ECE 586: Vector Space Methods Lecture 13 Flip Video: Normed Vector Spaces

Henry D. Pfister Duke University

3.5: Normed Vector Spaces

Let V be a vector space over the real numbers or the complex numbers.

Definition

A norm on vector space V is a real-valued function $\|\cdot\|: V \to \mathbb{R}$ that satisfies the following properties.

 $\|\underline{v}\| \geq 0 \quad \forall \underline{v} \in V; \text{ equality holds if and only if } \underline{v} = \underline{0}$

The concept of a norm is closely related to that of a metric. For instance, a metric can be defined from any norm.

Let $\|\underline{v}\|$ be a norm on vector space V, then the induced metric is

$$d(\underline{v},\underline{w}) = \|\underline{v} - \underline{w}\|.$$

Example (Standard Norms for Real/Complex Vector Spaces)

The following functions are examples of norms for \mathbb{R}^n and \mathbb{C}^n :

• the
$$l^1$$
 norm: $\|\underline{v}\|_1 = \sum_{i=1}^n |v_i|$

$$\begin{array}{l} \textcircled{O} \quad \text{the } I^p \text{ norm: } \|\underline{v}\|_p = \left(\sum_{i=1}^n |v_i|^p\right)^{\frac{1}{p}}, \quad p \in (1,\infty) \\ \hline{O} \quad \text{the } I^\infty \text{ norm: } \|\underline{v}\|_\infty = \max_{1,\dots,n} \{|v_i|\} \end{array}$$

Example (Standard Norms for Real/Complex Function Spaces)

Similarly, for the vector space of functions from [a, b] to \mathbb{R} (or \mathbb{C}):

) the
$$L^1$$
 norm: $\left\|f(t)
ight\|_1 = \int_a^b |f(t)| dt$

For infinite dimensional spaces, only vectors with finite norm are included.

Example

Consider vectors in \mathbb{R}^n with the euclidean metric

$$d(\underline{v},\underline{w}) = \sqrt{(v_1 - w_1)^2 + \cdots + (v_n - w_n)^2}.$$

Recall the bounded metric given by

$$\overline{d}(\underline{v},\underline{w}) = \min \{d(\underline{v},\underline{w}),1\}.$$

Define $f : \mathbb{R}^n \to \mathbb{R}$ by $f(\underline{v}) = \overline{d}(\underline{v}, \underline{0})$. Is the function f a norm?

By the properties of \overline{d} , we have

•
$$\overline{d}(\underline{v},\underline{0}) \ge 0$$
 $\forall \underline{v} \in V$; equality holds if and only if $\underline{v} = \underline{0}$
• $\overline{d}(\underline{v} + \underline{w},\underline{0}) = \overline{d}(\underline{v}, -\underline{w}) \le \overline{d}(\underline{v},\underline{0}) + \overline{d}(\underline{w},\underline{0})$ $\forall \underline{v},\underline{w} \in V$.

However, $\overline{d}(\underline{sv},\underline{0})$ is not always equal to $\underline{sd}(\underline{v},\underline{0})$. For instance, $\overline{d}(2\underline{e}_1,\underline{0}) = 1 < 2\overline{d}(\underline{e}_1,\underline{0})$. Thus, the $f(\underline{v}) = \overline{d}(\underline{v},\underline{0})$ is not a norm.

Definition

A vector $\underline{v} \in V$ is called normalized if $||\underline{v}|| = 1$. For any $\underline{v} \neq \underline{0}$, consider $\underline{u} = \underline{v} / ||\underline{v}||$

with norm $||\underline{u}|| = 1$. A normalized vector is called a unit vector.

Definition

For a vector space V over \mathbb{R} or \mathbb{C} , two norms (denoted $\|\cdot\|_V$ and $\|\cdot\|_{V'}$) are called equivalent if, for all $\underline{v} \in V$, there are positive reals m, M such that

 $m \|\underline{v}\|_{V'} \leq \|\underline{v}\|_{V} \leq M \|\underline{v}\|_{V'}.$

Lemma

For finite-dimensional normed spaces, all norms are equivalent.

