ECE 586: Vector Space Methods Lecture 11 Flip Video: Linear Transforms

Henry D. Pfister Duke University

Definition

Let U, W be subsets of a vector space V. The sum of U and W is defined by $U + W \triangleq \{ \underline{v} \in V \mid \exists \underline{u} \in U, \exists \underline{w} \in W, \underline{v} = \underline{u} + \underline{w} \}.$

Definition

For a vector space V, subspaces U and W are called disjoint if $U \cap W = \{\underline{0}\}$.

Definition

For disjoint subspaces U and W in a vector space, their direct sum equals their sum but is denoted by $U \oplus W$ to emphasize that U and W are disjoint.

An important property of a direct sum is that any vector $\underline{v} \in U \oplus W$ has a unique decomposition $\underline{v} = \underline{u} + \underline{w}$ where $\underline{u} \in U$ and $\underline{w} \in W$.

3.3.3 Coordinate Systems and Vectors

Definition

If V is a finite-dimensional vector space, an ordered basis for V is a finite list of vectors that is linearly independent and spans V.

Remark

If $\mathcal{B} = (\underline{v}_1, \dots, \underline{v}_n)$ is an ordered basis for V, then the set $\{\underline{v}_1, \dots, \underline{v}_n\}$ is a basis for V. But, \mathcal{B} defines the set and a specific ordering for the vectors.

Definition

For a finite-dimensional vector space V with ordered basis $\mathcal{B} = (\underline{v}_1, \dots, \underline{v}_n)$, the coordinate vector of $\underline{v} \in V$ is denoted by $[\underline{v}]_{\mathcal{B}}$ and equals the unique vector $\underline{s} = F^n$ such that

$$\underline{v} = \sum_{i=1}^{n} s_i \underline{v}_i.$$

Try computing $[(1,2,3,4)]_{\mathcal{B}}$ for $\mathcal{B} = ((1,1,1,1), (0,1,1,1), (0,0,1,1), (0,0,0,1)).$

3.4: Linear Transforms

Definition

Let V and W be vector spaces over a field F. A linear transform from V to W is a function T from V into W such that

$$T\left(\underline{s}\underline{v}_1 + \underline{v}_2\right) = \underline{s}T\underline{v}_1 + T\underline{v}_2$$

for all vectors $\underline{v}_1, \underline{v}_2 \in V$ and all scalars $s \in F$ (i.e., T is linear).

Example

Let A be a fixed $m \times n$ matrix over F. The function T defined by $T(\underline{v}) = A\underline{v}$ is a linear transformation from $F^{n \times 1}$ into $F^{m \times 1}$.

Example

Let V be the space of continuous functions from [0,1] to \mathbb{R} . Define T by

$$(Tf)(x) = \int_0^x f(t)dt.$$

Then, T is a linear transform from V to V because Tf is continuous.

Definition (Range)

For a linear transformation $T: V \to W$, the range of T is the subspace of vectors $\underline{w} \in W$ such that $\underline{w} = T\underline{v}$ for some $\underline{v} \in V$. It is denoted by

$$\mathcal{R}(\mathcal{T}) \triangleq \{ \underline{w} \in \mathcal{W} | \exists \underline{v} \in \mathcal{V} \text{ s.t. } \mathcal{T} \underline{v} = \underline{w} \} = \{ \mathcal{T} \underline{v} | \underline{v} \in \mathcal{V} \}.$$

Definition (Nullspace)

For a linear transformation $T: V \to W$, the nullspace of T is the subspace of vectors $\underline{v} \in V$ such that $T\underline{v} = \underline{0}$. We denote the nullspace of T by

$$\mathcal{N}(T) \triangleq \{ \underline{v} \in V | T \underline{v} = \underline{0} \}.$$

Theorem

Let V, W be vector spaces over F and $\mathcal{B} = \{\underline{v}_{\alpha} | \alpha \in A\}$ be a Hamel basis for V. For each mapping $G : \mathcal{B} \to W$, there is a unique linear transformation $T : V \to W$ such that $T \underline{v}_{\alpha} = G(\underline{v}_{\alpha})$ for all $\alpha \in A$.

Proof in live session.

Definition (Rank and Nullity)

Let V and W be vector spaces over a field F, and let T be a linear transformation from V into W. The rank of T is the dimension of the range of T and the nullity of T is the dimension of the nullspace of T.

Theorem (Rank-Nullity)

Let V and W be vector spaces over the field F and let T be a linear transformation from V into W. If V is finite-dimensional, then

 $\operatorname{rank}(T) + \operatorname{nullity}(T) = \dim(V)$

Proof in live session.

Theorem

If A is an $m \times n$ matrix with entries in the field F, then

row rank(A) $\triangleq \dim(\mathcal{R}(A^T)) = \dim(\mathcal{R}(A)) \triangleq \operatorname{rank}(A)$.

Proof in live session.

- To continue studying after this video -
 - Try the required reading: Course Notes EF 3.3 3.4
 - Or the recommended reading: LADR Ch. 3ABC
 - Also, look at the problems in Assignment 4