

Definition 3.4.8. Let V andW be vector spaces with ordered basesA and B. Then,

the coordinate matrix for the linear transform T : V → W with respect to A and

B is denoted [T ]A,B and, for all v ∈ V , satisfies

[Tv]B = [T ]A,B[v]A.

If V = W and A = B, then the coordinate matrix [T ]A,A is denoted by [T ]A.

Definition 3.4.9. If T is a linear transformation from V into W , the range of T is

the set of all vectors w ∈ W such that w = Tv for some v ∈ V . We denote the

range of T by

R(T ) , {w ∈ W |∃v ∈ V, Tv = w} = {Tv|v ∈ V }.

The set R(T ) is a subspace of W . Let w1, w2 ∈ R(T ) and let s be a scalar. By

definition, there exist vectors v1 and v2 in V such that Tv1 = w1 and Tv2 = w2.

Since T is a linear transformation, we have

T (sv1 + v2) = sTv1 + Tv2 = sw1 + w2,

which shows that sw1 + w2 is also inR(T ).
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Definition 3.4.10. If T is a linear transformation from V into W , the nullspace of

T is the set of all vectors v ∈ V such that Tv = 0. We denote the nullspace of T by

N (T ) , {v ∈ V |Tv = 0}.

It can easily be verified that N (T ) is a subspace of V .

T (0) = 0 =⇒ 0 ∈ N (T ).

Furthermore, if Tv1 = Tv2 = 0 then

T (sv1 + v2) = sT (v1) + (v2) = s0 + 0 = 0,

so that sv1 + v2 ∈ N (T ).

Definition 3.4.11. Let V and W be vector spaces over a field F , and let T be a

linear transformation from V into W . If V is finite-dimensional, the rank of T

is the dimension of the range of T and the nullity of T is the dimension of the

nullspace of T .

Theorem 3.4.12. Let V and W be vector spaces over the field F and let T be a

linear transformation from V into W . If V is finite-dimensional, then

rank(T ) + nullity(T ) = dim(V )

Proof. Let v1, . . . , vk be a basis for N (T ), the nullspace of T . There are vectors

vk+1, . . . , vn ∈ V such that v1, . . . , vn is a basis for V . We want to show that

Tvk+1, . . . , T vn is a basis for the range of T . The vectors Tv1, . . . , T vn certainly

spanR(T ) and, since Tvj = 0 for j = 1, . . . , k, it follows that Tvk+1, . . . , vn span

R(T ). Suppose that there exist scalars sk+1, . . . , sn such that
n∑

j=k+1

sjTvj = 0.

This implies that

T

(
n∑

j=k+1

sjvj

)
= 0.

and accordingly the vector v =
∑n

j=k+1 sjvj is in the nullspace of T . Since

v1, . . . , vk form a basis for N (T ), there must be a linear combination such that

v =
k∑
j=1

tjvj.
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But then,
k∑
j=1

tjvj −
n∑

j=k+1

sjvj = 0.

Since the vectors v1, . . . , vn are linearly independent, this implies that

t1 = · · · = tk = sk+1 = . . . sn = 0.

That is, the set Tvk+1, . . . , T vn is linearly independent in W and therefore forms a

basis forR(T ). In turn, this implies that n = rank(T ) + nullity(T ).

Theorem 3.4.13. If A is an m× n matrix with entries in the field F , then

row rank(A) , dim(R(AT )) = dim(R(A)) , rank(A).

Proof. Let R = PA be the reduced row echelon form of A, where P is invertible.

Let r be the number of non-zero rows in R and observe that row rank(A) = r

because the rows of R form a basis for the row space of A. Next, we write A =

P−1R and observe that each column of R has non-zero entries only in the first r

rows. Thus, each column of A is a linear combination of the first r columns in P−1.

Thus, the column space of A is spanned by r vectors and rank(A) ≤ row rank(A).

The proof is completed by applying the above bound to both A and AT to get

rank(A) ≤ row rank(A) = rank(AT ) ≤ row rank(AT ) = rank(A).

When F = C, the spaceR(AH) has many nice properties and can also be called

the row space of A. Regardless, it holds that rank(A) = rank(AT ) = rank(AH).

3.5 Norms

Let V be a vector space over the real numbers or the complex numbers.

Definition 3.5.1. A norm on vector space V is a real-valued function ‖·‖ : V → R
that satisfies the following properties.

1. ‖v‖ ≥ 0 ∀v ∈ V ; equality holds if and only if v = 0

2. ‖sv‖ = |s| ‖v‖ ∀v ∈ V, s ∈ F

3. ‖v + w‖ ≤ ‖v‖+ ‖w‖ ∀v, w ∈ V .
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The concept of a norm is closely related to that of a metric. For instance, a

metric can be defined from any norm. Let ‖v‖ be a norm on vector space V , then

d (v, w) = ‖v − w‖

is the metric induced by the norm.

Normed vector spaces are very useful because they have all the properties of a

vector space and all the benefits of a topology generated by the norm. Therefore,

one can discuss limits and convergence in a meaningful way.

Example 3.5.2. Consider vectors in Rn with the euclidean metric

d (v, w) =
√

(v1 − w1)2 + · · ·+ (vn − wn)2.

Recall that the standard bounded metric introduced in Problem 2.1.5 is given by

d̄ (v, w) = min {d (v, w) , 1} .

Define the function f : Rn → R by f (v) = d̄ (v, 0). Is the function f a norm?

By the properties of a metric, we have

1. d̄ (v, 0) ≥ 0 ∀v ∈ V ; equality holds if and only if v = 0

2. d̄ (v, 0) + d̄ (w, 0) = d̄ (v, 0) + d̄ (0, w) ≥ d̄ (v, w) ∀v, w ∈ V .

However, d̄ (sv, 0) is not necessarily equal to sd̄ (v, 0). For instance, d̄ (2e1, 0) =

1 < 2d̄ (e1, 0). Thus, the function f : Rn → R defined by

f (v) = d̄ (v, 0) .

is not a norm.

Example 3.5.5. The following functions are examples of norms for Rn and Cn:

1. the l1 norm: ‖v‖1 =
∑n

i=1 |vi|

2. the lp norm: ‖v‖p = (
∑n

i=1 |vi|p)
1
p , p ∈ (1,∞)

3. the l∞ norm: ‖v‖∞ = max1,...,n{|vi|}.

Example 3.5.6. Similarly, norms can be defined for the vector space of functions

from [a, b] to R (or C) with
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What are Lp spaces? What is the Lebesgue Integral?

Many important spaces include functions that are not Riemann integrable. The

Lebesgue integral is defined using measure theory and is often used in advanced

probability courses. Since there are many non-zero Lebesgue-integrable functions

whose integral is zero, this definition has a subtlety. The Lebesgue integral is zero

if and only if it is zero almost everywhere (abbreviated a.e.). Therefore, two func-

tions are equal almost everywhere if the norm of their difference is zero. Strictly

speaking, a vector space of “functions” with the Lp norm actually has elements that

are equivalence classes of functions defined by equality almost everywhere.

Consider the set of all functions f : X → R from X to the real numbers. The

normed vector space Lp(X) (with 1 ≤ p < ∞) is the subset where the Lebesgue

integral

‖f‖Lp ,

(∫
X

|f(x)|p dx
)1/p

exists and is finite. Of course, this definition begs the question, “What is the

Lebesgue integral?”. The following definition is sufficient for these notes:

Definition 3.5.3. The Lebesgue integral is a generalization of the Riemann integral

that applies to wider class of functions. The values of these two integrals coincide

on the set of Riemann integrable functions. Loosely speaking, one can construct any

non-negative function f ∈ Lp(X) by considering sequences f1, f2, . . . of “simple”

functions formed by rounding values of f down to values in a finite set Si ⊂ [0,∞)

where {0} ⊂ S1 ⊂ S2 ⊂ · · · ⊂ [0,∞). By construction, the sequence of functions

is non-decreasing (i.e., fn+1(x) ≥ fn(x) for all x ∈ X) and, therefore, it converges

pointwise to a limit function f(x). Moreover, the Lebesgue integral of each simple

function is easy to define. Thus, this sequence of simple functions gives rise to a non-

decreasing sequence of Lebesgue integrals and one defines the Lebesgue integral of

f(x) to be the limit of this sequence. In fact, the non-negative functions in Lp(X)

are in one-to-one correspondence with the limits of non-decreasing sequences of

simple functions that satisfy ‖fn‖Lp →M <∞, up to a.e. equivalence.

Definition 3.5.4. The Lebesgue measure of a set is equal to the Lebesgue integral

of its indicator function when both quantites exist. In particular, a set is measurable

if and only if the Lebesgue integral of its indicator function exists.



3.5. NORMS 61

1. the L1 norm: ‖f(t)‖1 =
∫ b
a
|f(t)|dt

2. the Lp norm: ‖f(t)‖p =
(∫ b

a
|f(t)|pdt

) 1
p
, p ∈ (1,∞)

3. the L∞ norm: ‖f(t)‖∞ = ess sup[a,b]{|f(t)|}.

In this example, the integral notation refers to the Lebesgue integral (rather

than the Riemann integral).

Example 3.5.7. Consider any set W of real-valued random variables, defined on

a common probability space, such that ‖X‖p , E[|X|p]1/p < ∞ for all X ∈ W

and some fixed p ∈ [1,∞). Then, V = span(W ) is a normed vector space over R
and X, Y ∈ V are considered to be equal if ‖X − Y ‖p = E [|X − Y |p] = 0 (or

equivalently Pr(X 6= Y ) = 0). In addition, the closure of V is a Banach space.

Remark 3.5.8. We have not shown that the `p and Lp norm definitions above sat-

isfy all the required properties. In particular, to prove the triangle inequality, one

requires the Minkowski ineqality which is deferred until Theorem 3.5.20.

Definition 3.5.9. A vector v ∈ V is said to be normalized if ‖v‖ = 1. Any vector

can be normalized, except the zero vector:

u =
v

‖v‖
(3.4)

has norm ‖u‖ = 1. A normalized vector is also referred to as a unit vector.

Definition 3.5.10. A complete normed vector space is called a Banach space.

Banach spaces are the standard setting for many problems because completeness

is a powerful tool for solving problems.

Example 3.5.11. The vector spaces Rn (or Cn) with any well-defined norm are

Banach spaces.

Example 3.5.12. The vector space of all continuous functions from [a, b] to R is a

Banach space under the supremum norm

‖f(t)‖ = sup
t∈[a,b]

f(t).
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Definition 3.5.13. A Banach space V has a Schauder basis, v1, v2, . . ., if every

v ∈ V can be written uniquely as

v =
∞∑
i=1

sivi.

Lemma 3.5.14. If
∑∞

i=1 ‖vi‖ = a <∞, then un =
∑n

i=1 vi satisfies un → u.

Proof. This is left as an exercise for the reader because it is a straightforward gen-

eralization of the proof of Lemma 2.1.54.

Example 3.5.15. Let V = Rω be the vector space of semi-infinite real sequences.

The standard Schauder basis is the countably infinite extension {e1, e2, . . .} of the

standard basis.

Definition 3.5.16. A closed subspace of a Banach space is a subspace that is a

closed set in the topology generated by the norm.

Theorem 3.5.17. All finite dimensional subspaces of a Banach space are closed.

Proof. This proof requires material from later in the notes, but is given here for

completeness. Let w1, w2, . . . , wn be a basis for a finite dimensional subspace W

of a Banach space V over F . Let U = F n be the standard Banach space, which is

closed by definition, and consider the mapping f : U → W defined by

f(s) =
n∑
i=1

siwi.

It is easy to verify that this linear mapping is non-singular and onto. Therefore,

it has a linear inverse mapping g = f−1 that must be continuous (i.e., bounded)

because U,W are finite dimensional. Since g is continuous, we find that W =

g−1(U) = f(U) is closed because U is closed.

Example 3.5.18. Let V = Lp([a, b]), for 1 ≤ p < ∞, be the set of real Lebesgue-

integrable functions on [a, b]. We say that f ∈ V is continuous if the equivalence

class generated by equality almost everywhere contains a continuous function. It is

easy to verify that the subsetW ⊂ V of continuous functions is a subspace. It is not

closed, however, because sequences inW may converge to discontinuous functions.

In fact, the set of continuous functions is dense in Lp([a, b]) for p ∈ [1,∞).
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Example 3.5.19. Let W = {w1, w2, . . .} be a linearly independent sequence of

normalized vectors in a Banach space. The span of W only includes finite linear

combinations. However, a sequence of finite linear combinations, like

un =
n∑
i=1

1

i2
wi,

converges to the infinite linear combination u = limn→∞ un if the limit exists. Ap-

plying Lemma 3.5.14 to vi = 1
i2
wi shows that the limit exists if

∑∞
i=1 i

−2 <∞ and

that this can be shown by induction. Thus, the span of any infinite set of linearly

independent vectors is not closed.

Theorem 3.5.20 (Hölder and Minkowski Inequalities). Consider the following weighted

versions of the `p and Lp norms defined by

‖v‖`p(w) =

(
n∑
i=1

wi|vi|p
) 1

p

‖f‖Lp(X,w) =

(∫
X

w(x)|f(x)|p dx
) 1

p

,

where the vector w and function w(x) define real positive weights and X is cho-

sen so that the Lebesgue integral is well-defined. For p ∈ [1,∞), the Minkowski

inequality states that

‖u+ v‖`p(w) ≤ ‖u‖`p(w) + ‖v‖`p(w)

‖f + g‖Lp(X,w) ≤ ‖f‖Lp(X,w) + ‖g‖Lp(X,w).

Now, choose p, q ∈ [1,∞] such that 1
p

+ 1
q

= 1, where 1/∞ = 0. For the `p

case, assume u, v ∈ `p(w) (i.e., ‖u‖`p(w) < ∞ and ‖u‖`q(w) < ∞) and define the

product vector t = (u1v1, . . . , unvn). For the Lp case, assume that f, g ∈ Lp(X,w)

(i.e., ‖f‖Lp(X,w) <∞ and ‖g‖Lp(X,w) <∞) and define the product function h(x) =

f(x)g(x). Then, the Hölder inequality states that

‖t‖`1(w) ≤ ‖u‖`p(w)‖v‖`q(w)

‖h‖L1(X,w) ≤ ‖f‖Lp(X,w)‖g‖Lq(X,w).
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3.6 Inner Products

Definition 3.6.1. Let F be the field of real numbers or the field of complex numbers,

and assume V is a vector space over F . An inner product on V is a function which

assigns to each ordered pair of vectors v, w ∈ V a scalar 〈v|w〉 ∈ F in such a way

that for all u, v, w ∈ V and any scalar s ∈ F

1. 〈u+ v|w〉 = 〈u|w〉+ 〈v|w〉

2. 〈sv|w〉 = s 〈v|w〉

3. 〈v|w〉 = 〈w|v〉, where the overbar denotes complex conjugation;

4. 〈v|v〉 ≥ 0 with equality iff v = 0.

Note that the conditions of Definition 3.6.1 imply that

〈u|sv + w〉 = s 〈u|v〉+ 〈u|w〉 .

Definition 3.6.2. A real or complex vector space equipped with an inner product is

called an inner-product space.

Example 3.6.3. Consider the inner product on F n defined by

〈v|w〉 = 〈(v1, . . . , vn)|(w1, . . . , wn)〉 =
n∑
j=1

vjwj.

This inner product is called the standard inner product. When F = R, the standard

inner product can also be written as

〈v|w〉 =
n∑
j=1

vjwj.

In this context it is often called the dot product, denoted by v · w. In either case, it

can also be written in terms of the Hermitian transpose as 〈v|w〉 = wHv.

Problem 3.6.4. For v = (v1, v2) and w = (w1, w2) in R2, show that

〈v|w〉 = v1w1 − v2w1 − v1w2 + 4v2w2

is an inner product.
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S 3.6.4. For all u, v, w ∈ V and all scalars s

〈u+ v|w〉 = (u1 + v1)w1 − (u2 + v2)w1 − (u1 + v1)w2 + 4(u2 + v2)w2

= u1w1 − u2w1 − u1w2 + 4u2w2 + v1w1 − v2w1 − v1w2 + 4v2w2

= 〈u|w〉+ 〈v|w〉 .

Also, we have

〈sv|w〉 = sv1w1 − sv2w1 − sv1w2 + 4sv2w2 = s 〈v|w〉 .

Since V = R2, we have 〈v|w〉 = 〈w|v〉. Furthermore,

〈v|v〉 = v2
1 − 2v1v2 + 4v2

2 = (v1 − v2)2 + 3v2
2 ≥ 0 with equality iff v = 0.

That is, 〈v|v〉 is an inner product.

Example 3.6.5. Let V be the vector space of all continuous complex-valued func-

tions on the unit interval [0, 1]. Then,

〈f |g〉 =

∫ 1

0

f(t)g(t)dt

is an inner product.

Example 3.6.6. Let V and W be two vector spaces over F and suppose that 〈·|·〉W
is an inner product on W . If T is a non-singular linear transformation from V into

W , then the equation

〈v1, v2〉V = 〈Tv1|Tv2〉W

defines an inner product on V .

Example 3.6.7. Let V = Fm×n be the space of m× n matrices over F and define

the inner product for matrices A,B ∈ V to be

〈A|B〉 , tr
(
BHA

)
=

n∑
i=1

m∑
j=1

bj,iaj,i.

This also equals tr
(
ABH

)
and both are identical to writing the entries of the ma-

trices as length-mn vectors and then applying the standard inner product.



66 CHAPTER 3. LINEAR ALGEBRA

Theorem 3.6.8. Let V be a finite-dimensional space, and suppose that

B = w1, . . . , wn

is an ordered basis for V . Any inner product on V is determined by the values

gij =
〈
wj|wi

〉
that it takes on pairs of vectors in B.

Proof. If u =
∑

j sjwj and v =
∑

i tiwi, then

〈u|v〉 =

〈∑
j

sjwj

∣∣∣v〉 =
∑
j

sj
〈
wj|v

〉
=
∑
j

sj

〈
wj

∣∣∣∑
i

tiwi

〉
=
∑
j

∑
i

sjti
〈
wj|wi

〉
=
∑
j

∑
i

tigijsj = [v]HB G [u]B

where [u]B and [v]B are the coordinate matrices of u, v in the ordered basis B. The

matrixG is called the weight matrix of the inner product in the ordered basis B.

It is easily verified that G is a Hermitian matrix, i.e., G = GH . Furthermore, G

must satisfy the additional condition

wHGw > 0, ∀w 6= 0 (3.5)

so that the induced norm is non-negative and zero only for the zero vector. A

Hermitian matrix that satisfies this condition is called positive definite and this also

implies that G is invertible.

Conversely if G is an n× n Hermitian matrix over F which satisfies (3.5), then

G is the matrix in the ordered basis B of an inner product on V . This inner product

is given by

〈u|v〉G = [v]HB G [u]B .

Problem 3.6.9. Let V be a vector space over F . Show that the sum of two inner

products on V is an inner product on V . Show that a positive multiple of an inner

product is also an inner product.
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Example 3.6.10. Consider any set W of real-valued random variables, defined

on a common probability space, that have finite 2nd moments. It turns out that

V = span(W ) is a vector space over R. In fact, one can define the inner product

〈X|Y 〉 = E [XY ] ,

for any X, Y ∈ V . Using the induced norm, this inner product provides the topol-

ogy of mean-square convergence and two random variables X, Y ∈ V are consid-

ered equal if ‖X − Y ‖2 = E [|X − Y |2] = 0 (or equivalently Pr(X 6= Y ) = 0).

In terms of abstract mathematics, the introduction of an inner product allows

one to introduce the key concept of orthogonality.

Definition 3.6.11. Let v and w be vectors in an inner-product space V . Then v is

orthogonal to w (denoted v⊥w) if 〈v|w〉 = 0. Since this relation is reflexive and w

is also orthogonal to v, we simply say that v and w are orthogonal.

3.6.1 Induced Norms

A finite-dimensional real inner-product space is often referred to as a Euclidean
space. A complex inner-product space is sometimes called a unitary space.

Definition 3.6.12. Let V be an inner-product space with inner product 〈·|·〉. This

inner product can be used to define a norm, called the induced norm, where

‖v‖ = 〈v|v〉
1
2

for every v ∈ V .

Definition 3.6.13. Let w, v be vectors in an inner-product space V with inner prod-

uct 〈·|·〉. As shown in Figure 3.1, the projection of w onto v is defined to be

u =
〈w|v〉
‖v‖2

v

Lemma 3.6.14. Let u be the projection of w onto v. Then, 〈w − u|u〉 = 0 and

‖w − u‖2 = ‖w‖2 − ‖u‖2 = ‖w‖2 − |〈w|v〉|
2

‖v‖2
.
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0

w

vu

w − u

Figure 3.1: The projection of w onto v is given by u and w − u is orthogonal to v.

Proof. First, we observe that

〈w − u|v〉 = 〈w|v〉 − 〈u|v〉 = 〈w|v〉 − 〈w|v〉
‖v‖2

〈v|v〉 = 0.

Since u = sv for some scalar s, it follows that 〈w− u|u〉 = s〈w− u|v〉 = 0. Using

〈w − u|u〉 = 0, we can write

‖w‖2 = ‖(w − u) + u‖2 = 〈(w − u) + u|(w − u) + u〉

= ‖w − u‖2 + 2Re〈w − u|u〉+ ‖u‖2 = ‖w − u‖2 + ‖u‖2.

The proof is completed by noting that ‖u‖2 = |〈w|v〉|2/‖v‖2.

Theorem 3.6.15. If V is an inner-product space and ‖ · ‖ is its associated induced

norm, then for any v, w ∈ V and any scalar s

1. ‖sv‖ = |s| ‖v‖

2. ‖v‖ > 0 for v 6= 0

3. |〈v|w〉| ≤ ‖v‖ ‖w‖ with equality iff v = 0, w = 0, or v = sw

4. ‖v + w‖ ≤ ‖v‖+ ‖w‖ with equality iff v = 0, w = 0, or v = sw.

Proof. The first two items follow immediately from the definitions involved. The

third inequality, |〈v|w〉| ≤ ‖v‖ ‖w‖, is called the Cauchy-Schwarz inequality.

When v = 0, then clearly |〈v|w〉| = ‖v‖ ‖w‖ = 0. Assume v 6= 0 and let

u =
〈w|v〉
‖v‖2 v
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be the projection w onto v. By Lemma 3.6.14, we have

0 ≤ ‖w − u‖2 = ‖w‖2 − |〈w|v〉|
2

‖v‖2 ,

where equality holds iff w − u = 0, or equivalently iff w = 0 or v = sw. Hence,

we find that |〈v|w〉|2 = |〈w|v〉|2 ≤ ‖v‖2 ‖w‖2. Using this result, it follows that

‖v + w‖2 = ‖v‖2 + 〈v|w〉+ 〈w|v〉+ ‖w‖2

= ‖v‖2 + 2Re 〈v|w〉+ ‖w‖2

≤ ‖v‖2 + 2 ‖v‖ ‖w‖+ ‖w‖2 ,

with equality iff Cauchy-Schwarz holds with equality. Thus, ‖v + w‖ ≤ ‖v‖+‖w‖
with equality iff v = 0, w = 0, or v = sw (i.e., v and w are linearly dependent).

Theorem 3.6.16. Consider the vector space Rn with the standard inner product.

Then, the function f : V → F defined by f (w) = 〈w|v〉 is continuous.

Proof. Let w1, w2, . . . be a sequence in V converging to w. Then,

|〈wn|v〉 − 〈w|v〉| = |〈wn − w|v〉| ≤ ‖wn − w‖ ‖v‖ .

Since ‖wn − w‖ → 0, the convergence of 〈wn, v〉 is established.

3.7 Sets of Orthogonal Vectors

Definition 3.7.1. Let V be an inner-product space and U,W be subspaces. Then,

the subspace U is an orthogonal to the subspace W (denoted U⊥W ) if u⊥w for

all u ∈ U and w ∈ W .

Definition 3.7.2. A collection W of vectors in V is an orthogonal set if all pairs of

distinct vectors in W are orthogonal.

Example 3.7.3. The standard basis of Rn is an orthonormal set with respect to the

standard inner product.

Example 3.7.4. Let V be the vector space (over C) of continuous complex-valued

functions on the interval 0 ≤ x ≤ 1 with the inner product

〈f |g〉 =

∫ 1

0

f(x)g(x)dx.
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Let fn(x) =
√

2 cos 2πnx and gn(x) =
√

2 sin 2πnx. Then {1, f1, g1, f2, g2, . . .} is

a countably infinite orthonormal set that is a Schauder basis for this vector space.

Theorem 3.7.5. An orthogonal set of non-zero vectors is linearly independent.

Proof. Let W be an orthogonal set of non-zero vectors in a given inner-product

space V . Suppose w1, . . . , wn are distinct vectors in W and consider

v = s1w1 + · · ·+ snwn.

The inner product 〈v|wi〉 is given by

〈v|wi〉 =

〈∑
j

sjwj|wi

〉
=
∑
j

sj
〈
wj|wi

〉
= si 〈wi|wi〉 .

