
ECE 586 Application: Principal Component Analysis (PCA)

Henry D. Pfister
Duke University

October 12, 2022

1 A Few Questions

1.1 What affine subspace best approximates a given set of points in Rn?
For a given set of N data points x1, x2, . . . , xN ∈ Rn, what p-dimensional affine subspace W ⊂ Rn best
approximates these points in the sense that the error

1

N

N∑
i=1

‖xi − PW (xi)‖2

is minimized. We refer to this as the empirical PCA problem. Recall that an affine subspace W =
span{w1, . . . , wp} + w0 is defined by linearly independent vectors w0, . . . , wp where adding w0 has the
effect of translating the subspace span{w1, . . . , wp}. For such an affine subspace, we define B ∈ Rn×p

by B = [w1, . . . , wp] and the projection onto W is defined by PW (x) = B(BTB)−1BT (x − w0) + w0.
Also, choosing w0 = 1

N

∑N
i=1 xi is optimal because this corresponds to first removing the mean and then

solving the problem for a set of zero-mean vectors.
Let A = [x1 − w0, . . . , xN − w0] be the mean-corrected data matrix whose columns are the mean-

corrected data points. Then, the solution to this problem can be computed using the SVD A = UΣV T

of A. In particular, we can choose B = Up , [u1, . . . , up] to be the first p columns of U so that
PW (x) = UpU

T
p (x−w0) +w0. When used for dimension reduction, the idea is to store y

i
= UT

p xi ∈ Rp

instead of xi ∈ Rn and recreate the approximation x̂i = Upyi + w0 whenever it is needed.

1.2 What is the best p-variable approximation of n random variables?
Let X = (X1, X2, . . . , Xn)T be a vector of n real random variables and let Up = [u1, . . . , up] be a
matrix with orthogonal columns whose i-th column is ui ∈ Rn. Consider the linear transformation to
Y = (Y1, Y2, . . . , Yp)T defined by

Yi = [UT
p X]i =

n∑
j=1

uj,iXj .

For the random vector Y , one can show that the covariance is given by

Cov(Yi, Yk) =

n∑
j=1

n∑
l=1

uj,iCov(Xj , Xl)ul,k = uTi Kuk,

where Cov(X,Y) , E[(X − E[X])(Y − E[Y])] and [K]j,l = Cov(Xj , Xl). For p < n, the key question
is “How can we choose u1, . . . , up to maximize the variance in X1, X2, . . . , Xn that is explained by
Y1, . . . , Yp?”. We refer to this as the probabilistic PCA problem.

Mathematically, this question can be formalized by the sequential computation, for i = 1, . . . , p, of
the vectors

ui = arg max
u∈Rn:‖u‖=1

Var(Yi) subject to Cov(Yi, Yk) = 0 ∀k ∈ {1, . . . , i− 1}

= arg max
u∈Rn:‖u‖=1

uTKu subject to uTKuk = 0 ∀k ∈ {1, . . . , i− 1}.

1

Since K is symmetric and symmetric matrices have a complete set of orthogonal eigenvectors, the second
line is solved by choosing ui to be the i-th normalized eigenvector of K (i.e., associated with the i-th
largest eigenvalue). Thus, the implied transformation (i.e., dimension reduction) is given by Y = UT

p X.

1.3 How are these two problems related?
While these two problems may seem quite different (e.g., one is deterministic and the other is probabilis-
tic), they are actually quite similar. To see this, we observe that each vector xi in the first problem can
be seen as a sample of the random vector X = (X1, . . . , Xn)T in the second problem. Then, focusing on
the second problem, we can assume the distribution of the random vector X is the empirical distribution
defined by the data set in the first problem. Using this interpretation, the empirical covariance matrix
of the data is given by

K̂ =
1

N

N∑
i=1

xix
T
i =

1

N
AAT ,

where A is the mean-corrected data matrix from the first problem. Using the SVD A = UΣV T , it follows
that

K̂ =
1

N
UΣV TV ΣTUT = U

(
1

N
Σ2

)
UT .

From this, we see that the columns of U = [u1, . . . , un] define a set n orthogonal eigenvectors for K̂
where K̂ui =

(
1
N σ

2
i

)
ui with σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. Thus, if we solve the second problem by finding the

p eigenvectors of K̂ with largest eigenvalues, then the desired dimension reduction is given by Y = UT
p X

where Up , [u1, . . . , up]. But, based on this, the Up matrix from the second problem is identical to the
Up matrix computed in the first problem! Finally, by treating xi as a realization of X and applying the
dimension reduction, one gets a sample y

i
= UT

p xi of the random vector Y .