3.5: Complete Normed Spaces

Definition

A complete normed vector space is called a Banach space.

Example

Vector spaces \mathbb{R}^n (or \mathbb{C}^n) with any well-defined norm are Banach spaces.

Example

Let $V = \mathbb{R}^\infty$ be the Banach space of real sequences (v_1, v_2, v_3, \ldots) with norm

$$\|\underline{v}\|_{p} = \left(\sum_{i=1}^{\infty} |v_{i}|^{p}
ight)^{1/p}$$

Example

The vector space of continuous functions $f: [a, b] \to \mathbb{R}$ is a Banach space under the norm $\|f(t)\| = \sup f(t).$

 $t \in [a, b]$

Definition

A Banach space V has a Schauder basis, $\underline{v}_1, \underline{v}_2, \ldots$, if every $\underline{v} \in V$ can be written uniquely as

$$\underline{v} = \sum_{i=1}^{\infty} s_i \underline{v}_i,$$

where convergence is determined by the norm topology.

Example

Let $V = \mathbb{R}^{\infty}$ be the vector space of real sequences. The standard Schauder basis is the countably infinite extension $\{\underline{e}_1, \underline{e}_2, \ldots\}$ of the standard basis.

Caveat

Although all commonly used Banach spaces have a Schauder basis, some do not. Thus, this cannot be assumed in general proofs for Banach spaces.

3.5: Convergence of Sums

Banach space convergence via the induced metric $d(\underline{v}, \underline{w}) = \|\underline{v} - \underline{w}\|$.

Lemma

If
$$\sum_{i=1}^{\infty} \|\underline{v}_i\| = a < \infty$$
, then $\underline{u}_n = \sum_{i=1}^n \underline{v}_i$ satisfies $\underline{u}_n \to \underline{u}$ with $\|\underline{u}\| \le a$.

Proof.

• Let
$$a_n = \sum_{i=1}^n \|\underline{v}_i\|$$
 and observe that, for $n > m$,

$$|a_n - a_m| = \left|\sum_{i=1}^n \|\underline{v}_i\| - \sum_{i=1}^m \|\underline{v}_i\|\right| = \sum_{i=m+1}^n \|\underline{v}_i\|$$
$$|\underline{u}_n - \underline{u}_m\| = \left\|\sum_{i=1}^n \underline{v}_i - \sum_{i=1}^m \underline{v}_i\right\| = \left\|\sum_{i=m+1}^n \underline{v}_i\right\| \le \sum_{i=m+1}^n \|\underline{v}_i|$$

• Since $\sum_{i=1}^{\infty} \|\underline{v}_i\|$ converges in \mathbb{R} , a_n must be a Cauchy sequence

- Since $\|\underline{u}_n \underline{u}_m\| \le |a_n a_m|$, \underline{u}_n is also a Cauchy sequence
- Once \underline{u}_n converges, the norm bound given by the triangle inequality

3.5: Open and Closed Subspaces

Definition

A closed subspace of a Banach space is a subspace that is a closed set in the topology generated by the norm.

Theorem

All finite dimensional subspaces of a Banach space are closed.

Example (Span of infinite linearly independent set not closed)

Let $W = \{\underline{w}_1, \underline{w}_2, \ldots\}$ be a linearly independent sequence of normalized vectors in a Banach space. The span of W only includes finite linear combinations. However, a sequence of finite linear combinations, like

$$\underline{u}_n = \sum_{i=1}^n \frac{1}{i^2} \underline{w}_i,$$

converges to $\lim_{n\to\infty} \underline{u}_n$ if it exists. Thus, the span of W is not closed.

Show convergence in live session.

- To continue studying after this video -
 - Try the required reading: Course Notes EF 3.5
 - Or the recommended reading: LADR Ch. 6A
 - ${\scriptstyle \bullet}\,$ Also, look at the problems in Assignment 5