Since 〈wi|wi〉 6= 0, it follows that

si =
〈v|wi〉
‖wi‖

2 1 ≤ i ≤ n.

In particular, if v = 0 then sj = 0 for 1 ≤ j ≤ n and the vectors in W are linearly

independent.

Corollary 3.7.6. If v ∈ V is a linear combination of an orthogonal sequence of

distinct, non-zero vectors w1, . . . , wn, then v satisfies the identity

v =
n∑
i=1

〈v|wi〉
‖wi‖

2 wi,

and equals the sum of the projections of v onto w1, . . . , wn.

Theorem 3.7.7. Let V be an inner-product space and assume v1, . . . , vn are lin-

early independent vectors in V . Then it is possible to construct an orthogonal

sequence of vectors w1, . . . , wn ∈ V such that for each k = 1, . . . , n the set

{w1, . . . , wk}

is a basis for the subspace spanned by v1, . . . , vk.

Proof. First, let w1 = v1. The remaining vectors are defined inductively as part

during the proof. Suppose the vectors

w1, . . . , wm (1 ≤ m < n)
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have been chosen so that for every k

{w1, . . . , wk} 1 ≤ k ≤ m

is an orthogonal basis for the subspace spanned by v1, . . . , vk. Let

wm+1 = vm+1 −
m∑
i=1

〈
vm+1|wi

〉
‖wi‖

2 wi.

Then wm+1 6= 0, for otherwise vm+1 is a linear combination of w1, . . . , wm and

hence a linear combination of v1, . . . , vm. For j ∈ {1, . . . ,m}, we also have〈
wm+1|wj

〉
=
〈
vm+1|wj

〉
−

m∑
i=1

〈
vm+1|wi

〉
‖wi‖

2

〈
wi|wj

〉
=
〈
vm+1|wj

〉
−
〈
vm+1|wj

〉∥∥wj∥∥2

〈
wj|wj

〉
= 0.

Clearly, {w1, . . . , wm+1} is an orthogonal set consisting of m+ 1 non-zero vectors

in the subspace spanned by v1, . . . , vm+1. Since the dimension of the latter subspace

is m+ 1, this set is a basis for the subspace.

The inductive construction of the vectors w1, . . . , wn is known as the Gram-
Schmidt orthogonalization process.

Corollary 3.7.8. Every finite-dimensional inner-product space has a basis of or-

thonormal vectors.

Proof. Let V be a finite-dimensional inner-product space. Suppose that v1, . . . , vn

is a basis for V . Apply the Gram-Schmidt process to obtain a basis of orthogonal

vectors w1, . . . , wn. Then, a basis of orthonormal vectors is given by

u1 =
w1

‖w1‖
, . . . , un =

wn
‖wn‖

.

Example 3.7.9. Consider the vectors

v1 = (2, 2, 1)

v2 = (3, 6, 0)

v3 = (6, 3, 9)
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in R3 equipped with the standard inner product. Apply the Gram-Schmidt process

to v1, v2, v3 to obtain an orthogonal basis.

Applying the Gram-Schmidt process to v1, v2, v3, we get

w1 = (2, 2, 1)

w2 = (3, 6, 0)− 〈(3, 6, 0)|(2, 2, 1)〉
9

(2, 2, 1)

= (3, 6, 0)− 2(2, 2, 1) = (−1, 2,−2)

w3 = (6, 3, 9)− 〈(6, 3, 9)|(2, 2, 1)〉
9

(2, 2, 1)− 〈(6, 3, 9)|(−1, 2,−2)〉
9

(−1, 2,−2)

= (6, 3, 9)− 3(2, 2, 1) + 2(−1, 2,−2) = (−2, 1, 2).

It is easily verified that w1, w2, w3 is an orthogonal set of vectors.

Definition 3.7.10. Let V be an inner-product space and W be any set of vectors in

V . The orthogonal complement of W denoted by W⊥ is the set of all vectors in V

that are orthogonal to every vector in W or

W⊥ =
{
v ∈ V

∣∣〈v|w〉 = 0 ∀ w ∈ W
}
.

Problem 3.7.11. Let W be any subset of vector space V . Show that W⊥ is a closed

subspace of V and that any vector in the subspace spanned by W is orthogonal to

any vector in W⊥.

S 3.7.11. Let m1,m2 ∈ W⊥ and s ∈ F . For any vector w ∈ W , we have

〈m1|w〉 = 〈m2|w〉 = 0.

This implies

〈sm1 +m2|w〉 = s 〈m1|w〉+ 〈m2|w〉 = 0.

That is, sm1 +m2 ∈ W⊥. Hence, W⊥ is a subspace of V .

To see that W⊥ is closed, we let m be any point in the closure of W⊥ and

m1,m2, . . . ∈ W⊥ be a sequence that converges to m. The continuity of the inner

product, from Theorem 3.6.16, implies that, for all w ∈ W ,

〈m|w〉 =
〈

lim
n→∞

mn|w
〉

= lim
n→∞

〈mn|w〉 = 0.

Therefore, m ∈ W⊥ and the orthogonal complement contains all of its limit points.
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Notice also that any vector w in the subspace spanned by W can be written as

w =
∑

i siwi with wi ∈ W and si ∈ F . Therefore, the inner product of w with any

w′ ∈ W⊥ is given by

〈w|w′〉 =

〈∑
i

siwi

∣∣∣w′〉 =
∑
i

si 〈wi|w′〉 = 0.

It follows that the subspace spanned by W is orthogonal to the subspace W⊥.

Definition 3.7.12. A complex matrix U ∈ Cn×n is called unitary if UHU = I .

Similarly, a real matrix Q ∈ Rn×n is called orthogonal if QTQ = I .

Theorem 3.7.13. Let V = Cn be the standard inner product space and let U ∈
Cn×n define a linear operator on V . Then, the following conditions are equivalent:

(i) The columns of U form an orthonormal basis (i.e., UHU = I),

(ii) the rows of U form an orthonormal basis (i.e., UUH = I),

(iii) U preserves inner products (i.e., 〈Uv|Uw〉 = 〈v|w〉 for all u, v ∈ V ), and

(iv) U is an isometry (i.e., ‖Uv‖ = ‖v‖ for all v ∈ V ).

Proof. If (i) holds, then U is invertible because its columns are linearly indepen-

dent. Thus, UHU = I implies UH = U−1 and (ii) follows. Likewise, (iii) holds

because 〈Uv|Uw〉 = wHUHUv = wHv = 〈v|w〉 for all u, v ∈ V . Choosing

w = v gives (iv). Lastly, if ‖Uv‖ = ‖v‖ for all v ∈ V , then vH(UHU − I)v =

‖Uv‖2−‖v‖2 = 0 for all v ∈ V . Since UHU − I is Hermitian, it must have a com-

plete set of eigenvectors but all eigenvalues must be 0. Thus, UHU − I = 0.

3.7.1 Hilbert Spaces

Definition 3.7.14. A complete inner-product space is called a Hilbert space.

Definition 3.7.15. Recall that a subset {vα|α ∈ A} of a Hilbert space V is said to

be orthonormal if ‖vα‖ = 1 for every α ∈ A and
〈
vα|vβ

〉
= 0 for all α 6= β. If

the subspace spanned by the family {vα|α ∈ A} is dense in V , we call this set an

orthonormal basis.
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Note that, according to this definition, an orthonormal basis for a Hilbert space

V is not necessarily a Hamel basis for V . However, it can be shown that any or-

thogonal basis is a subset of a Hamel basis. In practice it is the orthonormal basis,

not the Hamel basis itself, which is of most use. None of these issues arise in

finite-dimensional spaces, where an orthogonal basis is always a Hamel basis.

Let B = {vα|α ∈ A} be an orthonormal basis for Hilbert space V . Then, each

element v ∈ V has a unique representation as

v =
∑
α∈A

sαvα.

Using orthogonality to compute 〈v|v〉, one gets the Parseval identity

‖v‖2 =
∑
α∈A

|sα|2.

Since ‖v‖2 <∞ for all v ∈ V , the RHS also exists and is finite for all v ∈ V .

Theorem 3.7.16. Every orthogonal set in a Hilbert space V can be enlarged to an

orthonormal basis for V .

Proof. Let X be the set of orthonormal subsets of V . Furthermore, for x, y ∈ X

consider the strict partial order defined by proper inclusion. If x = {vα|α ∈ A0} is

an element of X , then by the Hausdorff maximal principle there exists a maximal

simply ordered subset Z of X containing x. This shows the existence of a maximal

orthonormal set {vα|α ∈ A}, where A0 ⊂ A.

Let W be the closed subspace of V generated by {vα|α ∈ A}. If W 6= V , there

is a unit vector u ∈ W⊥, contradicting the maximality of the system {vα|α ∈ A}.
Thus, W = V and we have an orthonormal basis.

Theorem 3.7.17. A Hilbert space V has a countable orthonormal basis if and only

if V is separable.

Sketch of proof. If V is separable, then it contains a countable dense subset. Using

the well-ordering theorem, this subset can be ordered into a sequence v1, v2, . . .

such that, for every vector v ∈ V and any ε > 0, there exists an n such that

‖v − vn‖ < ε. A countable orthonormal basis is generated by applying Gram-

Schmidt orthogonalization to this ordered sequence of vectors. Conversely, if V has

a countable orthonormal basis, then linear combinations with rational coefficients

can be used to construct a countable dense subset.
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Lemma 3.7.18. Let V be a Hilbert space and v1, v2, . . . be a countable orthogonal

set. Then, v =
∑∞

i=1 vi exists if and only
∑∞

i=1 ‖vi‖2 = M <∞.

Proof. For un =
∑n

i=1 vi and wn =
∑n

i=1 ‖vi‖2, orthogonality implies that

‖um − un‖2 =

∥∥∥∥∥
m∑

i=n+1

vi

∥∥∥∥∥
2

=
m∑

i=n+1

‖vi‖2 = |wm − wn|.

Thus, the sequence un is Cauchy in V if and only if wn is Cauchy in R.

3.8 Linear Functionals

Definition 3.8.1. Let V be a vector space over a field F . A linear transformation f

from V into the scalar field F is called a linear functional on V .

That is, f is a functional on V such that

f (sv1 + v2) = sf (v1) + f (v2)

for all v1, v2 ∈ V and s ∈ F .

Example 3.8.2. Let F be a field and let s1, . . . , sn be scalars in F . Then the func-

tional f on F n defined by

f(v1, . . . , vn) = s1v1 + · · ·+ snvn

is a linear functional. It is the linear functional which is represented by the matrix[
s1 s2 · · · sn

]
relative to the standard ordered basis for F n. Every linear functional on F n is of

this form, for some scalars s1, . . . , sn.

Definition 3.8.3. Let n be a positive integer and F a field. If A is an n× n matrix

with entries in F , the trace of A is the scalar

tr(A) = A11 + A22 + · · ·+ Ann.
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Example 3.8.4. The trace function is a linear functional on the matrix space F n×n

since

tr(sA+B) =
n∑
i=1

(sAii +Bii)

= s

n∑
i=1

Aii +
n∑
i=1

Bii

= s tr(A) + tr(B).

Example 3.8.5. Let [a, b] be a closed interval on the real line and let C([a, b]) be

the space of continuous real-valued functions on [a, b]. Then

L(g) =

∫ b

a

g(t)dt

defines a linear functional L on C([a, b]).

Theorem 3.8.6 (Riesz). Let V be a finite-dimensional Hilbert space and f be a

linear functional on V . Then, there exists a unique vector v ∈ V such that f (w) =

〈w|v〉 for all w ∈ V .

Proof. If we choose an orthonormal basis B = v1, . . . , vn for V , then the inner

product of w = t1v1 + · · ·+ tnvn and v = s1v1 + · · ·+ snvn will be

〈w|v〉 = t1s̄1 + · · ·+ tns̄n.

If f is a linear functional on V , then f has the form

f (w) = f(t1v1 + · · ·+ tnvn) = t1f (v1) + · · ·+ tnf (vn) .

Thus, we can choose s̄j = f
(
vj
)

to get 〈w|v〉 = f (w) and this gives

v = f (v1)v1 + · · ·+ f (vn)vn.

Let v′ be any vector that satisfies f (w) = 〈w|v′〉 for all w ∈ V . Then, we see

that 〈w|v − v′〉 = 0 for all w ∈ V . This implies that v − v′ = 0.
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Chapter 4

Representation and Approximation

4.1 Best Approximation

Suppose W is a subspace of a Banach space V . For any v ∈ V , consider the

problem of finding a vector w ∈ W such that ‖v − w‖ is as small as possible.

Definition 4.1.1. The vector w ∈ W is a best approximation of v ∈ V by vectors

in W if

‖v − w‖ ≤ ‖v − w′‖

for all w′ ∈ W .

If W is spanned by the vectors w1, . . . , wn ∈ V , then we can write

v = w + e

= s1w1 + · · ·+ snwn + e,

where e is the approximation error.

Finding a best approximation is, in general, rather difficult1. However, if the

norm ‖ · ‖ corresponds to the induced norm of an inner product, then one can use

orthogonal projection and the problem is greatly simplified. This chapter focuses

mainly on computing the best approximation of arbitrary vectors in a Hilbert space.

1A best approximation exists if W is closed and the Banach space V is reflexive (i.e., it equals
its double dual). In addition, it is unique if the Banach space V is strictly convex (i.e., ‖v +w‖ < 2

for all distinct v, w ∈ V such that ‖v‖ = ‖w‖ = 1).

79
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Theorem 4.1.2. Suppose W is a subspace of a Hilbert space V and v is a vector in

V . Then, we have the following:

1. The vector w ∈ W is a best approximation of v ∈ V by vectors in W if and

only if v − w is orthogonal to every vector in W .

2. If a best approximation of v ∈ V by vectors in W exists, it is unique.

3. If W has a countable orthogonal basis w1, w2, . . . and is closed, then

w =
∞∑
i=1

〈v|wi〉
‖wi‖

2 wi (4.1)

exists and equals the best approximation of v by vectors in W .

Proof. Let w ∈ W and suppose v − w is orthogonal to every vector in W . For any

w′ ∈ W , we have v − w′ = (v − w) + (w − w′) and

‖v − w′‖2
= ‖v − w‖2 + 2Re 〈v − w|w − w′〉+ ‖w − w′‖2

= ‖v − w‖2 + ‖w − w′‖2

≥ ‖v − w‖2 .

(4.2)

For the converse, we note that, if v − w is not orthogonal to all vectors in W , then

there must be some u ∈ W such that 〈v − w|u〉 6= 0. Then, we let w′′ be the

projection of v−w onto u. Next, we define w′ = w+w′′ and observe that w′ ∈ W .

Thus, Lemma 3.6.14 implies

‖v − w′‖2 = ‖v − w − w′′‖2 = ‖v − w‖2 − |〈v − w|u〉|
2

‖u‖2
< ‖v − w‖2.

Thus, w is not a best approximation of v by vectors in W .

For uniqueness, suppose w,w′ ∈ W are best approximations of v by vectors in

W . Then ‖v − w‖ = ‖v − w′‖ and (4.2) implies that ‖w − w′‖ = 0. That is, if a

best approximation exists then it is unique.

Finally, assume W is closed and w1, w2, . . . is a countable orthogonal basis.

Then, for (4.1), let the sequence of partial sums be un ,
∑n

i=1wi 〈v|wi〉 / ‖wi‖
2.

Next, observe that v − un is orthogonal to wj for j ∈ {1, . . . , n}, i.e.,

〈
v − un|wj

〉
=
〈
v|wj

〉
−

〈
n∑
i=1

〈v|wi〉
‖wi‖

2 wi

∣∣∣∣∣wj
〉

=
〈
v|wj

〉
−
〈
v|wj

〉
‖wi‖

2

〈
wj|wj

〉
= 0.
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Since v− un is orthogonal to every vector in Wn = span{w1, . . . , wn}, we see that

un is the best approximation of v by vectors in Wn.

The orthogonality of w1, . . . , wn implies ‖v‖2 = ‖v−un‖2 +‖un‖2. From this,

we see that ‖un‖2 =
∑n

i=1 |〈v|wi〉|
2 /‖wi‖2 is an increasing real sequence upper

bounded by ‖v‖2. It follows that the RHS converges to a finite limit. Thus, we can

apply Lemma 3.7.18 to show convergence un → w. Since W is closed, it follows

that w ∈ W . By construction, v − w is orthogonal to wj for j ∈ N and, thus, every

vector in W . Hence, w is the best approximation of v by vectors in W .

Definition 4.1.3. Whenever the vector w in Theorem 4.1.2 exists, it is called the

orthogonal projection of v onto W . If every vector in V has an orthogonal projec-

tion onto W , then the mapping E : V → W , which assigns to each vector in V its

orthogonal projection onto W , is called the orthogonal projection of V onto W .

One can use Theorem 4.1.14 to verify that this is consistent with the concept

of orthogonal projection from Definition 4.1.11. Theorem 4.1.2 also implies the

following result, known as Bessel’s inequality.

Corollary 4.1.4. Let v1, v2, . . . be a countable orthogonal set of distinct non-zero

vectors in an inner-product space V . If v ∈ V then

∞∑
i=1

|〈v|vi〉|
2

‖vi‖
2 ≤ ‖v‖2 .

Moreover, equality holds if and only if

v =
∞∑
i=1

〈v|vi〉
‖vi‖

2 vi.

Proof. Let the projection of v onto the closure of the span of v1, v2, . . . be

w =
∞∑
i=1

〈v|vi〉
‖vi‖

2 vi.

Then, the error u = v − w satisfies 〈u|w〉 = 0 and ‖u‖2 = ‖v‖2 − ‖w‖2. Noting

that ‖u‖2 ≥ 0 and

‖w‖2 =
∞∑
i=1

|〈v|vi〉|
2

‖vi‖
2 ,

we see that ‖w‖2 ≤ ‖v‖2 with equality iff u = 0.
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Problem 4.1.5. Let W be the subspace of R2 spanned by the vector (1, 2). Using

the standard inner product, let E be the orthogonal projection of R2 onto W . Find

1. a formula for E(x1, x2)

2. the matrix of E in the standard ordered basis, i.e., E(x1, x2) = Ex

3. W⊥

4. an orthonormal basis in which E is represented by the matrix

E =

[
1 0

0 0

]
.

4.1.1 Projection Operators

Definition 4.1.6. A function F : X → Y with Y ⊆ X is idempotent if F (F (x)) =

F (x). When F is a linear transformation, this reduces to F 2 = F · F = F .

Definition 4.1.7. Let V be a vector space and T : V → V be a linear transforma-

tion. If T is idempotent, then T is called a projection.

Example 4.1.8. The idempotent matrix A is a projection onto the first two coordi-

nates.

A =

1 0 1

0 1 1

0 0 0


Theorem 4.1.9. Let V be a vector space and T : V → V be a projection operator.

Then, the rangeR(T ) and the N (T ) are disjoint subspaces of V .

Proof. For all v ∈ V − {0}, we need to prove that v is not in both the range and

nullspace. Let v ∈ V be in the range of T so that there is a w ∈ V such that

Tw = v. Then, Tv = T 2w = Tw = v and v is not in the null space unless v = 0.

Let v be in the null space of T , then Tv = 0. But, Tv = v for all v in the range.

Therefore, v is not in the range unless v = 0. From this, we see that only 0 ∈ V is

in both the range and nullspace. Therefore, they are disjoint subspaces.
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Example 4.1.10. Consider the linear transform T : V → V defined by T = I −P ,

where P is a projection. It is easy to verify that T is a projection operator because

T 2 = (I − P )(I − P ) = I − P − P + P 2 = I − P = T.

Notice also that P (I − P )v = 0 implies that R(T ) ⊆ N (P ) and Tv = v for

v ∈ N (P ) implies N (P ) ⊆ R(T ). Therefore, R(T ) = N (P ) and I − P is a

projection onto N (P ).

Definition 4.1.11. Let V be an inner-product space and P : V → V be a projection

operator. IfR(P )⊥N (P ), then P is called a orthogonal projection .

Example 4.1.12. Let V be an inner-product space and P : V → V be an orthog-

onal projection. Then, v = Pv + (I − P )v defines an orthogonal decomposition

of v because Pv ∈ R(P ), (I − P )v ∈ N (P ) (e.g., P
(
(I − P )v

)
= 0), and

R(P )⊥N (P ). In addition, V = R(P )⊕N (P ) and hence N (P ) = R(P )⊥.

Theorem 4.1.13. For V = F n with the standard inner product, an idempotent

Hermitian matrix P defines an orthogonal projection operator.

Proof. We simply must verify that the range and null space are orthogonal. Since

Pu ∈ R(P ) and (I − P )v ∈ N (P ) (e.g., P
(
(I − P )v

)
= 0), we observe that

〈Pu|(I − P )v〉 = vH(I − P )HPu = vH(P − PHP )u = vH(P − P 2)u = 0.

Theorem 4.1.14. Suppose W is a closed subspace of a separable Hilbert space V

and let E denote the orthogonal projection of V on W . Then, E is an idempotent

linear transformation of V onto W , Ew′ = 0 iff w′ ∈ W⊥, and

V = W ⊕W⊥.

Proof. Let v be any vector in V . Since Ev is the best approximation of v by vectors

in W , it follows that v ∈ W implies Ev = v. Therefore, E (Ev) = Ev for any

v ∈ V since Ev ∈ W . That is, E2 = E and E is idempotent.

To show that E is a linear transformation, let w1, w2, . . . be a countable or-

thonormal basis for W (whose existence follows from Theorem 3.7.17). Using part
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3 of Theorem 4.1.2, we find that

E (s1v1 + v2) =
∞∑
i=1

〈s1v1 + v2|wi〉wi

= s1

∞∑
i=1

〈v1|wi〉wi +
∞∑
i=1

〈v2|wi〉wi

= s1Ev1 + Ev2.

Therefore, E is a linear transformation. It also follows that Ew′ = 0 iff w′ ∈ W⊥

because W⊥ can be defined by the fact that 〈w′|wi〉 = 0 for i ∈ N.

Again, let v ∈ V and recall that (by Theorem 4.1.2) Ev is the unique vector

in W such that v − Ev is in W⊥. Therefore, the equation v = Ev + (v − Ev)

gives a unique decomposition of v into Ev ∈ W and v − Ev ∈ W⊥. This unique

decomposition implies that V is the direct sum of W and W⊥. Lastly, one finds

from the definition of W⊥ that

W ∩W⊥ = {u ∈ W |〈u|w〉 = 0 ∀ w ∈ W} ⊆ {u ∈ W |〈u|u〉 = 0} = {0}.

Corollary 4.1.15. Let W be a closed subspace of a separable Hilbert space V and

E be the orthogonal projection of V onW . Then I−E is the orthogonal projection

of V on W⊥.

Proof. This follows directly from the orthogonal decomposition in Theorem 4.1.14.

One can also verify that I − E is an idempotent linear transformation of V with

range W⊥ and nullspace W . From Definition 4.1.11, we see that I − E is an

orthogonal projection.

Example 4.1.16. Let V = Cn be the standard n-dimensional complex Hilbert

space. Let U ∈ Cn×m be a matrix whose columns u1, . . . , um form an orthonormal

set in V . Then, the best approximation of v ∈ V by vectors in R(U) (as defined

by (4.1)) can also be written as

w = UUHv =
m∑
i=1

ui(u
H
i v).
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4.2 Computing Approximations in Hilbert Spaces

4.2.1 Normal Equations

Suppose V is a Hilbert space the subspace W is spanned by w1, . . . , wn ∈ V . Con-

sider the situation where the sequence w1, . . . , wn is linearly independent, but not

orthogonal. In this case, it is not possible to apply (4.1) directly. It is nevertheless

possible to obtain a similar expression for the best approximation of v by vectors in

W . Theorem 4.1.2 asserts that v̂ ∈ W is a best approximation of v ∈ V by vectors

in W if and only if v − v̂ is orthogonal to every vector in W . This implies that

〈
v − v̂|wj

〉
=

〈
v −

n∑
i=1

siwi

∣∣∣wj
〉

= 0

or, equivalently,
n∑
i=1

si
〈
wi|wj

〉
=
〈
v|wj

〉
for j = 1, . . . , n. These conditions yield a system of n linear equations in n un-

knowns, which can be written in the matrix form
〈w1|w1〉 〈w2|w1〉 · · · 〈wn|w1〉
〈w1|w2〉 〈w2|w2〉 · · · 〈wn|w2〉

...
... . . . ...

〈w1|wn〉 〈w2|wn〉 · · · 〈wn|wn〉



s1

s2

...

sn

 =


〈v|w1〉
〈v|w2〉

...

〈v|wn〉

 .

We can rewrite this matrix equation as

Gs = t

where

tT = (〈v|w1〉 , 〈v|w2〉 , . . . , 〈v|wn〉)

is the cross-correlation vector, and

sT = (s1, s2, . . . , sn)

is the vector of coefficients. Equations of this form are collectively known as the

normal equations.
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Definition 4.2.1. The n× n matrix

G =


〈w1|w1〉 〈w2|w1〉 · · · 〈wn|w1〉
〈w1|w2〉 〈w2|w2〉 · · · 〈wn|w2〉

...
... . . . ...