1.4 How does this compare with random projections?
Instead of carefully designing the subspace used to approximate data vectors, one can simply project
the data vectors onto a randomly chosen subspace. This method is called random projections and it
proceeds by choosing a random matrix P ∈ Rn×p and compressing xi to yi = PTxi. Classification can
be done by using only the y

i
’s. For schemes that need xi, we can use the projection x̂i = P (PTP)−1y

i
+

w0 to approximate it. This computation is often simplified because PTP ≈ I (e.g., if entries of P
are independent random variables with mean 0 and variance 1

n). Two popular examples are where
each entry is a standard Gaussian scaled by 1√

n
and where each entry takes the values 1√

n
,− 1√

n
with

equal probability. The idea of random projections is approach is typically motivated by the Johnson-
Lindenstrauss Lemma which states that compression with a random matrix introduces negligible errors
in the pairwise Euclidean distances between all data points as long as p grows faster than lnN .

1.5 Connection to Low-Rank Approximation
The SVD and PCA also have a close connection to low-rank approximation of matrices in the Frobenius
norm. For a matrix A ∈ Cm×n, the Frobenius norm is defined by

‖A‖F ,

√√√√ m∑
i=1

n∑
j=1

|Ai,j |2

and it is induced by the Hilbert-Schmidt inner product 〈A|B〉 , Tr(BHA) on Cm×n.

Definition 1. Let A ∈ Cm×n have SVD A = UΣV H where u1, . . . , um and v1, . . . , vn are the columns
of U and V . Then, the k-truncated SVD expansion of A is given by

Tk(A) ,
k∑

i=1

σi ui v
H
i .

2

Since the ordering of equal singular values is not specified, we note that Tk(A) is uniquely defined if and
only if σk+1 < σk.

Theorem 1. In terms of the Frobenius norm, the best rank-k approximation of A ∈ Cm×n is charac-
terized by the k-truncated SVD expansion. In particular, the minimum error is given by

min
B∈Cm×n: rank(B)=k

‖A−B‖F = ‖A− Tk(A)‖F

and it is achieved by Tk(A) even when it is not unique.

2 Exercises
The following exercises highlight PCA as an application of linear algebra for dimension reduction.

Exercise 1. (15 pt) Use the SVD to numerically compute the p-dimensional PCA of the data matrix

D =

4 1 −2
−3 4 −1
−4 0 1
2 −2 3

 .
For each p ∈ {0, 1, 2}, print the resulting post-PCA data matrix with the mean added back in and
rounded to 2 decimals digits. Hint: Make sure to compute the mean along the correct dimension (e.g.,
the data vectors have dimension 4).

Exercise 2. (25 pt) Use the steps outlined in Section 1.1 to solve the empirical PCA problem for the
MNIST digit 2. Plot, as small MNIST images, the first 30 reconstruction vectors (i.e., the first 30
columns of U in the SVD) with and without mean removal. What do you observe about these images?
How many of these look a lot like the digit 2? Hint: The first few should look like a 2 but not all of
them.

Exercise 3. (30 pt) Do the following (separately) for each of the 10 digits in the given MNIST dataset:

1. Use the given samples to solve the empirical PCA problem with mean removal as outlined in
Section 1.1.

2. Use the given samples to solve the empirical PCA problem without mean removal (i.e., set w0 = 0)
using the steps in Section 1.1.

3. Plot the first 12 image samples of this digit in three rows:

(a) the original image
(b) the image after projection onto p = 3 dimensions (with mean removal)
(c) the image after projection onto p = 4 dimensions (without mean removal)

4. Plot samples from the 9 other classes in three rows. If you are currently working on the empirical
PCA problem for class j, please plot:

(a) the original images (for classes i 6= j)
(b) the images after projection onto p = 3 dimensions (classes i 6= j projected onto p = 3

dimensions from class j, with mean removal)
i. note: when adding back in the mean after projection, add back in the mean from class i.

(c) the images after projection onto p = 4 dimensions (classes i 6= j projected onto p = 4
dimensions from class j, without mean removal)

5. For the case without mean removal, plot the magnitude of the first 12 singular values in decreasing
order using a logarithmic scale for the y-axis.

3

Exercise 4. (20 pt) Repeat Exercise 6 of the Least Squares project after using PCA to reduce the
dimension of the whole data set. Do this 4 times using p = 20, 40, 70, 100 dimensions. How do the error
rates compare to the results from the Least Squares project. Hint: When using nunmpy.linalg.svd,
make sure to use the correct matrix for projection (e.g., the columns of u if called with A or the rows of
vh if called with AT).

Exercise 5. (20 pt) Repeat Exercise 6 of the Least Squares project instead using random projections
(e.g., with a Gaussian matrix) to reduce the dimension of the whole data set. Do this 4 times using
p = 20, 40, 70, 100 dimensions. How do the error rates compare to the Exercise 4 and the results from
the Least Squares project.

4

