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3.5: Normed Vector Spaces

Let V be a vector space over the real numbers or the complex numbers.

Definition

A norm on vector space V is a real-valued function ∥·∥ : V → R that satisfies
the following properties.

1 ∥v∥ ≥ 0 ∀v ∈ V ; equality holds if and only if v = 0

2 ∥sv∥ = |s| ∥v∥ ∀v ∈ V , s ∈ F

3 ∥v + w∥ ≤ ∥v∥+ ∥w∥ ∀v ,w ∈ V .

The concept of a norm is closely related to that of a metric. For instance, a
metric can be defined from any norm.

Let ∥v∥ be a norm on vector space V , then the induced metric is

d (v ,w) = ∥v − w∥ .
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3.5: Examples of Normed Vector Spaces

Example (Standard Norms for Real/Complex Vector Spaces)

The following functions are examples of norms for Rn and Cn:

1 the l1 norm: ∥v∥1 =
∑n

i=1 |vi |

2 the lp norm: ∥v∥p =
(∑n

i=1 |vi |p
) 1

p , p ∈ (1,∞)

3 the l∞ norm: ∥v∥∞ = max1,...,n{|vi |}

Example (Standard Norms for Real/Complex Function Spaces)

Similarly, for the vector space of functions from [a, b] to R (or C):
1 the L1 norm: ∥f (t)∥1 =

∫ b

a
|f (t)|dt

2 the Lp norm: ∥f (t)∥p =
(∫ b

a
|f (t)|pdt

) 1
p

, p ∈ (1,∞)

3 the L∞ norm: ∥f (t)∥∞ = ess sup[a,b]{|f (t)|}

For infinite dimensional spaces, only vectors with finite norm are included.
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3.5: Norms Versus Metrics

Example

Consider vectors in Rn with the euclidean metric

d (v ,w) =
√
(v1 − w1)2 + · · ·+ (vn − wn)2.

Recall the bounded metric given by

d̄ (v ,w) = min {d (v ,w) , 1} .

Define f : Rn → R by f (v) = d̄ (v , 0). Is the function f a norm?

By the properties of d , we have

1 d̄ (v , 0) ≥ 0 ∀v ∈ V ; equality holds if and only if v = 0

2 d̄ (v + w , 0) = d̄ (v ,−w) ≤ d̄ (v , 0) + d̄ (w , 0) ∀v ,w ∈ V .

However, d̄ (sv , 0) is not always equal to sd̄ (v , 0). For instance,
d̄ (2e1, 0) = 1 < 2d̄ (e1, 0). Thus, the f (v) = d̄ (v , 0) is not a norm.
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3.5: Properies of Normed Vector Spaces

Definition

A vector v ∈ V is called normalized if ∥v∥ = 1. For any v ̸= 0, consider

u = v / ∥v∥

with norm ∥u∥ = 1. A normalized vector is called a unit vector.

Definition

For a vector space V over R or C, two norms (denoted ∥ · ∥V and ∥ · ∥V ′) are
called equivalent if, for all v ∈ V , there are positive reals m,M such that

m∥v∥V ′ ≤ ∥v∥V ≤ M∥v∥V ′ .

Lemma
For finite-dimensional normed spaces, all norms are equivalent.
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3.5: Complete Normed Spaces

Definition
A complete normed vector space is called a Banach space.

Example

Vector spaces Rn (or Cn) with any well-defined norm are Banach spaces.

Example

Let V = R∞ be the Banach space of real sequences (v1, v2, v3, . . .) with norm

∥v∥p =

( ∞∑
i=1

|vi |p
)1/p

.

Example

The vector space of continuous functions f : [a, b] → R is a Banach space
under the norm ∥f (t)∥ = sup

t∈[a,b]

f (t).
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3.5: Schauder Basis

Definition
A Banach space V has a Schauder basis, v1, v2, . . ., if every v ∈ V can be
written uniquely as

v =
∞∑
i=1

siv i ,

where convergence is determined by the norm topology.

Example

Let V = R∞ be the vector space of real sequences. The standard Schauder
basis is the countably infinite extension {e1, e2, . . .} of the standard basis.

Caveat
Although all commonly used Banach spaces have a Schauder basis, some do
not. Thus, this cannot be assumed in general proofs for Banach spaces.
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3.5: Convergence of Sums

Banach space convergence via the induced metric d(v ,w) = ∥v − w∥.

Lemma

If
∑∞

i=1 ∥v i∥ = a < ∞, then un =
∑n

i=1 v i satisfies un → u with ∥u∥ ≤ a.

Proof.

Let an =
∑n

i=1 ∥v i∥ and observe that, for n>m,

|an − am| =

∣∣∣∣∣
n∑

i=1

∥v i∥ −
m∑
i=1

∥v i∥

∣∣∣∣∣ =
n∑

i=m+1

∥v i∥

∥un − um∥ =

∥∥∥∥∥
n∑

i=1

v i −
m∑
i=1

v i

∥∥∥∥∥ =

∥∥∥∥∥
n∑

i=m+1

v i

∥∥∥∥∥ ≤
n∑

i=m+1

∥v i∥

Since
∑∞

i=1 ∥v i∥ converges in R, an must be a Cauchy sequence

Since ∥un − um∥ ≤ |an − am|, un is also a Cauchy sequence

Once un converges, the norm bound given by the triangle inequality
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3.5: Open and Closed Subspaces

Definition
A closed subspace of a Banach space is a subspace that is a closed set in the
topology generated by the norm.

Theorem
All finite dimensional subspaces of a Banach space are closed.

Example (Span of infinite linearly independent set not closed)

Let W = {w1,w2, . . .} be a linearly independent sequence of normalized
vectors in a Banach space. The span of W only includes finite linear
combinations. However, a sequence of finite linear combinations, like

un =
n∑

i=1

1

i2
w i ,

converges to limn→∞ un if it exists. Thus, the span of W is not closed.

Show convergence in live session.
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Next Steps

To continue studying after this video –

Try the required reading: Course Notes EF 3.5

Or the recommended reading: LADR Ch. 6A

Also, look at the problems in Assignment 5