〈w1|wn〉 〈w2|wn〉 · · · 〈wn|wn〉

 (4.3)

is called the Gramian matrix. Since gij =
〈
wj|wi

〉
, it follows that the Gramian is

a Hermitian symmetric matrix, i.e., GH = G.

Definition 4.2.2. A matrix M ∈ F n×n is positive-semidefinite if MH = M and

vHMv ≥ 0 for all v ∈ F n − {0}. If the inequality is strict, M is positive-definite.

An important aspect of positive-definite matrices is that they are always invert-

ible. This follows from noting that Mv = 0 for v 6= 0 implies that vHMv = 0 and

contradicts the definition of positive definite.

Theorem 4.2.3. A Gramian matrix G is always positive-semidefinite. It is positive-

definite if and only if the vectors w1, . . . , wn are linearly independent.

Proof. Since gij =
〈
wj|wi

〉
, the conjugation property of the inner product implies

GH = G. Using v = (v1, . . . , vn)T ∈ F n, we can write

vHGv =
n∑
i=1

n∑
j=1

v̄igijvj =
n∑
i=1

n∑
j=1

v̄i
〈
wj|wi

〉
vj

=
n∑
i=1

n∑
j=1

〈
vjwj|viwi

〉
=

〈
n∑
j=1

vjwj

∣∣∣ n∑
i=1

viwi

〉

=

∥∥∥∥∥
n∑
i=1

viwi

∥∥∥∥∥
2

≥ 0.

(4.4)

That is, vHGv ≥ 0 for all v ∈ F n.

Suppose that G is not positive-definite. Then, there exists v ∈ F n − {0} such

that vHGv = 0. By (4.4), this implies that

n∑
i=1

viwi = 0

and hence the sequence of vectors w1, . . . , wn is not linearly independent.
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Conversely, if G is positive-definite then vHGv > 0 and∥∥∥∥∥
n∑
i=1

viwi

∥∥∥∥∥ > 0

for all v ∈ F n − {0}. Thus, the vectors w1, . . . , wn are linearly independent.

4.2.2 Orthogonality Principle

Theorem 4.2.4. Let w1, . . . , wn be vectors in an inner-product space V and denote

the span of w1, . . . , wn by W . For any vector v ∈ V , the norm of the error vector

e = v −
n∑
i=1

siwi (4.5)

is minimized when the error vector e is orthogonal to every vector inW . If v̂ denotes

the least-squares approximation of v then〈
v − v̂|wj

〉
= 0

for j = 1, . . . , n.

Proof. Minimizing ‖e‖2 over s, where e is given by (4.5) requires minimizing

J (s) =

〈
v −

n∑
i=1

siwi

∣∣∣v − n∑
j=1

sjwj

〉

= 〈v|v〉 −
n∑
i=1

〈siwi|v〉 −
n∑
j=1

〈
v|sjwj

〉
+

n∑
i=1

n∑
j=1

〈
siwi|sjwj

〉
= 〈v|v〉 −

n∑
i=1

si 〈wi|v〉 −
n∑
j=1

s̄j
〈
v|wj

〉
+

n∑
i=1

n∑
j=1

sis̄j
〈
wi|wj

〉
.

To take the derivative with respect to s ∈ Cn, we use the decomposition s = a+ jb,

with a, b ∈ Rn, and define the differential operators

∂

∂s
,

1

2

(
∂

∂a
− j ∂

∂b

)
∂

∂s
,

1

2

(
∂

∂a
+ j

∂

∂b

)
,

where ∂/∂a = (∂/∂a1, . . . , ∂/∂an)T . Since J(s) is real function of s, a stationary
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point of J can be found by setting either derivative to 0. Choosing s, gives

∂

∂s
J (s) = −


〈v|w1〉
〈v|w2〉

...

〈v|wn〉

+


〈w1|w1〉 〈w2|w1〉 . . . 〈wn|w1〉
〈w1|w2〉 〈w2|w2〉 . . . 〈wn|w2〉

...
... . . . ...

〈w1|wn〉 〈w2|wn〉 . . . 〈wn|wn〉



s1

s2

...

sn


= 0.

In matrix form, this yields the familiar equation

Gs = t.

To ensure that this extremum is in fact a minimum, one can compute the 2nd deriva-

tive to show that the Hessian is G. Since G is a positive-semidefinite matrix, the

extremum is indeed a minimum.

This implies that ‖e‖2 is minimized if and only if Gs = t. That is, ‖e‖2 is

minimized if and only if v − v̂ is orthogonal to every vector in W .

Note that it is also possible to prove this theorem using the Cauchy-Schwarz

inequality or the projection theorem.

4.3 Approximation for Systems of Linear Equations

4.3.1 Matrix Representation

For finite-dimensional vector spaces, least-squares (i.e., best approximation) prob-

lems have natural matrix representations. Suppose V = Fm and w1, w2, . . . , wn ∈
V are column vectors. Then, the approximation vector is given by

v̂ =
n∑
i=1

siwi

In matrix form, we have

v̂ = As,

where A = [w1 · · ·wn]. The optimization problem can then be reformulated as

follows. Determine s ∈ F n such that

‖e‖2 = ‖v − v̂‖2 = ‖v − As‖2
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is minimized. Note that this occurs when the error vector is orthogonal to every

vector in W , i.e.,

〈
e|wj

〉
=
〈
v − v̂|wj

〉
=
〈
v − As|wj

〉
= 0

for j = 1, . . . , n.

4.3.2 Standard Inner Products

When ‖ · ‖ is the norm induced by the standard inner product, these conditions can

be expressed as 
wH1

...

wHn

 (v − As) = 0.

Using the definition of A, we obtain

AHAs = AHv.

The matrix AHA is the Gramian G defined in (4.3). The vector AHv is the cross

correlation vector t.

When the vectors w1, . . . , wn are linearly independent, the Gramian matrix is

positive definite and hence invertible. The optimal solution for the least-squares

problem is therefore given by

s =
(
AHA

)−1
AHv = G−1t.

The matrix
(
AHA

)−1
AH is often called the pseudoinverse.

The best approximation of v ∈ V by vectors in W is equal to

v̂ = As = A
(
AHA

)−1
AHv.

The matrix P = A
(
AHA

)−1
AH is called the projection matrix for the range ofA.

It defines an orthogonal projection onto the range of A (i.e., the subspace spanned

by the columns of A).
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4.3.3 Generalized Inner Products

We can also consider the case of a general inner product. Recall that an inner

product on V is completely determined by the values

hji =
〈
ei|ej

〉
and that it can be expressed in terms of the matrix H (where [H]j,i = hj,i) as

〈v|w〉 = wHHv.

Minimizing ‖e‖2 = ‖v − As‖2 and using the orthogonality principle lead to the

matrix equation

AHHAs = AHHv.

When the vectors w1, . . . , wn are linearly independent, the optimal solution is given

by

s =
(
AHHA

)−1
AHHv.

4.3.4 Minimum Error

Let v̂ ∈ W be the best approximation of v by vectors in W . Again, we can write

v = v̂ + e,

where e ∈ W⊥ is the minimum achievable error. The squared norm of the minimum

error is given implicitly by

‖v‖2 = ‖v̂ + e‖2 = 〈v̂ + e|v̂ + e〉 = 〈v̂|v̂〉+ 〈e|e〉 = ‖v̂‖2 + ‖e‖2 .

We can then find an explicit expression for the approximation error,

‖e‖2 = ‖v‖2 − ‖v̂‖2 = vHHv − v̂HHv̂

= vHHv − sHAHHAs

= vHHv − vHHA
(
AHHA

)−1
AHHv

= vH
(
H −HA

(
AHHA

)−1
AHH

)
v.
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4.4 Applications and Examples in Signal Processing

4.4.1 Linear Regression

Let (x1, y1), . . . , (xn, yn) be a collection of points in R2. A linear regression prob-

lem consists in finding scalars a and b such that

yi ≈ axi + b

for i = 1, . . . , n. Definite the error component ei by ei = yi − axi − b, then
y1

...

yn

 = a


x1

...

xn

+ b


1
...

1

+


e1

...

en

 =


x1 1
...

...

xn 1


[
a

b

]
+


e1

...

en

 .
In vector form, we can rewrite this equation as

y = As+ e,

where y = (y1, . . . , yn)T , s = (a, b)T , e = (e1, . . . , en)T , and

A =


x1 1
...

...

xn 1

 .
This equation has a form analog to the matrix representation of a least-squares

problems. Consider the goal of minimizing ‖e‖2. The line that minimizes the sums

of the squares of the vertical distances between the data abscissas and the line is

then given by

s =
(
AHA

)−1
AHy.

4.4.2 Linear Minimum Mean-Squared Error Estimation

Let Y,X1, . . . , Xn be a set of zero-mean random variables. The goal of the linear

minimum mean-squared error (LMMSE) estimation problem is to find coefficients

s1, . . . , sn such that

Ŷ = s1X1 + · · ·+ snXn
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minimizes the MSE E[|Y − Ŷ |2]. Using the inner product defined by

〈X|Y 〉 = E
[
XY

]
, (4.6)

we can compute the linear minimum mean-squared estimate Ŷ using

Gs = t,

where

G =


E
[
X1X1

]
E
[
X2X1

]
· · · E

[
XnX1

]
E
[
X1X2

]
E
[
X2X2

]
· · · E

[
XnX2

]
...

... . . . ...

E
[
X1Xn

]
E
[
X2Xn

]
· · · E

[
XnXn

]


and

t =


E
[
Y X1

]
E
[
Y X2

]
...

E
[
Y Xn

]

 .
If the matrix G is invertible, the minimum mean-squared error is given by∥∥∥Y − Ŷ ∥∥∥2

= E
[
Y Y
]
− tHG−1t.

4.4.3 The Wiener Filter

Suppose that the sequence of zero-mean random variables {X[t]} is wide-sense

stationary, and consider the FIR filter

Y [t] =
K−1∑
k=0

h[k]X[t− k]

=
[
X[t] . . . X[t−K + 1]

]
h[0]

...

h[K − 1]

 = (X[t])T h.

The goal is to design this filter in such a way that its output is as close as possible

to a desired sequence {Z[t]}. In particular, we want to minimize the mean-squared

error

‖Z[t]− Y [t]‖2 = E
[
|Z[t]− Y [t]|2

]
.
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By the orthogonality principle, the mean-squared error is minimized when the

error is orthogonal to the data; that is, for j = 0, 1, . . . , K − 1, we have〈
Z[t]−

K−1∑
k=0

h[k]X[t− k]
∣∣∣X[t− j]

〉
= 0,

or, equivalently, we can write

〈Z[t]|X[t− j]〉 =
K−1∑
k=0

h[k] 〈X[t− k]|X[t− j]〉 .

Using (4.6), we obtain

E
[
Z[t]X[t− j]

]
=

K−1∑
k=0

h[k]E
[
X[t− k]X[t− j]

]
. (4.7)

where j = 1, . . . , K − 1.

For this specific case where the normal equations are defined in terms of the

expectation operator, these equations are called the Wiener-Hopf equations. The

Gramian of the Wiener-Hopf equations can be expressed in a more familiar form

using the autocorrelation matrix. Recall that {X[t]} is a wide-sense stationary pro-

cess. As such, we have

Rxx(j − k) = Rxx(j, k) = E
[
X[t− k]X[t− j]

]
= 〈X[t− k]|X[t− j]〉 .

Also define

Rzx(j) = E
[
Z[t]X[t− j]

]
= 〈Z[t]|X[t− j]〉 .

Using this notation, we can rewrite (4.7) as

Rzx =


Rzx(0)

Rzx(1)
...

Rzx(K − 1)

 = Rxx


h[0]

h[1]
...

h[K − 1]


where the K ×K autocorrelation matrix is given by

Rxx =


Rxx[0] Rxx[1] · · · Rxx[K − 1]

Rxx[1] Rxx[0] · · · Rxx[K − 2]
...

... . . . ...

Rxx[K − 1] Rxx[K − 2] · · · Rxx[0]

 .
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Note that the matrix Rxx is Toeplitz, i.e., all the elements on a diagonal are equal.

Assuming that Rxx is invertible, the optimal filter taps are then given by

h = R−1
xxRzx.

The minimum mean-squared error is given by

‖Z − Y ‖2 = ‖Z‖2 − ‖Y ‖2

= E[ZZ]− E
[
hHXXTh

]
= E[ZZ]− hHRxxh

= E[ZZ]−RH
zxh,

where t can be ignored because the processes are WSS.

4.4.4 LMMSE Filtering in Practice

While theoretical treatments of optimal filtering often assume one has well-defined

random variables with known statistics, this is rarely the case in practice. Yet, there

is a very close connection between Wiener filtering and natural data driven ap-

proaches. Consider the problem from the previous section and let x[1], x[2], . . .1 , x[N ]

and z[1], z[2], . . . , z[N ] be realizations of the random processes.

As an application, one can think of the x[t] sequence as the received samples

in a wireless communication system and the z[t] sequence as a pilot sequence

(i.e., known to both the transmitter and receiver). It is assumed the transmitted

sequence has been convolved with an unknown LTI system. This type of degra-

dation is known as intersymbol interference (ISI) and the goal is to find a linear

filter h[0], h[1], . . . , h[K − 1] that removes as much ISI as possible. A suitable cost

function for this goal is

J(h) =
N∑
t=K

λN−t

∣∣∣∣∣z[t]−
K−1∑
k=0

h[k]x[t− k]

∣∣∣∣∣
2

,

where the exponential weighting factor λ emphasizes the most recently received

symbols because, in reality, the channel conditions are changing with time.
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Using the vector z = [ z[K] z[K + 1] · · · z[N ] ] and the matrix

A =


x[K] x[K − 1] · · · x[1]

x[K + 1] x[K] · · · x[2]
...

... . . . ...

x[N ] x[N − 1] · · · x[N −K + 1]

 ,

we can rewrite this cost function as

J(h) = (Ah− z)HΛ(Ah− z),

where Λ is a diagonal matrix whose diagonal contains [ λN−K λN−K+1 · · · λ1 λ0 ].

Using the orthogonality principle, one finds that the optimal solution is given by the

normal equation

AHΛAh = AHΛz.

To see the connection with Wiener filtering, the key observation is that the ma-

trix AHΛA and the vector AHΛz are sample-average estimates of the correlation

matrix and cross-correlation vector. This is because, for large N and λ close to 1,

we have

[
AHΛA

]
ij

=
N∑
t=K

λN−tx[t− j + 1]x[t− i+ 1] ≈ Rxx(i− j)
1− λ

and [
AHΛz

]
i

=
N∑
t=K

λN−tz[t]x[t− i+ 1] ≈ Rzx(i)

1− λ
.

Another benefit of this approach is that, as each new sample arrives, the solution

h can be updated with low complexity. Consider the matrix GN = AHΛA and

vector bN = AHΛz as a function of N . Then, GN+1 = λGN + uHu and tN+1 =

λbN + z[N + 1]uH , where

u =
[
x[N + 1] x[N ] · · · x[N −K + 2]

]
.

The updated solution vector hN+1 = G−1
N+1bN+1 can be computed efficiently using

the Sherman-Morrison matrix inversion formula.
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4.5 Dual Approximation

4.5.1 Minimum-Norm Solutions

In many cases, one is interested in finding the minimum-norm vector that satisfies

some feasibility constraints. For example, an underdetermined system of linear

equations has an infinite number of solutions. But, in practice, it often makes sense

to prefer the minimum-norm solution over other solutions. Finding this solution is

very similar to finding the best approximation.

Let V be a Hilbert space and w1, w2, . . . , wn be a set of linearly independent

vectors in V . For any v ∈ V , consider finding the scalars s1, s2, . . . , sn that mini-

mize ∥∥∥∥∥v −
n∑
i=1

siwi

∥∥∥∥∥ .
The answer is clearly given by the best approximation of v by vectors in the span of

w1, w2, . . . , wn. The orthogonality principle tells us that s1, s2, . . . , sn must satisfy
〈w1|w1〉 〈w2|w1〉 · · · 〈wn|w1〉
〈w1|w2〉 〈w2|w2〉 · · · 〈wn|w2〉

...
... . . . ...

〈w1|wn〉 〈w2|wn〉 · · · 〈wn|wn〉



s1

s2

...

sn

 =


〈v|w1〉
〈v|w2〉

...

〈v|wn〉

 . (4.8)

The same problem can also be posed in a different manner.

Theorem 4.5.1. Let V be a Hilbert space and w1, w2, . . . , wn be a set of linearly

independent vectors in V . The dual approximation problem is to find the vector

w ∈ V of minimum-norm that satisfies 〈w|wi〉 = ci for i = 1, . . . , n. This vector is

given by

w =
n∑
i=1

siwi,

where the coefficients s1, s2, . . . , sn can be found by solving (4.8) with 〈v|wi〉 = ci.

Proof. Let W = span(w1, w2, . . . , wn) and notice that the subset

A = {u ∈ V | 〈u|wi〉 = ci ∀ i = 1, . . . , n}

is simply the orthogonal complement W⊥ translated by any vector v ∈ A. There-

fore, the vector achieving minu∈A ‖u‖ is the error vector in the best approximation
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of some v ∈ A by vectors in W⊥. Using the unique decomposition v = v̂ + w

implied by the orthogonal decomposition V = W⊥ ⊕W , one finds that the error

vector w must lie in W . Moreover, the normal equations, given by modifying (4.8),

show that the error vector w is the unique vector in W that satisfies 〈w|wi〉 = ci for

i = 1, . . . , n.

4.5.2 Underdetermined Linear Systems

Let A ∈ Cm×n with m < n be the matrix representation of an underdetermined

system of linear equations and v ∈ Cm be any column vector. Then, the dual

approximation theorem can be applied to solve the problem

min
s:As=v

‖s‖.

To see this as a dual approximation, we can rewrite the constraint as (AH)Hs =

v. Then, the theorem concludes that the minimum norm solution lies in R(AH)

(i.e., the column space of AH). Using this, one can define ŝ = AHt and see that

A(AHt) = v. If the rows of A are linearly independent, then the columns of AH

are linearly independent and (AAH)−1 exists. In this case, the solution ŝ can be

obtained in closed form and is given by

ŝ = AH
(
AAH

)−1
v.

4.6 Projection onto Convex Sets

So far, we have focused on the projection of vectors onto subspaces. In this section,

similar results are obtained for the projection of vectors onto convex sets.

Definition 4.6.1. Let V be a vector space. The subset A ⊆ V is called a convex
set if, for all a1, a2 ∈ A and λ ∈ (0, 1), we have λa1 + (1 − λ)a2 ∈ A. The set is

strictly convex if, for all a1, a2 ∈ A and λ ∈ (0, 1), we have λa1 + (1− λ)a2 ∈ A◦.

Problem 4.6.2. Show that the intersection of convex sets is convex.

Definition 4.6.3. Let V be a Hilbert space and A ⊆ V be a closed convex set. The

orthogonal projection of v ∈ V onto A is the mapping PA : V → A defined by

PA(v) , arg min
u∈A
‖u− v‖ .
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PA(v)=u∗
v−PA(v)

v

u−
PA

(v
)

u

A

Figure 4.1: Orthogonal projection of v onto closed convex set A.

Remark 4.6.4. If A is compact, then the existence of the minimum (for any norm)

is given by topology because ‖v − u‖ is continuous in u. Similarly, if both u and

u′ achieve the minimum distance d, then the convexity of the norm implies that the

line segment between them also achieves the minimum distance. This implies that

the closed ball of radius d in V contains a line segment on its boundary but one can

use the Cauchy-Schwarz inequality to show this is impossible.

The following theorem instead uses vector space methods to establish the same

result for all closed convex A.

Theorem 4.6.5. For Hilbert space V , the orthogonal projection of v ∈ V onto a

closed convex set A ⊆ V exists and is unique.

Proof. Let d = infu∈A ‖u− v‖ be the infimal distance between v and the set A.

Next, consider any sequence u1, u2, . . . ∈ A that achieves the infimum so that

lim
n→∞

‖un − v‖ = d.

Since A is complete, the next step is showing that this sequence is Cauchy. The

parallelogram law states that ‖x− y‖2 = 2 ‖x‖2 + 2 ‖y‖2−‖x+ y‖2 and applying

this to x = v − un and y = v − um gives

‖um − un‖
2 = ‖(v − un)− (v − um)‖2

= 2 ‖v − un‖
2 + 2 ‖v − um‖

2 − ‖(v − un) + (v − um)‖2

= 2 ‖v − un‖
2 + 2 ‖v − um‖

2 − 4

∥∥∥∥v − un + um
2

∥∥∥∥2

≤ 2 ‖v − un‖
2 + 2 ‖v − um‖

2 − 4d2
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because the convexity of A implies un+um
2
∈ A and therefore

∥∥v − un+um
2

∥∥2 ≥ d2.

Since the limit of the RHS (as m,n → ∞) equals 0, we find that the sequence un
is Cauchy and therefore the limit u∗ must exist. Since un ∈ A and A is closed, we

also see that u∗ ∈ A. Therefore, the infimum is achieved as a minimum.

Uniqueness can be seen by assuming instead that um, un are two elements in

A which are both at a distance d from v. Then, the above derivation shows that

‖um − un‖
2 ≤ 0. Therefore, they are the same point.

Remark 4.6.6. The same result holds for norm projections in many other Banach

spaces including Lp and `p for 1 < p < ∞. In general, it is required that the

Banach space be strictly convex (for uniqueness) and reflexive (for existence).

Earlier in this chapter, we studied the equivalence between the orthogonality

and Hilbert-space projections onto subspaces. The following result can be seen as

a generalization of that result to Hilbert-space projections onto convex sets.

Theorem 4.6.7. For any v /∈ A, a necessary and sufficient condition for u∗ =

PA(v) is that Re〈v − u∗ |u− u∗〉 ≤ 0 for all u ∈ A.

Proof. Let u∗ = PA(v) be the unique projection of v onto A. For all u ∈ A and

any α ∈ (0, 1), observe that u′ = (1 − α)u∗ + αu = u∗ + α(u − u∗) ∈ A due to

convexity. The optimality of u∗ implies that

‖v − u∗‖2 ≤ ‖v − u′‖2

≤ ‖v − u∗ − α(u− u∗)‖2

= ‖v − u∗‖2 + α2‖u− u∗‖2 − 2αRe〈v − u∗ |u− u∗〉.

Thus, Re〈v−u∗ |u−u∗〉 ≤ α
2
‖u−u∗‖2. One can establish necessity by taking the

limit as α→ 0. For sufficiency, we assume Re〈v − u∗|u− u∗〉 ≤ 0 and we write

‖v − u‖2 − ‖v − u∗‖2 = ‖(v − u∗)− (u− u∗)‖2 − ‖v − u∗‖2

= ‖v − u∗‖2 + ‖u− u∗‖2 − 2Re〈v − u∗ |u− u∗〉 − ‖v − u∗‖2

≥ 0.

Thus, ‖v − u‖2 ≥ ‖v − u∗‖2 for all u ∈ A and u∗ = PA(v).
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4.6.1 Projection Properties and Examples

Let A be a closed convex subset of a Hilbert space V over R. By drawing a simple

picture (e.g., see Figure 4.1), one can see that projecting v onto A is an operation

that is translation invariant. Specifically, this means that translating the set A and

the vector v by the same vector v0 results in an output that is also translated by v0.

Mathematically, this means that, for all v, v0 ∈ V , the projection onto V satisfies

PA+v0
(v + v0) = arg min

u∈A+v0
‖u− v − v0‖

= v0 + arg min
u′∈A
‖(u′ + v0)− v − v0‖

= v0 + arg min
u′∈A
‖u′ − v‖

= v0 + PA(v).

This also leads to the following trick. If a projection is easy when the set is centered,

then one can: (i) translate the problem so that the set is centered, (ii) project onto

the centered set, and (iii) translate back.

Using the best approximation theorem, it is easy to verify that the orthogonal

projection of v ∈ V onto a one-dimensional subspace W = span(w) is given by

PW (v) =
〈v|w〉
‖w‖2 w.

A hyperplane is a closed subspace of U ⊂ V that satisfies a single linear

equality of the form 〈v|w〉 = 0 for all v ∈ U . Such a subspace is said to have co-

dimension one (e.g., if dim(V ) = n, then dim(U) = n−1). Equivalently, U can be

seen as the orthogonal complement of a one-dimensional subspace (e.g., U = W⊥).

Thus, we can write

PU(v) = PW⊥(v) = v − 〈v|w〉
‖w‖2 w.

Similarly, a linear equality such as 〈v|w〉 = c, where v0 is any vector in V

satisfying 〈v0|w〉 = c, defines an affine hyperplane. This is the shifted subspace

U + v0 of co-dimension one because

〈v|w〉 = 〈u+ v0|w〉 = 〈u|w〉+ 〈v0|w〉 = 0 + c = c.

Thus, we can project onto U + v0 by translating, projecting, and then translating
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back. This gives

PU+v0
(v) =

(
(v − v0)− 〈v − v0|w〉

‖w‖2 w

)
+ v0 = v − 〈v|w〉 − c

‖w‖2 w,

which does not depend on the choice of v0.

