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3.3: Vector Spaces

Definition: A vector space consists of the following,

1 a field F of scalars (where 0, 1 ∈ F denote the add. and mult. identities)

2 a set V of vectors (which are decorated by an underline in these notes)
3 a binary operation called vector addition, which maps any pair of

vectors v ,w ∈ V to a vector v + w ∈ V satisfying four conditions:
1 vector addition is commutative: v + w = w + v
2 vector addition is associative: u + (v + w) = (u + v) + w
3 there is a unique vector 0 ∈ V such that v + 0 = v , ∀v ∈ V
4 to each v ∈ V there is a unique vector −v ∈ V such that v + (−v) = 0

4 a binary operation called scalar multiplication, which maps any s ∈ F
and v ∈ V to a vector sv ∈ V satisfying four conditions:

1 the identity is multiplicative identity of the field: 1v = v , ∀v ∈ V
2 scalar multiplication is associative: (s1s2)v = s1(s2v)
3 scalar multiplication distributes over vector addition: s(v + w) = sv + sw
4 scalar addition distributes scalar multiplication: (s1 + s2)v = s1v + s2v .
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3.3: Vector Space Examples

Example (Standard vector space for F n)

Let F be a field, and let V = F n be the set of n-tuples v = (v1, . . . , vn). For
w = (w1, . . . ,wn) ∈ F n, the sum of v and w is defined by

v + w = (v1 + w1, . . . , vn + wn).

The scalar product of s ∈ F and v ∈ V is defined sv = (sv1, . . . , svn).

Example (General vector space of functions)

Let X be a non-empty set and let Y be a vector space over F . Consider the
set V of all functions mapping X to Y . The vector addition of two functions
f , g ∈ V is the function (f + g) : X → Y defined by

(f + g)(x) = f (x) + g(x) ∀x ∈ X ,

where the RHS is defined by vector addition in Y . The scalar product of
s ∈ F and the function f ∈ V is the function sf defined by (sf )(x) = s f (x)
for all x ∈ X , where the RHS is defined by scalar multiplication in Y .
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3.3.1: Subspaces

Definition
Let V be a vector space over F . A subspace of V is a subset W ⊂ V which is
itself a vector space over F .

Lemma
A non-empty subset W ⊂ V is a subspace of V if and only if, for every pair
w1,w2 ∈ W and every scalar s ∈ F , the vector sw1 + w2 ∈ W .

Sketch proof in live session (via inheritance from V ).

Example

Let A be an m × n matrix over F . Then, the subset V ⊆ F n×1 of vectors
satisfying Av = 0 forms a subspace.
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3.3: Linear Combinations

Definition
A vector w ∈ V is said to be a linear combination of the vectors
v1, . . . , vn ∈ V provided that there exist scalars s1, . . . , sn ∈ F such that

w =
n∑

i=1

siv i .

Definition

Let U be a list (or set) of vectors in V . The span of U, denoted span(U), is
defined to be the set of all finite linear combinations of vectors in U.

Example

For a vector space V , the span of any list (or set) of vectors in V forms a
subspace.
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3.3.2: Linear Dependence and Independence

Definition
Let V be a vector space over F . A list of vectors u1, . . . , un ∈ V is called
linearly dependent if there are scalars s1, . . . , sn ∈ F , not all equal to 0, such
that

n∑
i=1

siui = 0.

A list that is not linearly dependent is called linearly independent.

Similarly, a subset U ⊂ V is called linearly dependent if there is a finite list
u1, . . . , un ∈ U of distinct vectors that is linearly dependent. Otherwise, it is
called linearly independent.

Example

For V = R4, vectors v1 = (1, 1, 0, 0), v2 = (0, 1, 1, 0), v3 = (0, 0, 1, 1) are
linearly independent because u = s1v1 + s2v2 + s3v3 ̸= 0 unless s1=s2=s3=0
(e.g., u1 ̸= 0 if s1 ̸= 0, u4 ̸= 0 if s3 ̸= 0, and u2 ̸= 0 if s2 ̸= 0 ∧ s1 = 0).



6 / 10

3.3.2: Basis

Definition

Let V be a vector space over F . Let B = {vα|α ∈ A} be a subset of linearly
independent vectors from V such that every v ∈ V can be written as a finite
linear combination of vectors from B. Then, the set B is a Hamel basis for V .
If V has a finite basis, it is called finite-dimensional.

From this, a basis decomposition v =
∑n

i=1 sivαi
must be unique:

The difference between any two distinct decompositions produces a finite
linear dependency in the basis and, hence, a contradiction.

Theorem
Every vector space has a Hamel basis.
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3.3.2: Standard Basis

Example

Let F be a field and let U ⊂ F n be the list of vectors e1, . . . , en defined by

e1 = (1, 0, . . . , 0)
e2 = (0, 1, . . . , 0)
... =

...
en = (0, 0, . . . , 1).

For any v = (v1, . . . , vn) ∈ F n, we have

v =
n∑

i=1

vie i . (1)

Thus, the collection U = {e1, . . . , en} spans F n. Since v = 0 in (1) if and
only if v1 = · · · = vn = 0, U is linearly independent. Accordingly, the set U is
a basis for F n. This basis is termed the standard basis of F n.
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3.3.2: Dimension

Theorem
Let V be a finite-dimensional vector space that is spanned by a finite set of
vectors W = {w1, . . . ,wn}. If U = {u1, . . . , um} ⊂ V is a linearly
independent set of vectors, then m ≤ n.

Proof in live session.

Thus, all bases have the same number of vectors.

Definition
The dimension of a finite-dimensional vector space is the number of elements
in any basis for V . It is denoted by dim(V ).
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3.3.2: Invertibility

Lemma

Let A ∈ F n×n be an invertible matrix. Then, the columns of A form a basis
for F n. Similarly, the rows of A will also form a basis for F n.

Proof in live session.

Theorem
Let A be an n × n matrix over F whose columns, denoted by a1, . . . , an, form
a linearly independent set of vectors in F n. Then A is invertible.

Proof in live session.
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Next Steps

To continue studying after this video –

Try the required reading: Course Notes EF 3.1 - 3.3

Or the recommended reading: LADR Ch. 1, Ch. 2

Also, look at the problems in Assignment 4


