3.5: Normed Vector Spaces

Let V be a vector space over the real numbers or the complex numbers.

Definition

A **norm** on vector space V is a real-valued function $\|\cdot\| : V \to \mathbb{R}$ that satisfies the following properties.

1. $\|v\| \geq 0 \quad \forall v \in V$; equality holds if and only if $v = 0$
2. $\|sv\| = |s|\|v\| \quad \forall v \in V, s \in F$
3. $\|v + w\| \leq \|v\| + \|w\| \quad \forall v, w \in V$.

The concept of a norm is closely related to that of a metric. For instance, a metric can be defined from any norm.

Let $\|v\|$ be a norm on vector space V, then the **induced metric** is

$$d(v, w) = \|v - w\|.$$
3.5: Examples of Normed Vector Spaces

Example (Standard Norms for Real/Complex Vector Spaces)

The following functions are examples of norms for \mathbb{R}^n and \mathbb{C}^n:

1. The l^1 norm: $\|v\|_1 = \sum_{i=1}^{n} |v_i|$

2. The l^p norm: $\|v\|_p = \left(\sum_{i=1}^{n} |v_i|^p\right)^{\frac{1}{p}}$, $p \in (1, \infty)$

3. The l^∞ norm: $\|v\|_\infty = \max_{1,\ldots,n} \{|v_i|\}$

Example (Standard Norms for Real/Complex Function Spaces)

Similarly, for the vector space of functions from $[a, b]$ to \mathbb{R} (or \mathbb{C}):

1. The L^1 norm: $\|f(t)\|_1 = \int_{a}^{b} |f(t)| \, dt$

2. The L^p norm: $\|f(t)\|_p = \left(\int_{a}^{b} |f(t)|^p \, dt\right)^{\frac{1}{p}}$, $p \in (1, \infty)$

3. The L^∞ norm: $\|f(t)\|_\infty = \text{ess sup}_{[a,b]} \{|f(t)|\}$

For infinite dimensional spaces, only vectors with finite norm are included.
3.5: Norms Versus Metrics

Example

Consider vectors in \mathbb{R}^n with the euclidean metric

$$d(v, w) = \sqrt{(v_1 - w_1)^2 + \cdots + (v_n - w_n)^2}.$$

Recall the bounded metric given by

$$\tilde{d}(v, w) = \min \{d(v, w), 1\}.$$

Define $f: \mathbb{R}^n \rightarrow \mathbb{R}$ by $f(v) = \tilde{d}(v, 0)$. Is the function f a norm?

By the properties of \tilde{d}, we have

1. $\tilde{d}(v, 0) \geq 0 \quad \forall v \in V$; equality holds if and only if $v = 0$
2. $\tilde{d}(v + w, 0) = \tilde{d}(v, -w) \leq \tilde{d}(v, 0) + \tilde{d}(w, 0) \quad \forall v, w \in V$.

However, $\tilde{d}(sv, 0)$ is not always equal to $s\tilde{d}(v, 0)$. For instance, $\tilde{d}(2e_1, 0) = 1 < 2\tilde{d}(e_1, 0)$. Thus, the $f(v) = \tilde{d}(v, 0)$ is not a norm.
3.5: Complete Normed Spaces

Definition

A vector \(v \in V \) is called **normalized** if \(\|v\| = 1 \). For any \(v \neq 0 \), consider

\[
u = v / \|v\|
\]

with norm \(\|u\| = 1 \). A normalized vector is called a **unit vector**.

Definition

A complete normed vector space is called a **Banach space**.

Example

Vector spaces \(\mathbb{R}^n \) (or \(\mathbb{C}^n \)) with any well-defined norm are Banach spaces.

Example

The vector space of continuous functions \(f : [a, b] \to \mathbb{R} \) is a Banach space under the norm

\[
\|f(t)\| = \sup_{t \in [a,b]} f(t).
\]
3.5: Schauder Basis

Definition
A Banach space V has a **Schauder basis**, v_1, v_2, \ldots, if every $v \in V$ can be written uniquely as

$$v = \sum_{i=1}^{\infty} s_i v_i,$$

where convergence is determined by the norm topology.

Example
Let $V = \mathbb{R}^\infty$ be the vector space of semi-infinite real sequences. The **standard Schauder basis** is the countably infinite extension $\{e_1, e_2, \ldots\}$ of the standard basis.
3.5: Convergence of Sums

Banach space convergence via the induced metric $d(v, w) = \|v - w\|.$

Lemma

If $\sum_{i=1}^{\infty} \|v_i\| = a < \infty$, then $u_n = \sum_{i=1}^{n} v_i$ satisfies $u_n \to u$ with $\|u\| \leq a$.

Proof.

- Let $a_n = \sum_{i=1}^{n} \|v_i\|$ and observe that, for $n > m$,

 $$|a_n - a_m| = \left| \sum_{i=1}^{n} \|v_i\| - \sum_{i=1}^{m} \|v_i\| \right| = \sum_{i=m+1}^{n} \|v_i\|$$

 $$\|u_n - u_m\| = \left\| \sum_{i=1}^{n} v_i - \sum_{i=1}^{m} v_i \right\| = \left\| \sum_{i=m+1}^{n} v_i \right\| \leq \sum_{i=m+1}^{n} \|v_i\|$$

- Since $\sum_{i=1}^{\infty} \|v_i\|$ converges in \mathbb{R}, a_n must be a Cauchy sequence.
- Since $\|u_n - u_m\| \leq |a_n - a_m|$, u_n is also a Cauchy sequence.
- Once u_n converges, the norm bound given by the triangle inequality.
3.5: Open and Closed Subspaces

Definition

A **closed subspace** of a Banach space is a subspace that is a closed set in the topology generated by the norm.

Theorem

All finite dimensional subspaces of a Banach space are closed.

Example

Let $W = \{w_1, w_2, \ldots\}$ be a linearly independent sequence of normalized vectors in a Banach space. The span of W only includes finite linear combinations. However, a sequence of finite linear combinations, like

$$u_n = \sum_{i=1}^{n} \frac{1}{i^2} w_i,$$

converges to $\lim_{n \to \infty} u_n$ if it exists. Thus, the span of W is not closed.

Show convergence in live session.
Next Steps

To continue studying after this video –

- Try the required reading: Course Notes EF 3.5
- Or the recommended reading: LADR Ch. 6A
- Also, look at the problems in Assignment 5