Next, let H be the subset of v ∈ V satisfying the linear inequality 〈v|w〉 ≥ c.

Then, H is a closed convex set known as a half space. For any v ∈ H , we have

PH(v) = v and, for any v /∈ H , we have PH(v) = PU+v0
(v) because the closest

point must lie on the separating hyperplane and achieve the inequality with equality.

For any v ∈ H , one can put these together to see that

PH(v) =

v if 〈v|w〉 ≥ c

v − 〈v|w〉−c‖w‖2 w if 〈v|w〉 < c.
(4.9)

Theorem 4.6.8. Let V be a Hilbert space over R and A ⊂ V be a closed convex

set. For any v /∈ A, there is an affine hyperplane U ′ = {u ∈ V | 〈u|w〉 = c}
(defined by w ∈ V and c ∈ R) such that 〈v|w〉 < c and 〈u|w〉 ≥ c for all u ∈ A.

Proof. Let u∗ = PA(v) be the orthogonal projection of v onto A and define w =

u∗ − v and c = 〈u∗|w〉. From Theorem 4.6.7, we see that 〈v − u∗|u− u∗〉 ≤ 0 for

all u ∈ A. Thus, for all u ∈ A, we have

〈u|w〉 = 〈w|u〉 = 〈u∗ − v|u〉 = −〈v − u∗|u〉
(a)

≥ −〈v − u∗|u∗〉 = 〈u∗ − v|u∗〉

= 〈w|u∗〉 = 〈u∗|w〉 = c,

where (a) follows from 〈v − u∗|u− u∗〉 ≤ 0 for all u ∈ A. For 〈v|w〉, we observe

that together, u∗ ∈ A and v /∈ A, imply that

0 < ‖u∗ − v‖2 = 〈u∗ − v|u∗ − v〉

= 〈u∗|u∗ − v〉 − 〈v|u∗ − v〉 = c− 〈v|u∗ − v〉,

which shows that 〈v|w〉 < c and completes the proof.

Theorem 4.6.9. Let V be Hilbert space over R and A ⊂ V be a closed convex set.

Then, A equals the intersection of a set of half spaces.
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Proof. LetH be the set of all half spaces in V and let G = {H ∈ H |A ⊆ H} be the

subset of half spaces containing A. For example, consider the half spaces defined

by tangent planes passing through points on the boundary of A. Let B = ∩H∈GH
be the intersection of all the half spaces in G. Since each half space contains A, it is

clear that A ⊆ B. To show that A = B, we will show that (x /∈ A)→ (x /∈ B). If

x /∈ A, then Theorem 4.6.8 shows that there is an affine hyperplane that separates x

from A and an associated half space G that contains A but not x. Since G contains

A, it follows that G ∈ G. But, x /∈ G implies x /∈ B because B is the intersection

of the half spaces in G. This completes the proof.

4.6.2 Minimum Distance Between Two Convex Sets

Now, consider the smallest distance between two disjoint closed convex setsA,B ⊆
V . In this case, a unique solution may exist but a some things can go wrong. If the

two sets are not strictly convex (e.g., consider two squares), then it is clearly pos-

sible for their to multiple pairs of points that achieve the minimum distance. Even

if the two sets are strictly convex, one may find that the infimum is achieved as the

points wander off to infinity. For example, consider the strictly convex hyperbolic

setsA = {(x, y)|x2 − y2 ≥ 1, x > 0} andB = {(x, y)|y2 − x2 ≥ 1, y ≥ 0}. These

two sets share the line x = y > 0 as an asymptote, so their infimal distance is 0.

To understand this behavior, we first note that the distance f (u, v) = ‖u− v‖
is a convex function on the convex product set A × B. It follows that any local

minimum value is a global minimum value distance.

Theorem 4.6.10. Let V be a Hilbert space and consider the infimal distance

d = inf
u∈A,v∈B

‖u− v‖

between two disjoint closed convex sets A,B ⊆ V . If either set is compact, then

the infimum is achieved. If the infimum is achieved and either set is strictly convex,

then the minimizing points u∗, v∗ are unique.

Proof. Consider any sequence (u1, v1), (u2, v2), . . . ∈ A×B that satisfies

lim
n→∞

‖un − vn‖ = d.

If B is compact, then there is a subsequence vnj
that converges to some v∗ ∈ B.

Since ‖PA(vn)−vn‖ ≤ ‖un−vn‖, we can replace unj
by PA(vnj

) and still achieve
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the infimum. The continuity of PA also shows that unj
→ u∗ = PA(v∗) and this

implies ‖u∗ − v∗‖ = d. Also, PB(u∗) = v∗ because v∗ is the unique closest point

in B to u∗. Notice that v∗ may not be unique (due to the subsequence construction)

and, thus, the pair (u∗, v∗) is not unique in general.

Since ‖u− v‖ is a convex function on the convex product set A× B, there is a

(possibly empty) convex set of minimizers

M =
{

(u, v) ∈ A×B
∣∣ ‖u− v‖ = d

}
.

Also, each component of the (u, v) points in M must lie on the boundary of its

set because otherwise one could reduce the smallest distance by moving one point

along the minimum distance line towards the boundary. Now, suppose that (i) A

is strictly convex and (ii) M contains more than one pair of minimizers. Then,

condition (ii) implies that there must be two boundary points u1, u2 ∈ ∂A such

that αu1 + (1 − α)u2 ∈ ∂A for α ∈ [0, 1]. But this contradicts condition (i) and

shows that, if A is strictly convex, then there is at most one pair (u∗, v∗) ∈ M of

minimizing points.

Remark 4.6.11. Finding the minimum distance between two disjoint closed convex

sets A,B ⊆ V is a classic problem that is solved nicely by the idea of alternating

minimization. Let v0 ∈ B be an arbitrary initial point and define

un+1 = arg min
u∈A
‖u− vn‖

vn+1 = arg min
v∈B

∥∥un+1 − v
∥∥ .

Notice that the sequence dn = ‖un − vn‖ is non-increasing and must therefore have

a limit. By adapting the previous proof, one can show that, if either set is compact,

then the sequence (un, vn) converges to a pair of vectors that minimize the distance.

Theorem 4.6.12. Let V be a Hilbert space over R and A,B be disjoint closed

convex subsets of V . If either set is compact, then there is an affine hyperplane

{a ∈ V | 〈a|w〉 = c} (defined by w ∈ V and c ∈ R) such that 〈u|w〉 > c for all

u ∈ A and 〈u|w〉 < c for all u ∈ B.

Proof. Applying Theorem 4.6.10 gives a pair of points (u∗, v∗) ∈ A×B that min-

imize the distance and satisfy u∗ = PA(v∗) and v∗ = PB(u∗). Applying Theo-

rem 4.6.8 to PA(v∗) shows that 〈u|u∗−v∗〉 ≥ 〈u∗|u∗−v∗〉 for all u ∈ A. Similarly,
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applying Theorem 4.6.8 to PB(u∗) shows that 〈v|v∗ − u∗〉 ≥ 〈v∗|v∗ − u∗〉 for all

v ∈ B. Negating this gives 〈v|u∗ − v∗〉 ≤ 〈v∗|u∗ − v∗〉. Now, we observe that

〈u∗|u∗ − v∗〉 − 〈v∗|u∗ − v∗〉 = ‖u∗ − v∗‖2 > 0 because u∗ 6= v∗. Thus, we can

choose w = u∗ − v∗ and c = 1
2
(〈u∗|u∗ − v∗〉 + 〈v∗|u∗ − v∗〉) to guarantee that

〈u|w〉 > c for all u ∈ A and 〈u|w〉 < c for all u ∈ B.



Chapter 5

Optimization

The foundation of engineering is the ability to use math and physics to design and

optimize complex systems. The advent of computers has made this possible on an

unprecedented scale. This chapter provides a brief introduction to mathematical

optimization theory.

5.1 Derivatives in Banach Spaces

In this chapter, we assume that readers are familiar with derivatives as defined in

undergraduate multivariable calculus. To gain insight, we first recall the standard

interpretation of the derivative as a local linear approximation of a function. For a

function f : Rn → Rm, this interpretation gives

f(x+ h) = f(x) + J(x) · h+ higher order terms,

where J(x) ∈ Rm×n is the Jacobian matrix of f at x.

Instead of interpreting a multivariate derivative as a matrix, we will view the

derivative f ′(x) as a linear transform T from the domain to codomain. This trans-

form maps the input perturbation h to a local approximation of the output pertur-

bation. Since both are finite dimensional in our example, the linear transform T is

represented by the Jacobian matrix and we have

f ′(x)(h) = Th = J(x) · h.

Mathematically, such definitions require the structure of a Banach space because

105
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one needs the linear structure to compute differences, the norm topology to define

limits, and completeness to guarantee that the limits exists under mild conditions.

Definition 5.1.1. Let f : X → Y be a mapping from a vector space X over R to a

Banach space (Y, ‖ · ‖). Then, if it exists, the Gâteaux differential (or directional

derivative) of f at x in direction h is given by

δf(x;h) , lim
t→0

f(x+ th)− f(x)

t
,

where the limit is with respect to the implied mapping from t ∈ R to Y .

Lemma 5.1.2. Let Y = (R, | · |) and suppose that δf(x;h) exists and is negative

for some f , x, and h. Then, there exists t0 > 0 such that, for all t ∈ (0, t0), one has

f(x+ th) < f(x).

Proof. The δf(x;h) limit implies that, for any ε > 0, there is a t0 > 0 such that

f(x+ th)− f(x) ≤ (δf(x;h) + ε) t

for all t ∈ (0, t0). If δf(x;h) < 0, then one can choose ε = −1
2
δf(x;h) to see that

the RHS is negative for all t ∈ (0, t0). The stated result follows.

Example 5.1.3. For the standard Banach space X=Y =R2, let f(x)=(x1x2, x1 +

x2
2). Then, for x=(1, 1), h=(1, 2), we have

δf(x, h) =
d

dt
((1 + t)(1 + 2t), (1 + t) + (1 + 2t)2)

∣∣∣
t=0

= (3, 5).

Problem 5.1.4. Suppose X = Y = L1([0, 1]) is the Banach space of Lebesgue

absolutely integrable functions mapping [0, 1] to R and f(x) = ‖x‖ =
∫ 1

0
|x(s)|ds

is the norm of x. Assuming the set {s ∈ [0, 1]|x(s) = 0} has measure 0, show that

δf(x;h) , lim
t→0

∫ 1

0

1

t
(|x(s) + th(s)| − |x(s)|) ds =

∫ 1

0

sgn(x(s))h(s)ds.

Definition 5.1.5. Let f : X → Y be a mapping from a vector space X over R to

a Banach space (Y, ‖ · ‖). Then, f is Gâteaux differentiable at x if the Gâteaux

differential δf(x;h) exists for all h ∈ X and is a linear function of h. If, in addition,

X is a Banach space, then δf(x;h) must be a continuous linear function of h.
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Remark 5.1.6. For simplicity, our treatment of Gâteaux derivatives assumes X is

a vector space over R but similar results are possible over C as well.

Definition 5.1.7. Let f : X → Y be a mapping from a Banach space (X, ‖ · ‖X) to

a Banach space (Y, ‖ ·‖Y ). Then, f is Fréchet differentiable at x if there is a linear

transformation T : X → Y with ‖T‖ <∞ that satisfies

lim
h→0

‖f(x+ h)− f(x)− T (h)‖Y
‖h‖X

= 0, (5.1)

where the limit is with respect to the implied Banach space mapping X → R. In

this case, the Fréchet derivative at x equals T and is denoted by f ′(x) in general.

Example 5.1.8. A function f : Rn → Rm with f = (f1, f2, . . . , fm)T is (Fréchet)

differentiable at x0 if the mapping J from Rn to the Jacobian matrix,

J(x) = f ′(x) ,


∂f1
∂x1

(x) ∂f1
∂x2

(x) · · · ∂f1
∂xn

(x)
∂f2
∂x1

(x) ∂f2
∂x2

(x) · · · ∂f2
∂xn

(x)
...

... . . . ...
∂fm
∂x1

(x) ∂fm
∂x2

(x) · · · ∂fm
∂xn

(x)

 ,
exists and is continuous in x at x = x0. A necessary and sufficient condition for

this is that each partial derivative is continuous in x at x = x0.

If m = 1, then the Jacobian is also called the gradient of the function

f ′(x) = ∇f(x) ,
[

∂f
∂x1

(x) ∂f
∂x2

(x) · · · ∂f
∂xn

(x)
]
.

It is worth noting that there is no universal agreement about the orientation of

the gradient vector (i.e., row versus column vector). This is because derivatives

are properly understood as linear transforms and either orientation can be used to

define the correct linear transform.

Example 5.1.9. Let X be a Hilbert space over R and f : X → R be a real func-

tional. If the Fréchet derivative f ′(x) exists, then it is a continuous linear functional

on X . Thus, the Riesz representation theorem guarantees that there is a vector

u ∈ X such that f ′(x)(h) = 〈h|u〉 for all h ∈ X . This vector is called the gradient

∇f(x) and it follows that

f ′(x)(h) = 〈h|∇f(x)〉 for all h ∈ X.
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Problem 5.1.10. In the setting of the previous example, show that, if ∇f(x) 6= 0,

then f
(
x− δ∇f(x)

)
< f(x) for some δ > 0.

Theorem 5.1.11. Let f : X → Y be a mapping from a Banach space (X, ‖ · ‖X)

to a Banach space (Y, ‖ · ‖Y ). If f is Fréchet differentiable at x with derivative f ′,

then f is Gâteaux differentiable at x with Gâteaux differential δf(x;h) = f ′(x)(h).

Proof. For h = 0, the statement is trivial. For h 6= 0, we first observe that th → 0

as t→ 0. Letting T = f ′(x), we can combine this with (5.1) to see that

0 = lim
t→0

‖f(x+ th)− f(x)− T (th)‖Y
‖th‖X

= lim
t→0

∥∥∥∥f(x+ th)− f(x)

t‖h‖X
− tT (h)

t‖h‖X

∥∥∥∥
Y

=
1

‖h‖X
lim
t→0

∥∥∥∥f(x+ th)− f(x)

t
− T (h)

∥∥∥∥
Y

.

Thus, the Gâteaux differential exists and satisfies δf(x;h) = T (h) = f ′(x)(h).

Theorem 5.1.12. Let X, Y, Z be Banach spaces and let f : X → Y and g : Y → Z

be functions. If f is Fréchet differentiable at x and g is Fréchet differentiable at

y = f(x), then (g ◦ f)(x) = g(f(x)) is Fréchet differentiable at x with derivative

g′(f(x)) ◦ f ′(x).

Proof. For the stated derivatives, the errors in the implied linear approximations are

φ(v) = f(x+ v)− f(x)− f ′(x)(v)

ψ(u) = g(y + u)− g(y)− g′(y)(u)

ρ(h) = g(f(x+ h))− g(f(x))−
(
g′(y) ◦ f ′(x)

)
(h).

From the assumptions of differentiability, we know that the first two approximations

become tight for small perturbations. In other words,

lim
v→0

‖φ(v)‖Y
‖v‖X

= 0, lim
u→0

‖ψ(u)‖Z
‖u‖Y

= 0.

Next, we observe that the definition of φ implies

g(f(x+ h))− g(f(x)) = g
(
f(x) + f ′(x)(h) + φ(h)

)
− g(y).
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Combining this with the definition of ρ shows that

ρ(h) = g
(
f(x) + f ′(x)(h) + φ(h)

)
− g(y)−

(
g′(y) ◦ f ′(x)

)
(h)

= ψ
(
f ′(x)(h) + φ(h)

)
+ g′(y)

(
f ′(x)(h) + φ(h)

)
−
(
g′(y) ◦ f ′(x)

)
(h)

= ψ
(
f ′(x)(h) + φ(h)

)
+ g′(y)(φ(h)).

We take this opportunity to note that ‖g′(f(x))◦f ′(x)‖ ≤ ‖g′(f(x))‖‖f ′(x)‖ ≤ ∞
because ‖f ′(x)‖ ≤ ∞ and ‖g′(f(x))‖ < ∞. Since limh→0 ‖φ(h)‖Y /‖h‖X = 0,

there is a t > 0 such that ‖φ(h)‖Y ≤ ‖f ′(x)‖‖h‖X if ‖h‖X < t. Under the same

condition, it follows that 2‖f ′(x)‖‖h‖X ≥ ‖f ′(x)‖‖h‖X + ‖φ(h)‖Y . Using this,

we can write

‖ρ(h)‖Z
‖h‖X

=
‖ψ
(
f ′(x)(h) + φ(h)

)
+ g′(y)(φ(h))‖Z

‖h‖X

≤ 2‖f ′(x)‖
‖ψ
(
f ′(x)(h) + φ(h)

)
‖Z

2‖f ′(x)‖‖h‖X
+
‖g′(y)(φ(h))‖Z

‖h‖X

≤ 2‖f ′(x)‖
‖ψ
(
f ′(x)(h) + φ(h)

)
‖Z

‖f ′(x)‖‖h‖X + ‖φ(h)‖Y
+
‖g′(y)‖‖φ(h)‖Y

‖h‖X

≤ 2‖f ′(x)‖
‖ψ
(
f ′(x)(h) + φ(h)

)
‖Z

‖f ′(x)(h) + φ(h)‖Y
+
‖g′(y)‖‖φ(h)‖Y

‖h‖X
.

Since (f ′(x)(h) + φ(h)) → 0 as h → 0, it follows that the limit of the RHS, as

h→ 0, also exists and equals 0. Thus, limh→0 ‖ρ(h)‖Z/‖h‖X = 0 and the Fréchet

derivative of g(f(x)) exists and satisfies the chain rule.

Theorem 5.1.13. Let X, Y be Banach spaces and f : X → Y be a function. For

x1, x2 ∈ X , let h = x2 − x1 and assume the Gâteaux differential δf
(
(1 − s)x1 +

sx2;h
)

exists for all s ∈ [0, 1]. Then, ‖f(x2)− f(x1)‖ ≤M‖x2 − x1‖, where

M =
sups∈[0,1] ‖δf

(
(1− s)x1 + sx2;h

)
‖

‖x2 − x1‖
.

Proof. For w1 = 1
2
(x1 + x2), observe that

‖f(x2)− f(x1)‖
‖x2 − x1‖

=
‖f(x2)− f(w1) + f(w1)− f(x1)‖

‖x2 − x1‖

≤ ‖f(x2)− f(w1)‖+ ‖f(w1)− f(x1)‖
‖x2 − x1‖

=
‖f(x2)− f(w1)‖

2‖x2 − w1‖
+
‖f(w1)− f(x1)‖

2‖w1 − x1‖
.
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Suppose that ‖f(x2) − f(x1)‖ > M‖x2 − x1‖. Then, there is an ε > 0 such that

one or both of the following conditions must hold:

‖f(x2)− f(w1)‖
‖x2 − w1‖

≥M + ε and
‖f(w1)− f(x1)‖
‖w1 − x1‖

≥M + ε.

Repeating indefinitely and choosing a satisfying subinterval at each step, one gets a

sequence wn of midpoints that converges to x = (1−s)x1 +sx2 for some s ∈ [0, 1].

Since the Gâteaux differential δf(x;h) exists by assumption, it follows that

M + ε ≤ ‖f(wn)− f(x)‖
‖wn − x‖

=

∥∥∥∥f(x± 2−nh)− f(x)

2n‖x2 − x1‖

∥∥∥∥→ ‖δf(x;h)‖
‖x2 − x1‖

.

This contradicts the definition ofM and, thus, ‖f(x2)−f(x1)‖ ≤M‖x2−x1‖.

Corollary 5.1.14. Let X, Y be Banach spaces and f : X → Y be a function. If the

Fréchet derivative f ′(x) exists and satisfies ‖f ′(x)‖ ≤ L for all x in a convex set

A ⊆ X , then f is Lipschitz continuous on A with Lipschitz constant L.

Proof. Assume ‖f ′(x)‖ ≤ L for all x in a convex set A ⊆ X . Then, for any

x1, x2 ∈ A, let h = x2 − x1 and notice that Theorem 5.1.11 implies that

‖δf
(
(1− s)x1 + sx2;h

)
‖ = ‖f ′

(
(1− s)x1 + sx2

)
(h)‖ ≤ ‖f ′(x)‖‖h‖,

for all s ∈ [0, 1]. Applying Theorem 5.1.13, we see that ‖f(x2)−f(x1)‖ ≤M‖x2−
x1‖ with M ≤ ‖f ′(x)‖ ≤ L. This completes the proof.

5.2 Unconstrained Optimization

Functions mapping elements of a vector space (over F ) down to the scalar field F

play a very special role in the analysis of vector spaces.

Definition 5.2.1. Let V be a vector space over F . Then, a functional on V is a

function f : V → F that maps V to F .

Linear functionals (i.e., functionals that are linear) are used to define many im-

portant concepts in abstract vector spaces. For unconstrained optimization, how-

ever, linear functionals are not interesting because they are either zero or they

achieve all values in F .
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Definition 5.2.2. Let (X, ‖ · ‖) be a normed vector space. Then, a real functional

f : X → R achieves a local minimum value at x0 ∈ X if there is an ε > 0 such

that, for all x ∈ X satisfying ‖x − x0‖ < ε, we have f(x) ≥ f(x0). If the bound

holds for all x ∈ X , then the local minimum is also a global minimum value.

Theorem 5.2.3. Let (X, ‖ · ‖) be a normed vector space and f : X → R be a real

functional. If δf(x0, h) exists and is negative for any h ∈ X , then x0 is not a local

minimum value.

Proof. First, we apply Lemma 5.1.2 with the x and h for which δf(x0, h) < 0. This

gives a t0 > 0 such that f(x0 +th) < f(x0) for all t ∈ (0, t0). Thus, there can no be

no ε > 0 satisfying the definition of a local minimum value in Definition 5.2.2.

5.3 Convex Functionals

Convexity is a particularly nice property of spaces and functionals that leads to

well-defined minimum values.

Definition 5.3.1. Let V be a vector space, A ⊆ V be a convex set, and f : V → R
be a functional. Then, a functional f is called convex on A if, for all a1, a2 ∈ A

and λ ∈ (0, 1), we have

f(λa1 + (1− λ)a2) ≤ λf(a1) + (1− λ)f(a2).

The functional is strictly convex if equality occurs only when a1 = a2. A functional

is f is called (strictly) concave if −f is (strictly) convex.

Definition 5.3.2. A Banach space X is called strictly convex if the unit ball, given

by {x ∈ X| ‖x‖ ≤ 1}, is a strictly convex set. An equivalent condition is that

equality in the triangle inequality (i.e., ‖x+ y‖ = ‖x‖+ ‖y‖) for non-zero vectors

implies that x = sy for some s ∈ F .

Example 5.3.3. Let (X, ‖·‖) be a normed vector space. Then, the norm ‖·‖ : X →
R is a convex functional on X . Proving this is a good introductory exercise.
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Example 5.3.4. Let X be an an inner-product space. For x, y ∈ X and λ ∈ (0, 1),

‖λx+ (1− λ)y‖2 = λ2‖x‖2 + 2λ(1− λ)Re〈x|y〉+ (1− λ)2‖y‖2

= λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)(‖x‖2 + ‖y‖2 − 2Re〈x|y〉)

= λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2

≤ λ‖x‖2 + (1− λ)‖y‖2,

with equality iff x = y. Thus, the square of the induced norm ‖ · ‖2 is a strictly

convex functional on X .

Theorem 5.3.5. Let (X, ‖ · ‖) be a normed vector space, A ⊆ X be a convex set,

and f : X → R be a convex functional on A. Then, any local minimum value of

f on A is a global minimum value on A. If the functional is strictly convex on A

and achieves a local minimum value on A, then there is a unique point x0 ∈ A that

achieves the global minimum value on A.

Proof. Let x0 ∈ A a point where the functional achieves a local minimum value.

Proving by contradiction, we suppose that there is another point x1 ∈ A such that

f(x1) < f(x0). From the definition of a local minimum value, we find an ε > 0

such that f(x) ≥ f(x0) for all x ∈ A satisfying ‖x − x0‖ < ε. Choosing λ <
ε

‖x0−x1‖
in (0, 1) and x = (1 − λ)x0 + λx1 implies that ‖x − x0‖ < ε while the

convexity of f implies that

f(x) = f ((1− λ)x0 + λx1) ≤ (1− λ)f(x0) + λf(x1) < f(x0).

This contradicts the definition of a local minimum value and implies that f(x0) is

a global minimum value on A. If f is strictly convex and f(x1) = f(x0), then we

suppose that x0 6= x1. In this case, strict convexity implies that

f ((1− λ)x0 + λx1) < (1− λ)f(x0) + λf(x1) = f(x0).

This contradicts the fact that f(x0) is a global minimum value on A and implies

that x0 = x1 is unique.

