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3.3: Vector Spaces

Definition: A vector space consists of the following,
@ a field F of scalars (where 0,1 € F denote the add. and mult. identities)
@ a set V of vectors (which are decorated by an underline in these notes)

© a binary operation called vector addition, which maps any pair of
vectors v, w € V to a vector v + w € V satisfying four conditions:

@ vector addition is commutative: v+ w =w + v

@ vector addition is associative: u+ (v + w) = (u+v) +w

© there is a unique vector 0 € V suchthat v+ 0=v, Vv e VvV

@ to each v € V there is a unique vector —v € V such that v + (—v) =0

@ a binary operation called scalar multiplication, which maps any s € F
and v € V to a vector sv € V satisfying four conditions:

the identity is multiplicative identity of the field: lv = v, Yv € V

scalar multiplication is associative: (s15)v = si(s:v)

scalar multiplication distributes over vector addition: s(v + w) = sv + sw

scalar addition distributes scalar multiplication: (s1 + s2)v = s1v + spv.
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3.3: Vector Space Examples

Example (Standard vector space for F")

Let F be a field, and let V = F" be the set of n-tuples v = (v1,...,v,). For
w = (wy,...,w,) € F", the sum of v and w is defined by

V4w =(vi+w,...,V,+ wp).
The scalar product of s € F and v € V is defined sv = (svi, ..., sv,).

Example (General vector space of functions)

Let X be a non-empty set and let Y be a vector space over F. Consider the
set V of all functions mapping X to Y. The vector addition of two functions
f,g € V is the function (f + g): X — Y defined by

(f+2)(x)=1f(x)+g(x) VxeX,

where the RHS is defined by vector addition in Y. The scalar product of
s € F and the function € V is the function sf defined by (sf)(x) = s f(x)
for all x € X, where the RHS is defined by scalar multiplication in Y. 2/10



3.3.1: Subspaces

Definition
Let V be a vector space over F. A subspace of V is a subset W C V which is
itself a vector space over F.

Lemma

A non-empty subset W C V is a subspace of V if and only if, for every pair
wq, Wy € W and every scalar s € F, the vector swy + w, € W.

Sketch proof in live session (via inheritance from V).

Example

Let A be an m x n matrix over F. Then, the subset V C F"*1 of vectors
satisfying Av = 0 forms a subspace.
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3.3: Linear Combinations

Definition
A vector w € V is said to be a linear combination of the vectors
Vq,...,V, € V provided that there exist scalars si,...,s, € F such that

n
w=> sy
i=1

Definition

Let U be a list (or set) of vectors in V. The span of U, denoted span(U), is
defined to be the set of all finite linear combinations of vectors in U.

Example

For a vector space V/, the span of any list (or set) of vectors in V forms a
subspace.
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3.3.2: Linear Dependence and Independence

Let V be a vector space over F. A list of vectors uy,...,u, € V is called
linearly dependent if there are scalars s3,...,s, € F, not all equal to 0, such
that
n
> siu;=0.
i=1

A list that is not linearly dependent is called linearly independent.

Similarly, a subset U C V is called linearly dependent if there is a finite list
Uy, ..., u, € U of distinct vectors that is linearly dependent. Otherwise, it is
called linearly independent.

Example

For V =R*, vectors v; = (1,1,0,0), v, = (0,1,1,0), v53 = (0,0,1,1) are
linearly independent because u = s1v; + SV, + S3v5 # 0 unless s =5, =53=0

(g, up #0if 51 #£0, ug #0if s3 #£0,and up Z0if 5 A0 A 51 =0).
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3.3.2: Basis

Let V be a vector space over F. Let B = {v, |a € A} be a subset of linearly

independent vectors from V such that every v € V can be written as a finite

linear combination of vectors from B. Then, the set B is a Hamel basis for V.
If V has a finite basis, it is called finite-dimensional.

From this, a basis decomposition v = Z;’:l SiV,, must be unique:

The difference between any two distinct decompositions produces a finite
linear dependency in the basis and, hence, a contradiction.

Theorem
Every vector space has a Hamel basis.
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3.3.2: Standard Basis

Let F be a field and let U C F" be the list of vectors e, ..., e, defined by

gl = (1,0,...,0)

e, = (0,1,...,0)

e, = (0,0,...,1)
For any v = (v1,...,V,) € F", we have

n
y= Z Vi€;- (1)
i=1

Thus, the collection U = {ey, ..., e,} spans F". Since v =0 in (1) if and
only if vy =--- = v, =0, U is linearly independent. Accordingly, the set U is
a basis for F”. This basis is termed the standard basis of F".
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3.3.2: Dimension

Theorem

Let V' be a finite-dimensional vector space that is spanned by a finite set of
vectors W = {wy,...,w,}. IfU={uy,...,u,} C Visa linearly
independent set of vectors, then m < n.

Proof in live session.

Thus, all bases have the same number of vectors.

Definition

The dimension of a finite-dimensional vector space is the number of elements
in any basis for V. It is denoted by dim(V/).
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3.3.2: Invertibility

Lemma

Let A € F™" be an invertible matrix. Then, the columns of A form a basis
for F". Similarly, the rows of A will also form a basis for F".

Proof in live session.

Theorem

Let A be an n x n matrix over F whose columns, denoted by ay, ..., a,, form
a linearly independent set of vectors in F". Then A is invertible.

Proof in live session.
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@ To continue studying after this video —
e Try the required reading: Course Notes EF 3.1 - 3.3
o Or the recommended reading: LADR Ch. 1, Ch. 2

o Also, look at the problems in Assignment 4
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