Theorem 5.3.6. Let (X, ‖·‖) be a normed vector space and f : X → R be a convex

functional on a convex set A ⊆ X . If f is Gâteaux differentiable at x0 ∈ A, then

f(x) ≥ f(x0) + δf(x0;x− x0)

for all x ∈ A. If f is strictly convex then the inequality is strict for x 6= x0.
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Proof. By the convexity of A and f , we have x0 + λ(x− x0) ∈ A and

f (x0 + λ(x− x0)) ≤ f(x0) + λ (f(x)− f(x0)) (5.2)

for all λ ∈ (0, 1). Also, if f is strictly convex, then (5.2) strict for x 6= x0. Thus,

f(x) ≥ f(x0) +
f (x+ λ(x− x0))− f(x0)

λ

and taking the limit at λ ↓ 0 completes the proof for a convex functional.

For the case where f is strictly convex, we first apply the convex result to see

f(x0 + λ(x− x0)) ≥ f(x0) + δf(x0;λ(x− x0)) = f(x0) + λδf(x0;x− x0),

where the second step holds because δf(x;h) is linear in h. This gives

δf(x0;x− x0) ≤ f(x0 + λ(x− x0))− f(x0)

λ
< f(x)− f(x0),

where the second inequality holds because (5.2) is a strict inequality for x 6= x0.

Corollary 5.3.7. Let (X, ‖ · ‖) be a normed vector space and f : X → R be a

convex functional on a convex set A ⊆ X . If f is Gâteaux differentiable at x0 ∈ A
and δf(x0;x− x0) = 0 for all x ∈ A, then

f(x0) = min
x∈A

f(x).

If f is strictly convex, x0 is the unique minimizer over A.

5.4 Constrained Optimization

Lagrangian optimization is an indispensable tool in engineering and physics that al-

lows one to solve constrained non-linear optimization problems. For convex prob-

lems, there are now efficient algorithms that can handle thousands of variables and

constraints. In some cases, there are also analytical techniques that allow one to

derive tight bounds on optimum value. These approaches have become so common

that convex Lagrangian optimization problems are now taught as a fundamental part

of the graduate engineering curriculum. For simplicity, we focus on the case where

the domain D is a subset of the finite-dimensional real space Rn.
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Constrained non-linear optimization problems over D ⊆ Rn can be put into the

following standard form. Let fi : D → R and hj : D → R be a real functionals on

D for i = 0, 1, . . . ,m and j = 1, 2, . . . , p. Then, the standard form is

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, 2, . . . ,m

hj(x) = 0, j = 1, 2, . . . , p

x ∈ D.

The function f0 is called the objective function while the functions f1, . . . , fm

are called inequality constraints and the functions h1, . . . , hp are called equality

constraints.

Definition 5.4.1. A vector x ∈ D is feasible if it satisfies the constraints. Let

F = {x ∈ D | fi(x) ≤ 0, i = 1, 2, . . . ,m , hj(x) = 0, j = 1, . . . , p} be the set of

feasible vectors. Then, the problem is feasible if F 6= ∅.

Definition 5.4.2. The optimal value is

p∗ = inf {f0(x) |x ∈ F} .

By convention, p∗ is allowed to take infinite values and p∗ = ∞ if the problem is

not feasible.

Evaluating the function at any feasible point automatically an upper bound be-

cause

p∗ ≤ f0(x) ∀x ∈ F .

The optimization of a linear function with arbitrary affine equality and inequal-

ity constraints is called a linear program. Linear programs (LPs) have many equiv-

alent forms and any linear program can be transformed into any standard form.

Definition 5.4.3. Two standard minimization forms of an LP are given by:

minimize cTx

subject to Ax = b

x � 0

minimize cTx

subject to Ax � b.

x � 0.
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5.4.1 The Lagrangian

The Lagrangian is used to transform constrained optimization problems into uncon-

strained optimization problems. One can think of it as introducing a cost λi ≥ 0

associated with violating the i-th inequality constraint and a variable νj used to

enforce the j-th equality constraint.

Definition 5.4.4. The Lagrangian L : D × Rm × Rp → R associated with opti-

mization problem is

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +

p∑
j=1

νjhj(x),

where λi is the Lagrange multiplier associated with the i-th inequality constraint

and νj is the Lagrange multiplier associated with the j-th equality constraint.

Definition 5.4.5. A point x∗ is called locally optimal if there is an ε0 > 0 such that,

for all ε < ε0, it holds that f0(x) ≥ f0(x∗) for all x ∈ F satisfying ‖x − x∗‖ < ε.

The i-th inequality constraint is active at x∗ if fi(x∗) = 0. Otherwise, it is inactive.

Theorem 5.4.6 (Karush-Kuhn-Tucker). Assume the functions fi and hj are con-

tinuously differentiable and let A = {i ∈ [m] | fi(x∗) = 0} be the set of active

constraints at x∗. Then, x∗ is locally optimal only if λ∗ ≥ 0 and ν∗ exist such that

∇f0(x∗) +
∑
i∈A

λ∗i∇fi(x∗) +

p∑
j=1

ν∗j∇hj(x∗) = 0 (5.3)

This theorem provides a necessary condition for a point x∗ to be locally optimal

for a constrained optimization problem. Before considering its proof, it is useful

to discuss the geometric picture upon which it is based. First, we note that the

negative gradient−∇f0(x∗) gives the direction of steepest descent for the objective

function.

Now, consider what happens if we evaluate the function at x(t) = x∗ + ty for

some direction y and a sufficiently small t > 0. For any continuously differentiable

function f , the definition of the derivative implies that

f(x(t)) = f(x∗) + tyH∇f(x∗) + o(t),

where o(t) → 0 as t → 0. If the problem is unconstrained (e.g., m = p = 0), then

∇f0(x∗) must be 0. Otherwise, one is guaranteed to reduce the function by choosing
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Figure 5.1: A contour plot of the function f0(x1, x2) = (x1−1)2+(x2−1)2−x1x2/2

whose minimum occurs at (4/3, 4/3) (i.e., the center of the blue ellipse). The red

line indicates the inequality constraint f1(x1, x2) = 1.85+(x1−2.25)2/2−x2 ≤ 0.

The picture shows that the constrained minimum occurs at the intersection of the

contour tangent line and the active constraint line.

y = −∇f0(x∗) (e.g., see Lemma 5.1.2). If there are constraints, however, then x(t)

may be infeasible. For the j-th equality constraint, the definition of the derivative

implies that, for sufficiently small t, x(t) will be infeasible if |yH∇hj(x∗)| > 0.

Thus, we certainly need yH∇hj(x∗) = 0 for all j.

If the i-th inequality constraint is active (i.e., fi(x∗) = 0), then the definition

of the derivative implies that, for sufficiently small t, x(t) will be infeasible if

yH∇fi(x∗) > 0. Thus, we certainly need yH∇fi(x∗) ≤ 0 for all i ∈ A. If the

constraint is inactive (i.e., fi(x∗) < 0), then due to continuity it will remain satis-

fied for sufficiently small t.

The geometric picture implied by Theorem 5.4.6 is that of a game where one

would like to decrease the objective f0(x∗) by choosing y such that yH∇f0(x∗) < 0
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but there are constraints on the set of allowable y’s. Let H = span({∇hj(x∗)}) be

the subspace of directions that violate the equality constraints at x∗. Similarly, let

the cone of directions that violate the active inequality constraints is given by

F =

{∑
i∈A

λi∇fi(x∗)

∣∣∣∣∣λi ≥ 0, i ∈ A

}
.

Thus, one can only pick directions y that are orthogonal to all vectors in H and also

have a non-positive inner product with all vectors in F .

Let the matrix P define the orthogonal projection of Rn onto H⊥. Using this,

we can translate the equation (5.3) into the statement

−P∇f0(x∗) ∈ PF

or “the projection of the descent direction lies in the projection of the cone of di-

rections that violate the inequality constraints”. The reason for this is that we can

absorb the∇hj terms into the∇fi terms by defining

f (i) = ∇fi(x∗) +

p∑
j=1

νj,i∇hj(x∗) = P∇fi(x∗)

so that f (i) ∈ H⊥ for i = 0, 1, . . . ,m. Then, the cone PF is defined by

PF =

{∑
i∈A

λif
(i)

∣∣∣∣∣λi ≥ 0, i ∈ A

}
.

If −P∇f0(x∗) /∈ PF , then we project −P∇f0(x∗) onto PF to get a non-

zero residual y. The resulting vector gives a direction where the objective function

decreases and the constraints remain almost satisfied. The challenge in making

this proof precise is that, unless the equality constraints are affine, they may not

be exactly satisfied for t > 0. In standard proofs of this result, this difficulty is

overcome by using the implicit function theorem to construct an x(t) that starts in

the direction of y but is perturbed slightly to remain feasible.

Proof. For simplicity, we prove only the case where hj(x) = aHj x− b is affine and

PF does contain a line (i.e., {αz |α ∈ R} for some z). First, we define

y(λ, ν) = −∇f0(x∗)−
m∑
i=1

λi∇fi(x∗)−
p∑
j=1

νj∇hj(x∗)︸ ︷︷ ︸
aj

.
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The vector y(λ, ν) can be seen as the residual of the descent direction for the ob-

jective function after the constraint gradients have been used to cancel some parts.

Next, we let ν∗(λ) = arg minν∈Rp ‖y(λ, ν)‖2 and apply the best approximation

theorem to see that

y(λ, ν∗(λ)) = Py(λ, ν),

where P is orthogonal projection onto H⊥ and H = span({aj}). This ensures that

each hj(x∗ + ty(λ, ν∗(λ))) = 0 for all λ ∈ Rm and t ∈ R.

Continuing, we define y∗ = arg minλ∈Rm,λ≥0 ‖y(λ, ν∗(λ))‖2. This implies that

y∗ is the error vector for the projection of −P∇f0(x∗) onto the convex set PF .

The projection itself is given by z = −P∇f0 − y∗ and Lemma ?? shows that(
y∗
)H

(z) ≥ 0. Using this, we see that(
y∗
)H

(−P∇f0(x∗)) =
(
y∗
)H (

z + y∗
)
≥ ‖y∗‖2

2.

If (5.3) cannot be satisfied by some λ ≥ 0 and ν, then y∗ 6= 0 and ‖y∗‖2 > 0. This

shows that y∗ points in a direction that decreases the value of the objective function.

But, the y∗ direction is only guaranteed to preserve feasibility to first order (i.e.,

(y∗)HP∇fi(x∗) ≤ 0). To fix this, one can add to y∗ a sufficiently small vector w

satisfying wHP∇fi(x∗) < 0 for all i = 1, 2, . . . ,m. Such a w lies in the “interior

of the polar cone of PF ” and will exist as long as PF does not contain a line. With

this modification, the definition of the derivative implies that, for sufficiently small

t, x(t) = x∗+ t(y∗+w) will be a feasible vector satisfying f0(x(t)) < f0(x∗).

5.4.2 Lagrangian Duality

Definition 5.4.7. The Lagrangian dual function is defined to be

g(λ, ν) , inf
x∈D

L(x, λ, ν).

Lemma 5.4.8. The Lagrangian dual problem

maximize g(λ, ν)

subject to λ ≥ 0

has a unique maximum value d∗ ≤ p∗. This property is known as weak duality.
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Proof. The Lagrangian dual function is concave because it is the pointwise infimum

of affine functions

g(αλ+(1− α)λ′, αν + (1− α)ν ′)

= inf
x∈D

L(x, αλ+ (1− α)λ′, αν + (1− α)ν ′)

= inf
x∈D

(
αL(x, λ, ν) + (1− α)L(x, λ′, ν ′)

)
≥ inf

x∈D
αL(x, λ, ν) + inf

x′∈D
(1− α)L(x′, λ′, ν ′)

= αg(λ, ν) + (1− α)g(λ′, ν ′).

Thus, it follows from Theorem 5.3.5) that it has a unique maximum value d∗ which

can be upper bounded by

g(λ, ν) = inf
x∈D

L(x, λ, ν)
(a)

≤ inf
x∈F

L(x, λ, ν)

(b)
= p∗ +

m∑
i=1

λifi(x)
(c)

≤ p∗,

where (a) is implied by F ⊆ D, (b) follows from hj(x) = 0 for x ∈ F , and (c)

holds by combining fi(x) ≤ 0 for x ∈ F and λi ≥ 0.

The Lagrangian dual function can be −∞ for a wide range of (λ, ν). In this

case, it makes sense to eliminate these points by defining the implicit constraint set

C , {(λ, ν) ∈ Rm × Rp|λ � 0, g(λ, ν) > −∞} .

The points (λ, ν) ∈ C are called dual feasible.

Definition 5.4.9. If d∗ = p∗, then one says that strong duality holds for the problem.

Theorem 5.4.10. If strong duality holds for an optimization problem, then the KKT

conditions are sufficient for optimality?

Proof. If x,u,v satisfy KKT, then

Example 5.4.11. For the first LP in Definition 5.4.3, the Lagrangian is given by

L(x, λ, ν) = cTx+ νT (Ax− b)− λTx,
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where the λ term is negative because the constraint is λ � 0. Thus, the Lagrangian

dual function is given by

g(λ, ν) = inf
x∈D

L(x, λ, ν) =

−b
Tν if ATν − λ+ c = 0

−∞ otherwise.

Solving the implicit constraint and using the fact that λ � 0, one gets the dual LP

problem

maximize − bTν

subject to ATν + c � 0.

Strong duality for linear programs says that, if the original LP has an optimal so-

lution (i.e., it is neither unbounded nor infeasible), then the dual LP has an optimal

solution of the same value.

5.4.3 Convex Optimization

Definition 5.4.12. An optimization problem in standard form is called convex if the

function fi is convex for i = 0, 1, . . . ,m, the function hj is affine (i.e., hj(x) =

aTj x− bj) for j = 1, 2, . . . , p, and D = Rn.

Problem 5.4.13. For a convex standard-form optimization problem (i.e., satisfying

Definition 5.4.12), show that the feasible set is a convex set.

Applying Theorem 5.3.5 to this setup shows that a convex standard-form opti-

mization problem has a unique minimum value. Also, if the function f0 is strictly

convex, then the minimum value achieved uniquely. There are a number of stronger

conditions that also imply strong duality for convex optimization problems. Slater’s
condition is stated below as a theorem and its proof can be found in [BV04, Sec. 5.3.2].

Theorem 5.4.14 (Slater’s Condition). If a convex optimization problem has a point

x0 where fi(x0) < 0 for i = 1, . . . ,m and hj(x0) = 0 for j = 1, . . . , p, then strong

duality holds for the problem.

Example 5.4.15. For a channel with colored noise, the input distribution that max-

imizes the achievable information rate can be found by solving the convex optimiza-
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tion problem, known as water-filling, given by

minimize −
n∑
i=1

log (xi + αi)

subject to
n∑
i=1

xi = P

x � 0.

Choosing xi = P
n

for i = 1, . . . , n gives a point that satisfies Slater’s condition, so

strong duality holds for this problem.

Example 5.4.16. For the water-filling problem, the Lagrangian can be written as

L(x, λ, ν) = −
n∑
i=1

log(xi + αi)−
m∑
i=1

λixi + ν

(
−P +

n∑
i=1

xi

)
and the Lagrangian dual is given by g(λ, ν) = infx∈Rn L(x, λ, ν).

If λi < 0, then the Lagrangian tends to −∞ as xi → −∞. Thus, the system

is implicitly constrained to have λi ≥ 0. The first-order optimality conditions, for

i = 1, 2, . . . , n, are given by

− 1

xi + αi
− λi + ν = 0.

Solving this for xi shows that xi is increasing in λi (for λi ≥ 0) and this implies

that g(λ, ν) is decreasing in λi (for λi ≥ 0 and xi ≥ 0).

Thus, the expression maxλ≥0 g(λ, ν) is given by choosing the smallest non-

negative λi’s for which xi ≥ 0. This implies that

(xi, λi) =


(

1
ν
− αi, 0

)
if ν < 1

αi(
0, ν − 1

αi

)
if ν ≥ 1

αi
.

From this, the value of ν can be determined by solving

n∑
i=1

xi =
n∑
i=1

max

{
0,

1

ν
− αi

}
= P.

By strong duality, the optimal value of the dual problem equals the optimal value

of the original problem. Finally, the problem can be easily solved for a range of P

values by sweeping through a range of ν values and computing P in terms of ν.
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Chapter 6

Linear Transformations and
Operators

6.1 The Algebra of Linear Transformations

Theorem 6.1.1. Let V and W be vector spaces over the field F . Let T and U be

two linear transformations from V into W . The function (T +U) defined pointwise

by

(T + U) (v) = Tv + Uv

is a linear transformation from V into W . Furthermore, if s ∈ F , the function (sT )

defined by

(sT ) (v) = s (Tv)

is also a linear transformation from V into W . The set of all linear transformation

from V into W , together with the addition and scalar multiplication defined above,

is a vector space over the field F .

Proof. Suppose that T and U are linear transformation from V intoW . For (T+U)

defined above, we have

(T + U) (sv + w) = T (sv + w) + U (sv + w)

= s (Tv) + Tw + s (Uv) + Uw

= s (Tv + Uv) + (Tw + Uw)

= s(T + U)v + (T + U)w,

123



124 CHAPTER 6. LINEAR TRANSFORMATIONS AND OPERATORS

which shows that (T + U) is a linear transformation. Similarly, we have

(rT ) (sv + w) = r (T (sv + w))

= r (s (Tv) + (Tw))

= rs (Tv) + r (Tw)

= s (r (Tv)) + rT (w)

= s ((rT ) v) + (rT )w

which shows that (rT ) is a linear transformation.

To verify that the set of linear transformations from V into W together with the

operations defined above is a vector space, one must directly check the conditions

of Definition 3.3.1. These are straightforward to verify, and we leave this exercise

to the reader.

We denote the space of linear transformations from V intoW by L(V,W ). Note

that L(V,W ) is defined only when V and W are vector spaces over the same field.

Fact 6.1.2. Let V be an n-dimensional vector space over the field F , and let W

be an m-dimensional vector space over F . Then the space L(V,W ) is finite-

dimensional and has dimension mn.

Theorem 6.1.3. Let V ,W , andZ be vector spaces over a field F . Let T ∈ L(V,W )

and U ∈ L(W,Z). Then the composed function UT defined by (UT ) (v) =

U (T (v)) is a linear transformation from V into Z.

Proof. Let v1, v2 ∈ V and s ∈ F . Then, we have

(UT ) (sv1 + v2) = U (T (sv1 + v2))

= U (sTv1 + Tv2)

= sU (Tv1) + U (Tv2)

= s(UT ) (v1) + (UT ) (v2) ,

as desired.

Definition 6.1.4. If V is a vector space over the field F , a linear operator on V is

a linear transformation from V into V .
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Definition 6.1.5. An algebra over a field F is a vector space V over F that has a

bilinear vector product “ · ”: V × V → V satisfying (su) · (tv) = (st)(u · v) and

(su+ v) · (tw + x) = st(u · w) + s(u · x) + t(v · w) + (v · x),

for all s, t ∈ F and u, v, w, x ∈ V . If V is a Banach space and the norm of the

vector product satisfies ‖u · v‖ ≤ ‖u‖v‖, then it is called a Banach algebra.

Example 6.1.6. The set L(V, V ) of linear operators on V forms an algebra when

the vector product is defined by functional composition UT (v) = U(T (v)). If V is

a Banach space and L(V, V ) is equipped with the induced operator norm, then it

forms a Banach algebra.

Definition 6.1.7. A linear transformation T from V into W is called invertible if

there exists a function U from W to V such that UT is the identity function on V

and TU is the identity function on W . If T is invertible, the function U is unique

and is denoted by T−1. Furthermore, T is invertible if and only if

1. T is one-to-one: Tv1 = Tv2 =⇒ v1 = v2

2. T is onto: the range of T is W .

Example 6.1.8. Consider the vector space V of semi-infinite real sequences Rω

where v = (v1, v2, v3, . . .) ∈ V with vn ∈ R for n ∈ N. Let L : V → V be the

left-shift linear transformation defined by

Lv = (v2, v3, v4, . . .)

and R : V → V be the right-shift linear transformation defined by

Rv = (0, v1, v2, . . .).

Notice thatL is onto but not one-to-one andR is one-to-one but not onto. Therefore,

neither transformation is invertible.

Example 6.1.9. Consider the normed vector space V of semi-infinite real sequences

Rω with the standard Schauder basis {e1, e2, . . .}. Let T : V → V be the linear

transformation that satisfies Tei = i−1ei for i = 1, 2, . . .. Let the linear trans-

formation U : V → V satisfy Uei = iei for i = 1, 2, . . .. It is easy to verify that

U = T−1 and UT = TU = I .
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This example should actually bother you somewhat. Since T reduces vector

components arbitrarily, its inverse must enlarge them arbitrarily. Clearly, this is not

a desirable property. Later, we will introduce a norm for linear transforms which

quantifies this problem.

Theorem 6.1.10. Let V and W be vector spaces over the field F and let T be a

linear transformation from V into W . If T is invertible, then the inverse function

T−1 is a linear transformation from W onto V .

Proof. Let w1 and w2 be vectors in W and let s ∈ F . Define vj = T−1wj , for

j = 1, 2. Since T is a linear transformation, we have

T (sv1 + v2) = sT (v1) + T (v2) = sw1 + w2.

That is, sv1 +v2 is the unique vector in V that maps to sw1 +w2 under T . It follows

that

T−1 (sw1 + w2) = sv1 + v2 = s
(
T−1w1

)
+ T−1w2

and T−1 is a linear transformation.

A homomorphism is a mapping between algebraic structures which preserves

all relevant structure. An isomorphism is a homomorphism which is also invert-

ible. For vector spaces, the relevant structure is given by vector addition and scalar

multiplication. Since a linear transformation preserves both of these operation, it is

also a vector space homomorphism. Likewise, an invertible linear transformation is

a vector space isomorphism.

6.2 The Dual Space

Definition 6.2.1. Let V be a vector space. The collection of all linear functionals

on V , denoted L(V, F ), forms a vector space. We also denote this space by V ∗ and

call it the dual space of V .

The following theorem shows that, if V is finite dimensional, then

dimV ∗ = dimV.

In this case, one actually finds that V is isomorphic to V ∗. Therefore, the two spaces

can be identified with each other so that V = V ∗ for finite dimensional V .
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Theorem 6.2.2. Let V be a finite-dimensional vector space over the field F , and

let B = v1, . . . , vn be a basis for V . There is a unique dual basis B∗ = f1, . . . , fn

for V ∗ such that fj (vi) = δij . For each linear functional on V , we have

f =
n∑
i=1

f (vi) fi

and for each vector v in V , we have

v =
n∑
i=1

fi (v) vi.

Proof. Let B = v1, . . . , vn be a basis for V . According to Theorem 3.4.7, there is a

unique linear functional fi on V such that

fi
(
vj
)

= δij.

Thus, we obtain from B a set of n distinct linear functionals f1, . . . , fn on V . These

functionals are linearly independent; suppose that

f =
n∑
i=1

sifi,

then

f
(
vj
)

=
n∑
i=1

sifi
(
vj
)

=
n∑
i=1

siδij = sj.

In particular, if f is the zero functional, f
(
vj
)

= 0 for j = 1, . . . , n and hence the

scalars {sj} must all equal 0. It follows that the functionals f1, . . . , fn are linearly

independent. Since dimV ∗ = n, we conclude that B∗ = f1, . . . , fn forms a basis

for V ∗, the dual basis of B.

Next, we want to show that there is a unique basis which is dual to B. If f is a

linear functional on V , then f is some linear combination of f1, . . . , fn with

f =
n∑
i=1

sifi.

Furthermore, by construction, we must have sj = f
(
vj
)

for j = 1, . . . , n. Simi-

larly, if

v =
n∑
i=1

tivi.
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is a vector in V , then

fj (v) =
n∑
i=1

tifj (vi) =
n∑
i=1

tiδij = tj.

That is, the unique expression for v as a linear combination of v1, . . . , vn is

v =
n∑
i=1

fi (v) vi.

One important use of the dual space is to define the transpose of a linear trans-

form in a way that generalizes to infinite dimensional vector spaces. Let V,W

be vector spaces over F and T : V → W be a linear transform. If g ∈ W ∗

is a linear functional on W (i.e., g : W → F ), then g(Tv) ∈ V ∗ is a linear

functional on V . The transpose of T is the mapping U : W ∗ → V ∗ defined by

f(v) = g(Tv) ∈ V ∗ for all g ∈ W ∗. If V,W are finite-dimensional, then one can

identify V = V ∗ andW = W ∗ via isomorphism and recover the standard transpose

mapping U : W → V implied by the matrix transpose.

The details of this definition are not used in the remainder of these notes, but can

be useful in understanding the subtleties of infinite dimensional spaces. For infinite

dimensional Hilbert spaces, we will see later that the definition again simplifies

because one identify V = V ∗ via isomorphism. The interesting case that does not

simplify is that of linear transforms between infinite dimensional Banach spaces.

6.3 Operator Norms

For any vector space of linear transforms, one can define a norm to get a normed

vector space of linear transforms (e.g., consider the Frobenius norm of a matrix). In

constrast, an operator norm is defined for linear transforms between normed spaces

and it is induced by the vector norms of the underlying spaces. Intuitively, the

induced operator norm is the largest factor by which a linear transform can increase

the length of a vector. This defines a simple “worst-case” expansion for any linear

transform.
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Definition 6.3.1. Let V and W be two normed vector spaces and let T : V → W

be a linear transformation. The induced operator norm of T is defined to

‖T‖ = sup
v∈V−{0}

‖Tv‖
‖v‖

= sup
v∈V,‖v‖=1

‖Tv‖ .

A common question about the operator norm is, “How do I know the two ex-

pressions give the same result?”. To see this, we can write

sup
v∈V−{0}

‖Tv‖
‖v‖

= sup
v∈V−{0}

∥∥∥∥T v

‖v‖

∥∥∥∥ = sup
u∈V,‖u‖=1

‖Tu‖ .

Previously, we have seen that the set L(V,W ) of linear transformations from V

intoW , with the standard addition and scalar multiplication, satisfies the conditions

required to be a vector space. Now, we have a norm for that vector space. Inter-

ested readers should verify that the above definition satisfies the first two standard

conditions required by a norm. To verify the triangle inequality, we can write

‖T + U‖ = sup
v∈V,‖v‖=1

‖(T + U)v‖

≤ sup
v∈V,‖v‖=1

(‖Tv‖+ ‖Uv‖)

≤ sup
v∈V,‖v‖=1

‖Tv‖+ sup
v∈V,‖v‖=1

‖Uv‖

= ‖T‖+ ‖U‖.

The induced operator norm also has another property that follows naturally from

its definition. Notice that

‖T‖ = sup
v∈V−{0}

‖Tv‖
‖v‖

≥ ‖Tu‖
‖u‖

for all non-zero u ∈ V . Checking the special case of u = 0 separately, one can

show the induced operator-norm inequality ‖Tu‖ ≤ ‖T‖‖u‖ for all u ∈ V .

For the space L(V, V ) of linear operators on V , a norm is called submulti-
plicative if ‖TU‖ ≤ ‖T‖‖U‖ for all T, U ∈ L(V, V ). The induced operator-norm

inequality shows that all induced operator norms are submultiplicative because

‖UTv‖ ≤ ‖U‖ ‖Tv‖ ≤ ‖U‖ ‖T‖ ‖v‖ .

This also defines a submultiplicative norm for the algebra of linear operators on V .
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6.3.1 Bounded Transformations

Definition 6.3.2. If the norm of a linear transformation is finite, then the transfor-

mation is said to be bounded.

Theorem 6.3.3. A linear transformation T : V → W is bounded if and only if it is

continuous.

Proof. Suppose that T is bounded; that is, there exists M such that ‖Tv‖ ≤M ‖v‖
for all v ∈ V . Let v1, v2, . . . be a convergent sequence in V , then∥∥Tvi − Tvj∥∥ =

∥∥T (vi − vj)∥∥ ≤M
∥∥vi − vj∥∥ .

This implies that Tv1, T v2, . . . is a convergent sequence in W , and T is continuous.

Conversely, assume T is continuous and notice that T0 = 0. Therefore, for any

ε > 0, there is a δ > 0 such that ‖Tv‖ < ε for all ‖v‖ < δ. Since the norm of

u = δv
2‖v‖ is equal to δ/2, we get

‖Tv‖ =

∥∥∥∥T δv

2 ‖v‖

∥∥∥∥ 2 ‖v‖
δ

<
2ε

δ
‖v‖ .

The value M = 2ε
δ

serves as an upper bound on ‖T‖.

Then, by showing that linear transformations over finite-dimensional spaces are

continuous, one concludes that they are also bounded. This is accomplished in the

following theorem.

Theorem 6.3.4. Let V and W be normed vector spaces and let T : V → W be a

linear transformation. If V is finite dimensional, then T is continuous and bounded.

Lemma 6.3.5. Let V be a finite-dimensional normed vector space, and let

B = v1, . . . , vn

be a basis for V . Then, for v ∈ V , each coefficient si in the expansion

v = s1v1 + · · ·+ snvn

is a continuous linear function of v. Being continuous, it is also bounded, so there

exists a constant M such that |si| ≤M ‖v‖.
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Proof of Lemma. The linearity property is straightforward, its proof is omitted. It

will suffice to show that there is an m > 0 such that

m|si| ≤ m (|s1|+ · · ·+ |sn|) ≤ ‖v‖ , (6.1)

since (6.1) implies that |si| ≤ m−1 ‖v‖. We first show that this holds for coefficients

{s1, . . . , sn} satisfying the condition |s1|+ · · ·+ |sn| = 1. Let

S =

{
(s1, . . . , sn)

∣∣∣ n∑
i=1

|si| = 1

}
.

This set is closed and bounded; it is therefore compact. Define the function f : S →
R by

f(s1, . . . , sn) = ‖s1v1 + · · ·+ snvn‖ .

It can be shown that f is continuous, and it is clear that f > 0 over S. Let

m = min
(s1,...,sn)∈S

f(s1, . . . , sn).

Since f is continuous and S is compact, this minimum exists and is attained by

some point (s′1, . . . , s
′
n) ∈ S. Note that m > 0 for otherwise v1, . . . , vn are linearly

dependent, contradicting the fact that B is a basis. Thus m so defined satisfies (6.1).

For general sets of coefficients {si}, let c = |s1|+ · · ·+ |sn|. If c = 0, the result

is trivial. If c > 0, then write

‖s1v1 + · · ·+ snvn‖ = c
∥∥∥s1

c
v1 + · · ·+ sn

c
vn

∥∥∥
= cf

(s1

c
, . . . ,

sn
c

)
≥ cm = m (|s1|+ · · ·+ |sn|) .

This is the desired result.

We are now ready to prove the theorem.

Proof of Theorem. Let B = v1, . . . , vn be a basis for V . Let v ∈ V be expressed in

terms of this basis as

v = s1v1 + · · ·+ snvn.
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Let C = max1≤i≤n ‖Tvi‖. Then,

‖Tv‖ = ‖T (s1v1 + · · ·+ snvn)‖

≤ |s1| ‖Tv1‖+ · · ·+ |sn| ‖Tvn‖

≤ C (|s1|+ · · ·+ |sn|) .

By the previous lemma, this implies that there exists an M such that |s1| + · · · +
|sn| ≤M ‖v‖, so that

‖Tv‖ ≤ CM ‖v‖ .

6.3.2 The Neumann Expansion

Theorem 6.3.6. Let ‖ · ‖ be a submultiplicative operator norm and T : V → V be

a linear operator with ‖T‖ < 1. Then, (I − T )−1 exists and

(I − T )−1 =
∞∑
i=0

T i.

Proof. First, we observe that the sequence

An =
n−1∑
i=0

T i.

is Cauchy. This follows from the fact that, for m < n, we have

‖An − Am‖ =

∥∥∥∥∥
n−1∑
i=m

T i

∥∥∥∥∥ ≤
n−1∑
i=m

‖T‖i =
‖T‖m − ‖T‖n

1− ‖T‖
≤ ‖T‖m

1− ‖T‖
.

Since this goes to zero as m→∞, we see that the limit limn→∞An exists.

Next, we observe that

(I − T )
(
I + T + T 2 + · · ·+ T n−1

)
= I − T n.

Since ‖T‖ < 1, we have limk→∞ T
k = 0 because

∥∥T k∥∥ ≤ ‖T‖k → 0. Taking the

limit n→∞ of both sides gives

(I − T )
∞∑
i=0

T i = lim
n→∞

(I − T n) = I.

Likewise, reversing the order multiplication results in the same result. This shows

that
∑∞

i=0 T
i must be the inverse of I − T .
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If one only needs to show that I−T is non-singular, then proof by contradiction

is somewhat simpler. Suppose I − T is singular, then there exists a non-zero vector

v such that (I − T ) v = 0. But, this implies that ‖v‖ = ‖Tv‖ ≤ ‖T‖ ‖v‖. Since

‖v‖ 6= 0, this gives the contradiction ‖T‖ ≥ 1 and implies that I−T is non-singular.

6.3.3 Matrix Norms

‖A‖∞ = max
‖v‖∞=1

‖Av‖∞ = max
i

∑
j

|aij|

‖A‖1 = max
‖v‖1=1

‖Av‖1 = max
j

∑
i

|aij|

The 2-norm of a matrix can be found by solving

max
vHv=1

‖Av‖2
2 = vHAHAv.

Using the Lagrange multiplier technique, one seeks to minimize

J = vHAHAv − λvHv.

Taking the gradient with respect to v and equating the result to zero, we get

AHAv = λv.

The corresponding v must be an eigenvector of the matrix AHA. Left multiplying

this equation by vH and using the fact that vHv = 1, we obtain

vHAHAv = λvHv = λ.

Since we are maximizing the left hand side of this equation, λ must be the largest

eigenvalue ofAHA. For an n×nmatrixB with eigenvalues λ1, . . . , λn, the spectral
radius ρ(B) is defined by

ρ(B) = max
i
|λi|.

The spectral radius of B is the smallest radius of a circle centered at the origin that

contains all the eigenvalues of B. It follows that

‖A‖2 =
√
ρ(AHA).

When A is Hermitian, ‖A‖2 = ρ(A). The 2-norm is also called the spectral norm.
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The Frobenius norm is given by

‖A‖F =

(
n∑
i=1

n∑
j=1

|aij|2
) 1

2

.

This norm is also called the Euclidean norm. Note that ‖A‖2
F = tr(AHA).

6.4 Linear Functionals on Hilbert Spaces

Let V be an inner-product space, and let v be some fixed vector in V . Define the

function fv from V into F by

fv (w) = 〈w|v〉 .

Clearly, fv is a linear functional on V . If V is a Hilbert space, then every continuous

linear functional on V arises in this way from some vector v. This result is known

as the Riesz representation theorem.

Lemma 6.4.1. If 〈v|w〉 = 〈u|w〉 for all w ∈ V , then v = u.

Proof. Then, 〈v − u|w〉 = 0 for all w ∈ V . Therefore, 〈v − u|v − u〉 = 0 and this

implies v − u = 0.

Theorem 6.4.2 (Riesz). Let V be a Hilbert space and f be a continuous linear

functional on V . Then, there exists a unique vector v ∈ V such that f (w) = 〈w|v〉
for all w ∈ V .

Proof. While the result holds in any Hilbert space, this proof assumes V is separa-

ble for simplicity. Therefore, we let v1, v2, . . . be a countable orthonormal basis for

V . We wish to find a candidate vector v for the inner product.

First, we note that f is bounded and, as such, there exists M such that |f (x) | ≤
M‖x‖ for all x ∈ V . Let xn =

∑n
i=1 f (vi)vi. For any n, we have

M ‖xn‖ ≥ |f (xn)| =

∣∣∣∣∣
n∑
i=1

f (vi)f(vi)

∣∣∣∣∣ =
n∑
i=1

|f (vi)|
2 =

n∑
i=1

f (vi) f (vi)

=
n∑
i=1

〈
f (vi)vi

∣∣∣f (vi)vi

〉
=

n∑
i=1

n∑
j=1

〈
f
(
vj
)
vj

∣∣∣f (vi)vi

〉
=

〈
n∑
j=1

f
(
vj
)
vj

∣∣∣∣ n∑
i=1

f (vi)vi

〉
= 〈xn|xn〉 = ‖xn‖

2 .
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This implies that ‖xn‖ ≤ M for all n. Hence, limn→∞
∑n

i=1 |f (vi)|
2 is bounded

and the vector

v =
∞∑
i=1

f (vi)vi,

is in V because it is the limit point of a Cauchy sequence. Let fv be the functional

defined by

fv (w) = 〈w|v〉 .

By the Cauchy-Schwarz, we can verify that

‖fv‖ , sup
u∈V−{0}

fv(u)

‖u‖
= ‖v‖.

Since f is continuous, it follows that ‖f‖ <∞ and ‖v‖ <∞. Then,

fv
(
vj
)

=

〈
vj

∣∣∣ ∞∑
i=1

f (vi)vi

〉
= f

(
vj
)
.

Since this is true for each vj , it follows that f = fv. Now, consider any v′ ∈ V such

that 〈w|v〉 = 〈w|v′〉 for all w ∈ W . Applying Lemma 6.4.1 shows that v = v′ and

we conclude that v is unique.

An important consequence of this theorem is that the continuous dual space

V ∗ of a Hilbert space V is isometrically isomorphic to the original space V . Let

R : V ∗ → V be the implied Riesz mapping from continuous linear functionals

on V (i.e., V ∗) to elements of V . Then, f(v) = 〈v|R(f)〉 for all f ∈ V ∗. The

isomorphism can be shown by verifying that R(sf1 + f2) = sR(f1) + R(f2) and

one finds that the mapping R is conjugate linear. The mapping is isometric because

‖f‖ = ‖R(f)‖. Based on this isomorphism, one can treat a Hilbert space as self-

dual and assume without confusion that V = V ∗.

Theorem 6.4.3. Let V and W be Hilbert spaces, and assume T : V → W is a con-

tinuous linear transformation. Then, the adjoint is the unique linear transformation

T ∗ on W such that

〈Tv|w〉 = 〈v|T ∗w〉

for all vectors v ∈ V , w ∈ W .
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Proof. Let w be any vector in W . Then f(v) = 〈Tv|w〉 is a continuous linear

functional on V . It follows from the Riesz representation theorem (Theorem 6.4.2)

that there exists a unique vector v′ ∈ V such that f(v) = 〈Tv|w〉 = 〈v|v′〉. Of

course, the vector v′ depends on the choice of w. So, we define the adjoint mapping

T ∗ : W → V to give the required v′ for each w. In other words,

v′ = T ∗w.

Next, we must verify that T ∗ is a linear transformation. Let w1, w2 be in W and s

be a scalar. For all v ∈ V ,

〈v|T ∗ (sw1 + w2)〉 = 〈Tv| (sw1 + w2)〉

= s̄ 〈Tv|w1〉+ 〈Tv|w2〉

= s̄ 〈v|T ∗w1〉+ 〈v|T ∗w2〉

= 〈v|sT ∗w1〉+ 〈v|T ∗w2〉

= 〈v|sT ∗w1 + T ∗w2〉 .

Since this holds for all v ∈ V , we gather from Lemma 6.4.1 that T ∗ (sv1 + v2) =

sT ∗v1 + T ∗v2. Therefore, T ∗ is linear. The uniqueness of T ∗ is inherited from

Theorem 6.4.2 because, for each w ∈ W , the vector T ∗w is determined uniquely as

the vector v′ such that 〈Tv|w〉 = 〈v|v′〉 for all v ∈ V .

Theorem 6.4.4. Let V be a finite-dimensional inner-product space and let

B = v1, . . . , vn

be an orthonormal basis for V . Let T be a linear operator on V and let A be the

matrix representation of T in the ordered basis B. Then Akj =
〈
Tvj|vk

〉
.

Proof. Since B is an orthonormal basis, we have

v =
n∑
k=1

〈v|vk〉 vk.

The matrix A is defined by

Tvj =
n∑
k=1

Akjvk

and since

Tvj =
n∑
k=1

〈
Tvj|vk

〉
vk,

we conclude that Akj =
〈
Tvj|vk

〉
.
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Corollary 6.4.5. Let V be a finite-dimensional inner-product space, and let T be

a linear operator on V . In any orthonormal basis for V , the matrix for T ∗ is the

conjugate transpose of the matrix of T .

Proof. Let B = v1, . . . , vn be an orthonormal basis for V , let A = [T ]B and B =

[T ∗]B. According to the previous theorem,

Akj =
〈
Tvj|vk

〉
Bkj =

〈
T ∗vj|vk

〉
By the definition of T ∗, we then have

Bkj =
〈
T ∗vj|vk

〉
=
〈
vk|T ∗vj

〉
=
〈
Tvk|vj

〉
= Ajk.

We note here that every linear operator on a finite-dimensional inner-product

space V has an adjoint on V . However, in the infinite-dimensional case this is not

necessarily true. In any case, there exists at most one such operator T ∗.

6.5 Fundamental Subspaces

There are four fundamental subspaces of a linear transformation T : V → W when

V and W are Hilbert spaces. We have already encountered two such spaces: The

range of T and the nullspace of T . Recall that the range of a linear transformation

T is the set of all vectors w ∈ W such that w = Tv for some v ∈ V . The nullspace

of T consists of all vectors v ∈ V such that Tv = 0.

The other two fundamental subspaces of T are the range of the adjoint T ∗,
denoted RT ∗ and the nullspace of the adjoint T ∗, denoted NT ∗ . The various sub-

spaces of the transformation T : V → W can be summarized as follows,

RT ⊆ W

NT ⊆ V

RT ∗ ⊆ V

NT ∗ ⊆ W.



138 CHAPTER 6. LINEAR TRANSFORMATIONS AND OPERATORS

Theorem 6.5.1. Let V and W be Hilbert spaces and T : V → W be a bounded

linear transformation from V to W such that RT and RT ∗ are both closed. Then,

1. the range RT is the orthogonal complement of NT ∗ , i.e., [RT ]⊥ = NT ∗;

2. the nullspace NT is the orthogonal complement of RT ∗ , i.e., [RT ∗ ]
⊥ = NT .

Complementing these equalities, we get

RT = RT = [NT ∗ ]
⊥

RT ∗ = RT ∗ = [NT ]⊥ .

Proof. Let w ∈ RT , then there exists v ∈ V such that Tv = w. Assume that

n ∈ NT ∗ , then

〈w|n〉 = 〈Tv|n〉 = 〈v|T ∗n〉 = 0.

That is, w and n are orthogonal vectors. It follows that NT ∗ ⊆ [RT ]⊥. Now, let

w ∈ [RT ]⊥. Then, for every v ∈ V , we have

〈Tv|w〉 = 0.

This implies that 〈v|T ∗w〉 = 0, by the definition of the adjoint. Since this is true for

every v ∈ V , we get T ∗w = 0, so w ∈ NT ∗ . Then [RT ]⊥ ⊆ NT ∗ , which combined

with our previous result yields [RT ]⊥ = NT ∗ . Using a similar argument, one can

show that [RT ∗ ]
⊥ = NT .

6.6 Pseudoinverses

Theorem 6.6.1. Let V and W be Hilbert spaces and T be a bounded linear trans-

formation from V to W where RT is closed. The equation Tv = w has a solution if

and only if 〈w|u〉 = 0 for every vector u ∈ NT ∗ , i.e.,

w ∈ RT ⇔ w ⊥ NT ∗ .

In matrix notation, Av = w has a solution if and only if uHw = 0 for every vector

u such that AHu = 0.
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Proof. Assume that Tv = w, and let u ∈ NT ∗ . Since T is bounded, the adjoint T ∗

exists and

〈w|u〉 = 〈Tv|u〉 = 〈v|T ∗u〉 = 〈v|0〉 = 0.

To prove the reverse implication, suppose that 〈w|u〉 = 0 when u ∈ NT ∗ and

Tv = w has no solution. Since w /∈ RT and RT is closed, it follows that

wo = w − PRT
w = w − wr 6= 0.

But

〈w|wo〉 = 〈wr + wo|wo〉 = 〈wo|wo〉 > 0,

which contradicts the assumption that 〈w|u〉 = 0 when u ∈ NT ∗ . We must conclude

that Tv = w has a solution.

Fact 6.6.2. The solution to Tv = w (if it exists) is unique if and only if the only

solution to Tv = 0 is v = 0. That is, if NT = {0}.

6.6.1 Least Squares

Let T : V → W be a bounded linear transformation. If the equation Tv = w has

no solution, then we can find a vector v that minimizes

‖Tv − w‖2 .

Theorem 6.6.3. The vector v ∈ V minimizes ‖Tv − w‖ if and only if

T ∗Tv = T ∗w.

Proof. Minimizing ‖w − Tv‖ is equivalent to minimizing ‖w − ŵ‖, where ŵ =

Tv ∈ RT . By the projection theorem, we must have

w − ŵ ∈ [RT ]⊥ .

But this is equivalent to

w − ŵ ∈ NT ∗ .

That is, T ∗ (w − ŵ) = 0, or equivalently T ∗w = T ∗ŵ. Conversely, if T ∗Tv =

T ∗w, then

T ∗ (Tv − w) = 0,

so that Tv − w ∈ NT ∗ . Hence, the error is orthogonal to the subspace RT and has

minimal length by the projection theorem.
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Corollary 6.6.4. IfA is a matrix such thatAHA is invertible, then the least-squares

solution to Av = w is

v =
(
AHA

)−1
AHw.

The matrix
(
AHA

)−1
AH is the left inverse of A and is an example of a Moore-

Penrose pseudoinverse.

Theorem 6.6.5. Suppose the vector v̂ ∈ V minimizes ‖v‖ over all v ∈ V satisfying

Tv = w. Then, v̂ ∈ [NT ]⊥ and, if RT ∗ is closed, v̂ = T ∗u for some u ∈ W .

Proof. Suppose v̂ /∈ [NT ]⊥, then the orthogonal decomposition V = [NT ]⊥ + NT

shows that the projection of v̂ onto [NT ]⊥ has smaller norm but still satisfies T v̂ =

w. This gives a contradiction and shows that v̂ ∈ [NT ]⊥. If RT ∗ is closed, then

RT ∗ = [NT ]⊥ and v̂ = T ∗u for some u ∈ W .

Corollary 6.6.6. If A is a matrix such that AAH is invertible, then the minimum-

norm solution to Av = w is

v = AH
(
AAH

)−1
w.

Proof. The theorem shows that v = AHu and Av = AAHu = w. Since AAH is

invertible, this gives u = (AAH)−1w and computing v gives the desired result.

The matrix AH
(
AAH

)−1 is the right inverse of A and is another example of a

Moore-Penrose pseudoinverse.

Definition 6.6.7. Let T : V → W be a bounded linear transformation, where V and

W are Hilbert spaces, andRT is closed. For eachw ∈ W , there is a unique vector v̂

of minimum norm in the set of vectors that minimize ‖Tv − w‖. The pseudoinverse
T † is the transformation mapping each w ∈ W to its unique v̂.



Chapter 7

Matrix Factorization and Analysis

Matrix factorizations are an important part of the practice and analysis of signal

processing. They are at the heart of many signal-processing algorithms. Their ap-

plications include solving linear equations (LU), decorrelating random variables

(LDLT,Cholesky), orthogonalizing sets of vectors (QR), and finding low-rank ma-

trix approximations (SVD). Their usefulness is often two-fold: they allow effi-

cient computation of important quantities and they are (often) designed to min-

imize round-off error due to finite-precision calculation. An algorithm is called

numerically stable, for a particular set of inputs, if the error in the final solution is

proportional to the round-off error in the elementary field operations.

7.1 Triangular Systems

A square matrix L ∈ F n×n is called lower triangular (or upper triangular) if

all elements above (or below) the main diagonal are zero. Likewise, a triangular

matrix (lower or upper) is a unit triangular if it has all ones on the main diagonal.

A system of linear equations is called triangular if it can be represented by the

matrix equation Ax = b where A is either upper or lower triangular.

7.1.1 Solution by Substitution

Let L ∈ F n×n be a lower triangular matrix with entries lij = [L]ij . The matrix

equation Ly = b can be solved efficiently using forward substitution, which is

141
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defined by the recursion

yj =
1

ljj

(
bj −

j−1∑
i=1

ljiyi

)
, j = 1, 2, . . . , n.

Example 7.1.1. Consider the system 1 0 0

1 1 0

1 2 1


 y1

y2

y3

 =

 1

2

9

 .
Applying the above recursion gives

y1 =
1

1
= 1

y2 =
1

1
(2− 1 · 1) = 1

y3 =
1

1
(9− 1 · 1− 2 · 1) = 6.

Let U ∈ F n×n be an upper triangular matrix with entries uij = [U ]ij . The

matrix equation Ux = y can be solved efficiently using backward substitution,

which is defined by the recursion

xj =
1

ujj

(
yj −

n∑
i=j+1

ujixi

)
, j = n, n− 1, . . . , 1.

Example 7.1.2. Consider the system 1 1 1

0 1 3

0 0 2


 x1

x2

x3

 =

 1

1

6

 .
Applying the above recursion gives

x3 =
6

2
= 3

x2 =
1

1
(1− 3 · 3) = −8

x1 =
1

1
(1− 1 · 6− 1 · (−8)) = 3.

The computational complexity of each substitution is roughly 1
2
n2 operations.
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Problem 7.1.3. Show that set of upper triangular matrices is a subalgebra of the set

of all matrices. Since it is clearly a subspace, only two properties must be verified:

1. that the product of two upper triangular matrices is upper triangular

2. that the inverse of an upper triangular matrix is upper triangular

7.1.2 The Determinant

The determinant det(A) of a square matrix A ∈ F n×n is a scalar which captures

a number of important properties of that matrix. For example, A is invertible iff

det(A) 6= 0 and the determinant satisfies det(AB) = det(A) det(B) for square ma-

trices A,B. Mathematically, it is the unique function mapping matrices to scalars

that is (i) linear in each column, (ii) negated by column transposition, and (iii) sat-

isfies det(I) = 1.

The determinant of a square matrix can be defined recursively using the fact that

det ([a]) = a. Let A ∈ F n×n be an arbitrary square matrix with entries aij = [A]ij .

The (i, j)-minor of A is the determinant of the (n− 1)× (n− 1) matrix formed by

deleting the i-th row and j-th column of A.

Fact 7.1.4 (Laplace’s Formula). The determinant of A is given by

det(A) =
n∑
j=1

aij(−1)i+jMij =
n∑
i=1

aij(−1)i+jMij,

where Mij is the (i, j)-minor of A.

Theorem 7.1.5. The determinant of a triangular matrix is the product of its diago-

nal elements.

Proof. For upper (lower) triangular matrices, this can be shown by expanding the

determinant along the first column (row) to compute each minor.

7.2 LU Decomposition

7.2.1 Introduction

LU decomposition is a generalization of Gaussian elimination which allows one to

efficiently solve a system of linear equations Ax = b multiple times with different
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right-hand sides. In its basic form, it is numerically stable only if the matrix is

positive definite or diagonally dominant. A slight modification, known as partial

pivoting, makes it stable for a very large class of matrices.

Any square matrix A ∈ F n×n can be factored as A = LU , where L is a unit

lower-triangular matrix and U is an upper-triangular matrix. The following exam-

ple uses elementary row operations to cancel, in each column, all elements below

the main diagonal. These elementary row operations are represented using left mul-

tiplication by a unit lower-triangular matrix. 1 1 1

1 2 4

1 3 9

 =

 1 1 1

1 2 4

1 3 9


 1 0 0

−1 1 0

−1 0 1


 1 1 1

1 2 4

1 3 9

 =

 1 1 1

0 1 3

0 2 8


 1 0 0

0 1 0

0 −2 1


 1 0 0

−1 1 0

−1 0 1


 1 1 1

1 2 4

1 3 9

 =

 1 1 1

0 1 3

0 0 2


This allows one to write 1 1 1

1 2 4

1 3 9

 =

 1 0 0

−1 1 0

−1 0 1


−1  1 0 0

0 1 0

0 −2 1


−1  1 1 1

0 1 3

0 0 2


 1 1 1

1 2 4

1 3 9

 =

 1 0 0

1 1 0

1 0 1


 1 0 0

0 1 0

0 2 1


 1 1 1

0 1 3

0 0 2


 1 1 1

1 2 4

1 3 9

 =

 1 0 0

1 1 0

1 2 1


 1 1 1

0 1 3

0 0 2



LU decomposition can also be used to efficiently compute the determinant ofA.

Since det(A) = det(LU) = det(L) det(U), the problem is reduced to computing

the determinant of triangular matrices. Using Theorem 7.1.5, it is easy to see that

det(L) = 1 and det(U) =
∏n

i=1 uii.
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7.2.2 Formal Approach

To describe LU decomposition formally, we first need to describe the individual

operations that are used to zero out matrix elements.

Definition 7.2.1. Let A ∈ F n×n be an arbitrary matrix, α ∈ F be a scalar, and

i, j ∈ {1, 2, . . . , n}. Then, adding α times the j-th row to the i-th row an elementary
row-addition operation. Moreover, I + αEij , where Eij , eie

T
j and ek is the k-

th standard basis vector, is the elementary row-addition matrix which effects this

operation via left multiplication.

Example 7.2.2. For example, elementary row operations are used to cancel the

(2, 1) matrix entry in

(I − E2,1)A =

 1 0 0

−1 1 0

0 0 1


 1 1 1

1 2 4

1 3 9

 =

 1 1 1

0 1 3

1 3 9

 .
Lemma 7.2.3. The following identities capture the important properties of elemen-

tary row-operation matrices:

(i) EijEkl = δj,kEil

(ii) (I + αEij)(I + βEkl) = I + αEij + βEkl if j 6= k

(iii) (I + αEij)
−1 = (I − αEij) if i 6= j.

Proof. This proof is left as an exercise.

Now, consider the process for computing the LU decomposition of A. To ini-

tialize the process, we let A(1) = A. In each round, we let

L−1
j =

n∏
i=j+1

(
I −

a
(j)
i,j

a
(j)
j,j

Ei,j

)
be the product of elementary row operation matrices which cancel the subdiagonal

elements of the j-th column. The process proceeds by defining A(j+1) = L−1
j A(j)

so that A(j+1) has all zeros below the diagonal in the first j columns. After n − 1

rounds, the process terminates with

U = A(n) = L−1
n−1L

−1
n−2 · · ·L−1

1 A

where L = L1L2 · · ·Ln−1 is unit lower triangular.
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Lemma 7.2.4. From the structure of elementary row operation matrices, we see

n−1∏
j=1

n∏
i=j+1

(I + αijEi,j) = I +
n−1∑
j=1

n∑
i=j+1

αijEi,j.

Proof. First, we notice that
n∏

i=j+1

(I + αijEi,j) = I +
n∑

i=j+1

αijEi,j

for j = 1, 2, . . . , n − 1. Expanding the product shows that any term with two E

matrices must contain a product Ei,jEl,j with l > i > j. By Lemma 7.2.3i, we see

that this term must be zero because j 6= l.

Now, we can prove the main result via induction. First, we assume that

k∏
j=1

n∏
i=j+1

(I + αijEi,j) = I +
k∑
j=1

n∑
i=j+1

αijEi,j.

Next, we find that if k ≤ n− 2, then

k+1∏
j=1

n∏
i=j+1

(I + αijEi,j) =

(
k∏
j=1

n∏
i=j+1

(I + αijEi,j)

)(
n∏

l=k+2

(I + αl,k+1El,k+1)

)

=

(
I +

k∑
j=1

n∑
i=j+1

αijEi,j

)(
I +

n∑
l=k+2

αl,k+1El,k+1

)

= I +
k+1∑
j=1

n∑
i=j+1

αijEi,j +
k∑
j=1

n∑
i=j+1

n∑
l=k+2

αijαl,k+1Ei,jEl,k+1

= I +
k+1∑
j=1

n∑
i=j+1

αijEi,j +
k∑
j=1

n∑
i=j+1

n∑
l=k+2

αijαl,k+1Ei,k+1δj,l

= I +
k+1∑
j=1

n∑
i=j+1

αijEi,j.

Finally, we point out that the base case k = 1 is given by the initial observation.

Theorem 7.2.5. This process generates one column of L per round because

[L]ij =


a
(j)
i,j

a
(j)
j,j

if 1 ≤ i < j

1 if i = j

0 otherwise.
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Proof. First, we note that

L = L1L2 · · ·Ln−1

=
n−1∏
j=1

(
n∏

i=j+1

(
I −

a
(j)
i,j

a
(j)
j,j

Ei,j

))−1

(a)
=

n−1∏
i=1

n∏
i=j+1

(
I −

a
(j)
i,j

a
(j)
j,j

Ei,j

)−1

(b)
=

n−1∏
i=1

n∏
i=j+1

(
I +

a
(j)
i,j

a
(j)
j,j

Ei,j

)

= I +
n−1∑
i=1

n∑
i=j+1

a
(j)
i,j

a
(j)
j,j

Ei,j,

where (a) follows from Lemma 7.2.3ii (i.e., all matrices in the inside product com-

mute) and (b) follows from Lemma 7.2.3iii. Picking off the (i, j) entry of L (e.g.,

with eTi Lej) gives the stated result.

Finally, we note that the LU decomposition can be computed in roughly 2
3
n3

field operations.

7.2.3 Partial Pivoting

Sometimes the pivot element a(j)
j,j can be very small or zero. In this case, the algo-

rithm will either fail (e.g., divide by zero) or return a very unreliable result. The

algorithm can be easily modified to avoid this problem by swapping rows of A(j)

to increase the magnitude of the pivot element before each cancellation phase. This

results in a decomposition of the form PA = LU , where P is a permutation matrix.

In this section, we will describe LU decomposition with partial pivoting using

the notation from the previous section. The main difference is that, in each round,

we will defineA(j+1) = M−1
j PjA

(j) where Pj is a permutation matrix. In particular,

left multiplication by Pj swaps row j with row pj , where

pj = arg max
i=j,j+1,...,n

|a(j)
i,j |.

The matrix M−1
j is now chosen to cancel the subdiagonal elements in j-th column

of PjA(j). After n− 1 rounds, the resulting decomposition has the form

A(n) = M−1
n−1Pn−1M

−1
n−2Pn−2 · · ·M−1

1 P1A = U.
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To show this can also be written in the desired form, we need to understand

some properties of the permutations. First, we point that swapping two rows is a

transposition and therefore P 2
j = I . Next, we will show that the permutations can

be moved to the right.

Lemma 7.2.6. Let M = I +
∑k

j=1

∑n
i=j+1 αijEij and Q be a permutation matrix

which swaps row l ≥ k + 1 and row m > l. Then, QM = M̃Q where

M̃ = I +
k∑
j=1

n∑
i=j+1

αijQEij.

Therefore, we can write

A(n) = M̃−1
n−1M̃

−1
n−2 · · · M̃−1

1︸ ︷︷ ︸
L−1

Pn−1 · · ·P2P1︸ ︷︷ ︸
P

A = U

and PA = LU .

Proof. The proof is left as an exercise.

7.3 LDLT and Cholesky Decomposition

If the matrix A ∈ Cn×n is Hermitian, then the LU decomposition allows the factor-

ization A = LDLH , where L is unit lower triangular and D is diagonal. Since this

factorization is typically applied to real matrices, it is referred to as LDLT decom-
position. If A is also positive definite, then the diagonal elements of D are positive

and we can write A =
(
LD1/2

) (
LD1/2

)H . The form A = L̃L̃H , where L̃ is lower

triangular, is known as Cholesky factorization.

To see this, we will describe the LDLT decomposition using the notation from

LU decomposition starting from A(1) = A. In the j-th round, define L−1
j to be

the product of elementary row-operation matrices which cancel the subdiagonal

elements of the j-th column A(j). Then, define A(j+1) = L−1
j A(j)L−Hj and notice

that A(j+1) is Hermitian because A(j) is Hermitian. Next, notice that A(j+1) has

zeros below the diagonal in the first j columns and zeros to the right of diagonal

in the first j rows. This follows from the fact that the first j rows of A(j) are not

affected by applying L−1
j on left. Therefore, applying L−Hj on the right also cancels
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the elements to the right of the diagonal in the j-th row. After n−1 rounds, we find

that D = A(n) is a diagonal matrix.

There are a number of redundancies in the computation described above. First

off, the L matrix computed by LU decomposition is identical to the L matrix com-

puted by LDLT decomposition. Therefore, one can save operations by defining

A(j+1) = L−1
j A(j). Moreover, the elements to the right of the diagonal in A(j) do

not affect the computation at all. So, one can roughly half the number of additions

and multiplies by only updating the lower triangular part of A(j). The resulting

computational complexity is roughly 1
3
n3 field operations.

7.3.1 Cholesky Decomposition

For a positive-definite matrix A, we can first apply the LDLT decomposition and

then define L̃ = LD1/2. This gives the Cholesky decomposition L̃L̃H = LDLH =

A.

The Cholesky decomposition is typically used to compute whitening filters for

random variables. For example, one can apply it to the correlation matrix R =

E[XXH ] of a random vector X . Then, one can define Y = L̃−1X and see that

E[Y Y H ] = E[L̃−1XXHL̃−H ] = L̃−1RL̃−H = I.

From this, one sees that Y is a vector of uncorrelated (or white) random variables.

7.3.2 QR decomposition

A complex matrixQ ∈ Cn×n is called unitary ifQHQ = QQH = I . If all elements

of the matrix are real, then it is called orthogonal and QTQ = QQT = I .

Theorem 7.3.1. Any matrix A ∈ Cm×n can be factored as

A = QR,

whereQ is anm×m unitary matrix,QQH = I , andR is anm×n upper-triangular

matrix.

Proof. To show this decomposition, we start by applying Gram-Schmidt Orthog-

onalization to the columns a1, . . . , an of A. This results in orthonormal vectors
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{q
1
, . . . , q

l
}, where l = min(m,n), such that

aj =

min(j,l)∑
i=1

ri,jqi for j = 1, 2, . . . , n.

This gives an m× l matrix Q = [q
1
. . . q

l
] and an l× n upper-triangular matrix R,

with entries [R]i,j = ri,j , such that A = QR. If m ≤ n, then l = m, Q is unitary,

and the decomposition is complete. Otherwise, we must extend the orthonormal

set {q
1
, . . . , q

l
} to an orthonormal basis {q

1
, . . . , q

m
} of Cm. This gives an m×m

unitary matrix Q′ = [q
1
. . . q

m
]. Adding m − n rows of zeros to the previous R

matrix gives an m× n matrix R′ such that A = Q′R′.

7.4 Hermitian Matrices and Complex Numbers

Definition 7.4.1. A square matrix Q ∈ Rn×n is orthogonal if QTQ = QQT = I .

Definition 7.4.2. A square matrix U ∈ Cn×n is unitary if UHU = UUH = I .

It is worth noting that, for unitary (resp. orthogonal) matrices, it suffices to

check only that UHU = I (resp. QTQ = I) because U is invertible (e.g., it has

linearly independent columns) and

UHU = I =⇒ I = UU−1 = U(UHU)U−1 = UUH .

A useful analogy between matrices and complex numbers is as follows.

• Hermitian matrices satisfyingAH = A are analogous to real numbers, whose

complex conjugates are equal to themselves.

• Unitary matrices satisfying UHU = I are analogous to complex numbers on

the unit circle, satisfying z̄z = 1.

• Orthogonal matrices satisfying QTQ = I are analogous to the real numbers

z = ±1, such that z2 = 1.

The transformation

z =
1 + jr

1− jr
maps real number r into the unit circle |z| = 1. Analogously, by Cayley’s formula,

U = (I + jR)(I − jR)−1,

a Hermitian matrix R is mapped to a unitary matrix.
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Canonical Forms

8.1 Eigenvalues and Eigenvectors

Definition 8.1.1. Let V be a vector space over the field F and let T be a linear

operator on V . An eigenvalue of T is a scalar λ ∈ F such that there exists a non-

zero vector v ∈ V with Tv = λv. Any vector v such that Tv = λv is called an

eigenvector of T associated with the eigenvalue value λ.

Definition 8.1.2. The spectrum σ(T ) of a linear operator T : V → V is the set of

all scalars such that the operator (T − λI) is not invertible.

Example 8.1.3. Let V = `2 be the Hilbert space of infinite square-summable se-

quences and T : V → V be the right-shift operator defined by

T (v1, v2, . . .) = (0, v1, v2, . . .).

Since T is not invertible, it follows that the scalar 0 is in the spectrum of T . But, it

is not an eigenvalue because Tv = 0 implies v = 0 and an eigenvector must be a

non-zero vector. In fact, this operator does not have any eigenvalues.

For finite-dimensional spaces, things are quite a bit simpler.

Theorem 8.1.4. Let A be the matrix representation of a linear operator on a finite-

dimensional vector space V , and let λ be a scalar. The following are equivalent:

1. λ is an eigenvalue of A

2. the operator (A− λI) is singular

151
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3. det(A− λI) = 0.

Proof. First, we show the first and third are equivalent. If λ is an eigenvalue of A,

then there exists a vector v ∈ V such that Av = λv. Therefore, (A− λI)v = 0 and

(A− λI) is singular. Likewise, if (A− λI)v = 0 for some v ∈ V and λ ∈ F , then

Av = λv. To show the second and third are equivalent, we note that the determinant

of a matrix is zero iff it is singular.

The last criterion is important. It implies that every eigenvalue λ is a root of the

polynomial

χA(λ) , det(λI − A)

called the characteristic polynomial of A. The equation det(A−λI) = 0 is called

the characteristic equation of A. The spectrum σ(A) is given by the roots of the

characteristic polynomial χA(λ).

Let A be a matrix over the field of real or complex numbers. A nonzero vector

v is called a right eigenvector for the eigenvalue λ if Av = λv. It is called a left
eigenvector if vHA = λvH .

Definition 8.1.5. Let λ be an eigenvalue of the matrixA. The eigenspace associated

with λ is the set Eλ = {v ∈ V |Av = λv}. The algebraic multiplicity of λ is

the multiplicity of the zero at t = λ in the characteristic polynomial χA(t). The

geometric multiplicity of an eigenvalue λ is equal to dimension of the eigenspace

Eλ or nullity(A− tI).

Theorem 8.1.6. If the eigenvalues of an n × n matrix are all distinct, then the

eigenvectors of A are linearly independent.

Proof. We will prove the slightly stronger statement: if λ1, λ2, . . . , λk are distinct

eigenvalues with eigenvectors v1, v2, . . . , vk, then the eigenvectors are linearly in-

dependent. Suppose that
k∑
i=1

civi = 0

for scalars c1, c2, . . . , ck. Notice that one can annihilate vj from this equation by

multiplying both sides by (A − λjI). So, multiplying both sides by a product of
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these matrices gives

k∏
j=1,j 6=m

(A− λjI)
k∑
i=1

cjvi =

(
k∏

j=1,j 6=m

(A− λjI)

)
cmvm

= cm

k∏
j=1,j 6=m

(λm − λj) = 0.

Since all eigenvalues are distinct, we must conclude that cm = 0. Since the choice

of m was arbitrary, it follows that c1, c2, . . . , ck are all zero. Therefore, the vectors

v1, v2, . . . , vk are linearly independent.

Definition 8.1.7. Let T be a linear operator on a finite-dimensional vector space

V . The operator T is diagonalizable if there exists a basis B for V such that each

basis vector is an eigenvector of T ,

[T ]B =


λ1 0 · · · 0

0 λ2 · · · 0
...

... . . . ...

0 0 · · · λn


Similarly, a matrixA is diagonalizable if there exists an invertible matrix S such

that

A = SΛS−1

where Λ is a diagonal matrix.

Theorem 8.1.8. If an n×n matrix has n linearly independent eigenvectors, then it

is diagonalizable.

Proof. Suppose that the n × n matrix A has n linearly independent eigenvectors,

which we denote by v1, . . . , vn. Let the eigenvalue of vi be denoted by λi so that

Avj = λjvj, j = 1, . . . , n.

In matrix form, we have

A
[
v1 · · · vn

]
=
[
Av1 · · · Avn

]
=
[
λ1v1 · · · λnvn

]
.
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We can rewrite the last matrix on the right as

[
λ1v1 · · · λnvn

]
=
[
v1 · · · vn

]
λ1 · · · 0
... . . . ...

0 · · · λn

 = SΛ.

where

S =
[
v1 · · · vn

]
and Λ =


λ1 · · · 0
... . . . ...

0 · · · λn

 ,
Combining these two equations, we obtain the equality

AS = SΛ.

Since the eigenvectors are linearly independent, the matrix S is full rank and hence

invertible. We can therefore write

A = SΛS−1

Λ = S−1AS.

That is, the matrix A is diagonalizable.

The type of the transformation from A to Λ arises in a variety of contexts.

Definition 8.1.9. If there exists an invertible matrix T such that

A = TBT−1,

then matrices A and B are said to be similar.

If A and B are similar, then they have the same eigenvalues. Similar matrices

can be considered representations of the same linear operator using different bases.

Lemma 8.1.10. Let A be an n × n Hermitian matrix (i.e., AH = A). Then, the

eigenvalues of A are real and the eigenvectors associated with distinct eigenvalues

are orthogonal.

Proof. First, we notice that A = AH implies vHAv is real because

s =
(
vHAv

)H
= vHAHv = vHAv = s.
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If Av = λ1v, left multiplication by vH shows that

vHAv = λ1v
Hv = λ1‖v‖.

Therefore, λ1 is real. Next, assume that Aw = λ2w and λ2 6= λ1. Then, we have

λ1λ2w
Hv = wHAHAv = wA2v = λ2

1w
Hv.

We also assume, without loss of generality, that λ1 6= 0. Therefore, if λ2 6= λ1, then

wHv = 0 and the eigenvectors are orthogonal.

8.2 Applications of Eigenvalues

8.2.1 Differential Equations

It is well known that the solution of the 1st-order linear differential equation

d

dt
x(t) = ax(t)

is given by

x(t) = eatx(0).

It turns out that this formula can be extended to coupled differential equations.

Let A be a diagonalizable matrix and consider the the set of 1st order linear differ-

ential equations defined by
d

dt
x(t) = Ax(t).

Using the decomposition A = SΛS−1 and the substitution x(t) = Sy(t), we find

that

d

dt
x(t) =

d

dt
Sy(t)

= S
d

dt
y(t).

and

d

dt
x(t) = Ax(t)

= ASy(t).
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This implies that
d

dt
y(t) = S−1ASy(t) = Λy(t).

Solving each individual equation gives

yj(t) = eλjtyj(0)

and we can group them together in matrix form with

y(t) = eΛty(0).

In terms of x(t), this gives

x(t) = SeΛtS−1x(0).

In the next section, we will see this is equal to x(t) = eAtx(0).

8.2.2 Functions of a Matrix

The diagonal form of a diagonalizable matrix can be used in a number of ap-

plications. One such application is the computation of matrix exponentials. If

A = SΛS−1 then

A2 = SΛS−1SΛS−1 = SΛ2S−1

and, more generally,

An = SΛnS−1.

Note that Λn is obtained in a straightforward manner as

Λn =


λn1 · · · 0
... . . . ...

0 · · · λnn

 .
This observation drastically simplifies the computation of the matrix exponential

eA,

eA =
∞∑
i=0

Ai

i!
= S

(
∞∑
i=0

Λi

i!

)
S−1 = SeΛS−1,

where

eΛ =


eλ1 · · · 0

... . . . ...

0 · · · eλn

 .
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Theorem 8.2.1. Let p(·) be a given polynomial. If λ is an eigenvalue of A, while v

is an associated eigenvector, then p(λ) is an eigenvalue of the matrix p(A) and v is

an eigenvector of p(A) associated with p(λ).

Proof. Consider p(A)v. Then,

p(A)v =
l∑

k=0

pkA
kv =

l∑
k=0

pkλ
kv = p(λ)v.

That is p(A)v = p(λ)v.

A matrix A is singular if and only if 0 is an eigenvalue of A.

8.3 The Jordan Form

Not all matrices are diagonalizable. In particular, if A has an eigenvalue whose

algebraic multiplicity is larger than its geometric multiplicity, then that eigenvalue

is called defective. A matrix with a defective eigenvalue is not diagonalizable.

Theorem 8.3.1. Let A be an n× n matrix. Then A is diagonalizable if and only if

there is a set of n linearly independent vectors, each of which is an eigenvector of

A.

Proof. If A has n linearly independent eigenvectors v1, . . . , vn, then let S be an

invertible matrix whose columns are there n vectors. Consider

S−1AS = S−1
[
Av1 · · · Avn

]
= S−1

[
λ1v1 · · · λnvn

]
= S−1SΛ = Λ.

Conversely, suppose that there is a similarity matrix S such that S−1AS = Λ is a

diagonal matrix. Then AS = SΛ. This implies that A times the ith column of S

is the ith diagonal entry of Λ times the ith column of S. That is, the ith column

of S is an eigenvector of A associated with the ith diagonal entry of Λ. Since S is

nonsingular, there are exactly n linearly independent eigenvectors.
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Definition 8.3.2. The Jordan normal form of any matrix A ∈ Cn×n with l ≤ n

linearly independent eigenvectors can be written as

A = TJT−1,

where T is an invertible matrix and J is the block-diagonal matrix

J =


Jm1(λ1) · · · 0

... . . . ...

0 · · · Jml
(λl)

 .
The Jm(λ) are m×m matrices called Jordan blocks, and they have the form

Jm(λ) =


λ 1 0 · · · 0

0 λ 1 · · · 0
...

...
... . . . ...

0 0 0 · · · λ

 .
It is important to note that the eigenvalues λ1, . . . , λl are not necessarily distinct

(i.e., multiple Jordan blocks may have the same eigenvalue). The Jordan matrix

J associated with any matrix A is unique up to the order of the Jordan blocks.

Moreover, two matrices are similar iff they are both similar to the same Jordan

matrix J .

Since every matrix is similar to a Jordan block matrix, one can gain some in-

sight by studying Jordan blocks. In fact, Jordan blocks exemplify the way that

matrices can be degenerate. For example, Jm(λ) has the single eigenvector e1 (i.e.,

the standard basis vector) and satisfies

Jm(0)ej+1 = ej for j = 1, 2, . . . ,m− 1.

So, the reason this matrix has only one eigenvector is that left-multiplication by this

matrix shifts all elements in a vector up element.

Computing the Jordan normal form of a matrix can be broken into two parts.

First, one can identify, for each distinct eigenvalue λ, the generalized eigenspace

Gλ =
{
v ∈ Cn

∣∣(A− λI)nv = 0
}
.

Let λ1, . . . , λk be the distinct eigenvalues of A ordered by decreasing magnitude.

Let dj be the dimension of Gλj , which is equal to the sum of the sizes of the Jordan
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blocks associated with λ, then
∑k

j=1 dj = n. Let T be a matrix whose first d1

columns for a basis for Gλ1 , next d2 columns form a basis for Gλ2 , and so on. In

this case, the matrix T−1AT is block diagonal and the j-th block Bj is associated

with the eigenvalue λj .

To put A in Jordan normal form, we now need to transform each block matrix

B into Jordan normal form. One can do this by identifying the subspace Vj that is

not mapped to 0 by (B−λI)j−1 (i.e.,N ((B − λI)j−1)
⊥). This gives the sequence

V1, . . . , VJ of non-empty subspaces (e.g., Vj is empty for j > J). Now, we can

form a sequence of bases WJ ,WJ−1, . . . ,W1 recursively starting from WJ with

Wj = Wj+1 ∪ {(B − λI)w|w ∈ Wj+1} ∪ basis(Vj − Vj−1),

where basis(Vj − Vj−1) is some set basis vectors that extends Vj−1 to Vj . Each

vector in Wj gives rise to a length j Jordan chain of vectors vi−1 = (B − λI)vi ∈
Wi−1 starting from any vj ∈ Wj . Each vector vj defined in this way is called a

generalized eigenvector of order j. By correctly ordering the basis W1 as columns

of T , one finds that T−1BT is a Jordan matrix.

Example 8.3.3. Consider the matrix
4 0 1 0

2 2 3 0

−1 0 2 0

4 0 1 2

 .
First, we find the characteristic polynomial

χA(t) = det(tI − A) = t4 − 10t3 + 37t2 − 60t+ 36 = (t− 2)2(t− 3)2.

Next, we find the eigenvectors associated with the eigenvalues λ1 = 3 and λ2 = 2.

This is done by finding a basis v(i)
1 , v

(i)
2 , . . . for the nullspace of A− λiI and gives

v
(1)
1 = [1 − 1 − 1 3]T

v
(2)
1 = [0 1 0 0]T

v
(2)
2 = [0 0 0 1]T .

Since the eigenvalue λ1 has algebraic multiplicity 2 and geometric multiplicity 1, we

still need to find another generalized eigenvector associated with this eigenspace.
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In particular, we need a vector w which satisfies (A− λ1I)w = v
(1)
1 . This gives

1 0 1 0

2 −1 3 0

−1 0 −1 0

4 0 1 −1



w1

w2

w3

w4

 =


1

−1

−1

3

 .
Using the pseudoinverse of (A−λ1I), one finds that w =

[
11
12

37
12

1
12

9
12

]
. Using this,

we construct the Jordan normal form by noting that
4 0 1 0

2 2 3 0

−1 0 2 0

4 0 1 2


[
v

(1)
1 w v

(2)
1 v

(2)
2

]
=
[

3v
(1)
1 v

(1)
1 + 3w 2v

(2)
1 2v

(2)
2

]

=
[
v

(1)
1 w v

(2)
1 v

(2)
2

]


3 1 0 0

0 3 0 0

0 0 2 0

0 0 0 2

 .
This implies that A = TJT−1 with

T =
[
v

(1)
1 w v

(2)
1 v

(2)
2

]
=


1 11

12
0 0

−1 37
12

1 0

−1 1
12

0 0

3 9
12

0 1

 .

8.4 Applications of Jordan Normal Form

Jordan normal form often allows one to extend to all matrices results that are easy

to prove for diagonalizable matrices.

8.4.1 Convergent Matrices

Definition 8.4.1. An n× n matrix A is convergent if ‖Ak‖ → 0 for any norm.

Of course, this is equivalent to the statement “Ak converges to the all zero ma-

trix”. Since all finite-dimensional vector norms are equivalent, it also follows that

this condition does not depend on the norm chosen.
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Recall that the spectral radius ρ(A) of a matrix A is the magnitude of the largest

eigenvalue. If A is diagonalizable, then Ak = TΛkT−1 and it is easy to see that

‖Ak‖ ≤ ‖T‖‖Λk‖‖T−1‖.

Since all finite-dimensional vector norms are equivalent, we know that ‖Λk‖ ≤
M‖Λk‖1 = Mρ(A)k. Therefore, A is convergent if ρ(A) < 1. If ρ(A) ≥ 1, then it

is easy to show that ‖Λk‖ > 0 and therefore that ‖Ak‖ > 0. For general matrices,

we can instead use the Jordan normal form and the following lemma.

Lemma 8.4.2. The Jordan block Jm(λ) is convergent iff |λ| < 1.

Proof. This follows from the fact that Jm(λ) = λI + N , where [N ]i,j = δi+1,j .

Using the Binomial formula, we write

‖(λI +N)k‖ =

∥∥∥∥∥
k∑
i=0

(
k

i

)
N iλk−i

∥∥∥∥∥
≤

m−1∑
i=0

(
k

i

)
|λ|k−i,

where the second step follows from the fact that ‖N i‖ is 1 for i = 1, . . . ,m − 1

and zero for i ≥ m. Notice that |
(
k
i

)
λk−i| ≤ km−1|λ|k−m+1 for 0 ≤ i ≤ m − 1.

Since km−1|λ|k−m+1 → 0 as k → ∞ iff |λ| < 1, we see that each term in the sum

converges to zero under the same condition. On the other hand, if |λ| ≥ 1, then

|
[
(λI +N)k

]
1,1
| ≥ 1 for all k ≥ 0.

Theorem 8.4.3. A matrix A ∈ Cn×n is convergent iff ρ(A) < 1.

Proof. Using the Jordan normal form, we can write A = TJT−1, where J is a

block diagonal with k Jordan blocks J1, . . . , Jk. Since J is block diagonal, we also

have that ‖Jk‖ ≤
∑k

i=1 ‖Jki ‖. If ρ(A) < 1, then the eigenvalue λ associated with

each Jordan block satisfies ‖λ‖ < 1. In this case, the lemma shows that ‖Jki ‖ → 0

which implies that ‖Jk‖ → 0. Therefore, ‖Ak‖ → 0 and A is convergent. On

the other hand, if ρ(A) ≥ 1, then there is a Jordan block Ji with |λ| ≥ 1 and

|[Jki ]1,1| ≥ 1 for all k ≥ 0.

In some cases, one can make stronger statements about large powers of a matrix.
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Definition 8.4.4. A matrix A has a unique eigenvalue of maximum modulus if the

Jordan block associated with that eigenvalue is 1 × 1 and all other Jordan blocks

are associated with eigenvalues of smaller magnitude.

The following theorem shows that a properly normalized matrix of this type

converges to a non-zero limit.

Theorem 8.4.5. If A has a unique eigenvalue λ1 of maximum modulus, then

lim
k→∞

1

λk1
Ak = uvH ,

where Au = λ1u, vHA = λ1v
H , and vHu = 1.

Proof. Let B = 1
λ1
A so that maximum modulus eigenvalue is now 1. Next, choose

the Jordan normal form B = TJT−1 so that the Jordan block associated with the

eigenvalue 1 is in the top left corner of J . In this case, it follows from the lemma

that Jn converges to e1e
H
1 as n → ∞. This implies that Bn = TJnT−1 converges

to Te1e
H
1 T
−1 = uvH where u is the first column of T and vH is the first row of

T−1.

By construction, the first column of T is the right eigenvector u and satisfies

Au = λ1u. Likewise, the first row of T−1 is the left eigenvector vH associated

with the eigenvalue 1 because BH = T−HJHTH and the first column of T−H (i.e.,

Hermitian conjugate of first row of T−1) is the right eigenvector of AH associated

with λ1. Therefore, vHA = λ1v
H . Finally, the fact that u = Bnu→ uvHu implies

that vHu = 1.
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Singular Value Decomposition

9.1 Diagonalization of Hermitian Matrices

Lemma 9.1.1 (Schur Decomposition). For any square matrix A, there exists a uni-

tary matrix U such that

UHAU = T

where T is upper triangular. That is, every square matrix is similar to an upper-

triangular matrix.

Proof. We prove this lemma by induction on the size n of the matrix. Since it is

clearly true for scalars (i.e., matrices of size n = 1), the base case is trivial. Now,

suppose that the result holds for all k = 1, 2, . . . , n − 1 and let A ∈ Cn×n. Since

every matrix has at least one eigenvector, we let u be an eigenvector ofA normalized

so that ‖u‖2 = 1. Using the Gram-Schmidt procedure, it is possible to construct an

orthonormal basis B = x1, . . . , xn for Cn, with x1 = u. Define the matrix Un by

Un =
[
x1 · · · xn

]
.

Since B is a basis for Cn, every column of the matrix AUn can be expressed as a

linear combination of vectors in B, say,

Axi =
n∑
j=1

sj,ixj i = 1, . . . , n.

Note that Ax1 = λ1x1 for some λ1 since x1 = u, an eigenvector of A. We can then

163
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write

AUn =
[
Ax1 · · · Axn

]
= Un


λ1 s1,2 . . . s1,n

0 s2,2 · · · s2,n

...
... . . . ...

0 sn,2 · · · sn,n

 = Un

[
λ1 sT

0 An−1

]
,

where we have used the convenient notation

An−1 =


s2,2 · · · s2,n

... . . . ...

sn,2 · · · sn,n


and sT = (s1,2, . . . , s1,n). By the inductive hypothesis, we can write An−1 =

Un−1Tn−1U
H
n−1 where Tn−1 is upper triangular and Un−1 is unitary. It follows that

AUn = Un

[
λ1 sT

0 An−1

]
= Un

[
λ1 sT

0 Un−1Tn−1U
H
n−1

]

= Un

[
1 0T

0 Un−1

][
λ1 sTUn−1

0 Tn−1

][
1 0T

0 UH
n−1

]
.

Let U be the matrix given by

U = Un

[
1 0T

0 Un−1

]
,

and note that U is unitary. It follows that

UHAU =

[
λ1 sTUn−1

0 Tn−1

]
.

That is, U is a unitary matrix such that UHAU is upper-triangular.

We use this lemma to prove the following theorem.

Theorem 9.1.2. Every Hermitian n× n matrix A can be diagonalized by a unitary

matrix,

UHAU = Λ,

where U is unitary and Λ is a diagonal matrix.
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Proof. Note that AH = A and T = UHAU . Consider the matrix TH given by

TH = (UHAU)H = UHAHU = UHAU = T.

That is, T is also Hermitian. Since T is upper triangular, this implies that T is a

diagonal matrix. We must conclude that every Hermitian matrix is diagonalized by

a unitary matrix.

This proves every Hermitian matrix has a complete set of orthonormal eigen-

vectors.

9.2 Singular Value Decomposition

The singular value decomposition (SVD) provides a matrix factorization related to

the eigenvalue decomposition that works for all matrices. In general, any matrix

A ∈ Cm×n can be factored into a product of unitary matrices and a diagonal matrix,

as explained below.

Theorem 9.2.1. Let A be a matrix in Cm×n. Then A can be factored as

A = UΣV H

where U ∈ Cm×m is unitary, V ∈ Cn×n is unitary, and Σ ∈ Rm×n has the form

Σ = diag(σ1, σ2, . . . , σp),

where p = min(m,n).

The diagonal elements of Σ are called the singular values of A and are typically

ordered so that

σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

Proof. Let

AHAV = V diag(λ1, λ2, . . . , λn)

be the spectral decomposition of AHA, where the columns of V are orthonormal

eigenvectors

V =
[
v1 v2 · · · vn

]
,
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with λ1 ≥ λ2 ≥ · · · ≥ λr > 0 = λr+1 = · · · = λn and r ≤ p. For i ≤ r, let

ui =
Avi√
λi
,

and observe that 〈
ui|uj

〉
=
vHj A

HAvi√
λiλj

=
vHj viλi√
λiλj

= δij.

Also note that {ui} are eigenvectors of AAH since

AAHui = AAHA
vi√
λi

=
√
λiAvi = λiui.

The set {ui : i = 1, . . . , r} can be extended using the Gram-Schmidt procedure to

form an orthonormal basis for Cm. Let

U =
[
u1 · · · um

]
.

For the zero eigenvalues, the eigenvectors must come from the nullspace of AAH

since the eigenvectors with zero eigenvalues are, by construction, orthogonal to the

eigenvectors with nonzero eigenvalues that are in the range of AAH .

For ui where i ≤ r, we get

uHi AV =
1√
λi
vHi A

HAV =
√
λie

H
i .

On the other hand, if i > r then uHi AV = 0. Hence,

UHAV = diag
(√

λ1, . . . ,
√
λn

)
= Σ,

as desired.

This proof gives a recipe for computing the SVD of an arbitrary matrix. Con-

sider the matrix

A =

 1 1

5 −1

−1 5

 .
The eigenvalue decomposition of AHA is given by

AHA =

[
27 −9

−9 27

]
= V ΛV H =

(
1√
2

[
−1 1

1 1

])[
36 0

0 18

](
1√
2

[
−1 1

1 1

])
.
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This implies that Σ1 = Λ1/2 and V1 = V . Therefore, we can compute U1 =

AV1Σ−1
1 with

U1 =

 1 1

5 −1

−1 5

( 1√
2

[
−1 1

1 1

])[
1√
36

0

0 1√
18

]
=


0 1

3
1√
2

2
3

− 1√
2

2
3

 .
Putting this all together, we have the compact SVD

A = U1Σ1V
H

1 =


0 1

3
1√
2

2
3

− 1√
2

2
3


[ √

36 0

0
√

18

](
1√
2

[
−1 1

1 1

])
.

9.3 Properties of the SVD

Many of the important properties of the SVD can be understood better by separating

the non-zero singular values from the zero singular values. To do this, we note that

every rank r matrix A ∈ Cm×n has a singular value decomposition

A = UΣV H =
[
U1 U2

] [ Σ1 0

0 0

][
V H

1

V H
2

]
= U1Σ1V

H
1 ,

where U ∈ Cm×m and V ∈ Cn×n are unitary and U1 ∈ Cm×r, U2 ∈ Cm×m−r,

V1 ∈ Cn×r, and V2 ∈ Cn×n−r have orthonormal columns. The diagonal matrix

Σ1 ∈ Rr×r contains the non-zero singular values

σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

The factorization A = UΣV H is called the full SVD of the matrix A while the

factorization A = U1Σ1V1 is called the compact SVD of A. The compact SVD of a

rank-r matrix retains only the r columns of U, V associated with non-zero singular

values.

Let X, Y be inner product spaces and let A define a mapping from X to Y .

Then, the columns of V1 form an orthonormal basis for the vectors in X that are

mapped to non-zero vectors (i.e., N (A)⊥) while the columns of V2 form an or-

thonormal basis of N (A). Likewise, the columns of U1 form a orthonormal basis

for the vectors in Y that lie in the range of A while the vectors in U2 form orthonor-

mal basis for R(A)⊥. It follows that the full SVD computes orthonormal bases for
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all of the four fundamental subspaces of the matrix A. For example, it is easy to

show that

R(A) = span(U1)

R(AH) = span(V1)

N (A) = span(V2)

N (AH) = span(U2)

To see this, notice that A
∑t

i=1 civi =
∑t

i=1 ciσiui.

From this, we can compute easily any projection onto a fundamental subspace.

First, we point out that the projection onto the column space of any matrix W ∈
Cm×n with orthonormal columns (i.e., WHW = I) is given by

PW = W (WHW )−1WH = WWH .

Therefore, the projection matrices for the fundamental subspaces are given by

PR(A) = U1U
H
1

PR(AH) = V1V
H

1

PN (A) = V2V
H

2 = I − V1V
H

1

PN (AH) = U2U
H
2 = I − U1U

H
1 .

This decomposition also provides a rank revealing decomposition of a rank-r

matrix

A =
r∑
i=1

σiuiv
H
i ,

where ui is the ith column of U and v is the ith column of V . This shows A as the

sum of r rank-1 matrices. It also allows one to compute

‖A‖F =
r∑
i=1

σ2
i

‖A‖2 = σ1

The pseudoinverse of A is also very easy to compute from the SVD. In particu-

lar, one finds that

A† = V Σ†UH = V1Σ−1
1 UH

1 .

One can verify this by computing A†A and AA†. It also follows from the fact that

the pseudoinverse of a scalar σ is σ−1 if σ 6= 0 and zero otherwise.



Appendix A

Optional Topics

A.1 Dealing with Infinity*

A.1.1 The Axiom of Choice

The axiom of choice, formulated by Zermelo in 1904, is innocent-looking. How-

ever, one can prove theorems with its aid that some mathematicians were originally

reluctant to accept in the past.

Definition A.1.1 (The Axiom of Choice). Given a collectionX of disjoint nonempty

sets, there exists a set C having exactly one element in common with each element

of X . That is, for each X ∈ X the set C ∩X contains a single element.

Most mathematicians today accept the axiom of choice as part of the set theory

on which they base their mathematics. A straightforward consequence of the axiom

of choice is the existence of a choice function.

Lemma A.1.2 (Existence of a Choice Function). Given a collection Y of non-empty

sets, there exists a function

c : Y →
⋃
Y ∈Y

Y

satisfying c(Y ) ∈ Y for every Y ∈ Y .

Proof. The difference between the axiom of choice and the lemma is that in the

latter statement the sets of the collection Y need not be disjoint. Given an element

Y ∈ Y , define the set Y ′ by

Y ′ = {(Y, y) |y ∈ Y } .
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That is, Y ′ is the collection of all ordered pairs where the first coordinate of the

ordered pair is the set Y , and the second coordinate is an element of Y . Because Y

contains at least one element, the set Y ′ is nonempty. Furthermore, Y ′ is a subset

of the cartesian product

Y ×
⋃
Y ∈Y

Y.

If Y1 and Y2 are two different sets in Y , then the sets Y ′1 and Y ′2 are disjoint; specif-

ically, the elements of Y ′1 and Y ′2 differ at least in their first coordinates.

Consider the collection

Z = {Y ′|Y ∈ Y} .

This is a collection of disjoint nonempty subsets of

Y ×
⋃
Y ∈Y

Y.

By the axiom of choice, there exists a set Z having exactly one element in common

with each element of Z . Define the function

c : Z → Y ×
⋃
Y ∈Y

Y

by c (Y ′) = Y ′ ∩Z. This function c implicitly provides the rule for a function from

Y to the set
⋃
Y ∈Y Y such that y belongs to Y whenever (Y, y) ∈ Z. This rule is the

desired choice function.

A.1.2 Well-Ordered Sets

A simple order < on a set X is a relation such that, for all x, y, z ∈ X ,

1. if x 6= y then either x < y or y < x

2. if x < y then x 6= y

3. if x < y and y < z then x < z.

Definition A.1.3. A set X with an order relation < is said to be well-ordered if

every nonempty subset of X has a smallest element.

The set of natural numbers, for example, is well-ordered. On the other hand, the

set of integers is not well-ordered.
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Fact A.1.4 (Well-ordering theorem). If X is a set, there exists an order relation on

X that is a well-ordering.

This theorem was proved by Zermelo using the axiom of choice. It startled the

mathematical community in 1904 and spurred much controversy about the axiom

of choice. It is given here without a proof.

Corollary A.1.5. There exists an uncountable well-ordered set.

Definition A.1.6. Let X be an ordered set. Given x ∈ X , the set

Yx = {y ∈ Y |y < x}

is called the section of X by x.

Corollary A.1.7. There exists an uncountable well-ordered set, every section of

which is countable.

The well-ordering principle is a necessary tool in proofs by induction when

the set over which the induction process is applied is not a segment of the natural

numbers; this is the so-called transfinite induction.

A.1.3 The Maximum Principle

A strict partial order ≺ on a set X is a relation such that for all x, y, z ∈ X

1. if x ≺ y then x 6= y

2. if x ≺ y and y ≺ z then x ≺ z.

A strict partial order is similar to a simple order, except that it need not be true

that for every distinct x, y ∈ X , either x ≺ y or y ≺ x.

Fact A.1.8 (The maximum principle). Let X be a set and suppose that ≺ is a strict

partial order on X . If Y is a subset of X that is simply ordered by ≺, then there

exists a maximal simply ordered subset Z of X containing Y .

The maximum principle is given here without a proof. It is interesting to note

that the well-ordering theorem and the maximum principle are equivalent; either of
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them implies the other. Furthermore, each of them is equivalent to the axiom of

choice.

Let ≺ be a strict partial order on X . For x, y ∈ X , the relation x � y holds if

x ≺ y or x = y. The relation � so defined is called a partial order on X . For

example, the inclusion relation ⊂ on a collection of sets is a partial order, whereas

proper inclusion is a strict partial order.
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injective, 20

inverse function, 20
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one-to-one correspondence, 20

onto, 20

preimage, 20

surjective, 20

inner-product space, 64

adjoint, 135

best approximation, 79

Cauchy-Schwarz inequality, 68

dual approximation, 96

Euclidean space, 67

Gram-Schmidt orthogonalization, 71

half space, 101

Hilbert space, 73

induced norm, 67
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normal equations, 85
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orthogonal complement, 72
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orthonormal basis, 73

Parseval identity, 74

projection, 67

Riesz representation theorem, 134

standard inner product, 64

unitary, 73

integral, 61

almost everywhere, 60

Lebesgue integral, 60, 61

Lebesgue measure, 60

Riemann integral, 61

linear transform, 54

algebra, 125

Banach algebra, 125

bounded, 130

coordinate matrix, 56

idempotent, 82

invertible, 125

linear operator, 124

non-singular, 55

nullity, 57

nullspace, 57

operator norm, 129

orthogonal projection, 83

projection, 82

pseudoinverse, 140

range, 56

rank, 57

singular, 55

transpose, 128

vector product, 125

logic, 1

biconditional, 4

complete, 9

conditional connective, 3, 4

conjecture, 1

conjunction, 2

consistent, 9

contradiction, 5

contrapositive, 9

converse, 7

corollary, 12

decidable, 9

disjunction, 3

existential quantifier, 10

fallacy, 9

free variable, 10

implication relation, 4

lemma, 12

logical equivalence, 8

logical implication, 6

mathematical induction, 13

negation, 3

predicate, 10

proof, 1

proposition, 12

semidecidable, 11

tautology, 5

theorem, 12

universal quantifier, 10

matrix

compact SVD, 167

convergent, 160

elementary column operation, 46

elementary row operation, 46

Frobenius norm, 134
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Gramian, 86

Hermitian transpose, 45

inverse, 46

invertible, 46

matrix product, 45

orthogonal, 150

positive-definite, 86

positive-semidefinite, 86

projection matrix, 89

pseudoinverse, 89, 140

reduced row echelon form, 46

row echelon form, 45

spectral radius, 133

trace, 75

transpose, 45

unitary, 150

matrix factorization, 141

backward substitution, 142

Cholesky factorization, 148

forward substitution, 141

LDLT decomposition, 148

lower triangular, 141

LU decomposition, 143

orthogonal, 149

unit triangular, 141

unitary, 149

upper triangular, 141

metric space, 23

d-open ball, 24

boundary, 27

Cauchy sequence, 25

closed, 26

closure, 27

compact, 32

complete, 29

completion, 30

continuous, 27, 28

contraction, 30

converges, 25

dense, 30

distance, 24

Euclidean metric, 24

interior, 26

isometry, 30

limit, 27

limit point, 26

Lipschitz continuous, 28

metric, 23

open, 25

points, 24

pointwise convergence, 35

sequence, 24

totally bounded, 32

uniform convergence, 35

uniformly continuous, 28

optimization

active, 115

convex, 120

feasible, 114

Fréchet derivative, 107

Fréchet differentiable, 107

Gâteaux differentiable, 106

Gâteaux differential, 106

gradient, 107

Jacobian matrix, 107

Lagrange multiplier, 115

Lagrangian, 115
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Lagrangian dual, 118

linear program, 114

local minimum value, 111

locally optimal, 115

objective function, 114

optimal value, 114

Slater’s condition, 120

standard form, 114

strong duality, 119

weak duality, 118

set theory

axiom of choice, 169

cardinality, 16

Cartesian Product, 18

complement, 17

complex numbers, 15

countably infinite, 16

disjoint, 17

elements, 15

empty set, 15

equivalence classes, 18

equivalence relation, 18

infimum, 33

integers, 15

intersection, 17

maximum, 33

minimum, 33

naive set theory, 14

natural numbers, 15

partial order, 172

quotient set, 18

rational numbers, 15

real numbers, 15

Russell’s Paradox, 16

set, 15

set difference, 17

set-builder notation, 15

simple order <, 170

singleton, 15

strict partial order, 171

subset, 17

supremum, 33

uncountably infinite, 16

union, 17

well-ordered, 170

topology, 36

basis, 36

closed, 38

closure, 38

continuous, 39

converge, 41

dense, 39

extended real numbers, 33

interior, 38

limit point, 38

metric topology, 37

metrizable, 37

neighborhood, 38

open set, 36

separable, 39

vector space, 47

affine hyperplane, 100

Banach space, 61

best approximation, 79

closed subspace, 62

convex set, 97
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coordinate vector, 53

dimension, 52

direct sum, 49

dual basis, 127

dual space, 126

finite-dimensional, 50

functional, 110

Hamel basis, 50

homomorphism, 126

hyperplane, 100

isomorphism, 126

linear combination, 48

linear functional, 75

linear transform, 54

linearly dependent, 49

linearly independent, 49

norm, 58

normalized, 61

ordered basis, 53

Schauder basis, 62

span, 49

standard basis, 50

standard Schauder basis, 62

subspace, 48

unit vector, 61
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