ECE 586: Vector Space Methods Lecture 14 Flip Video: Matrix and Operator Norms

Henry D. Pfister Duke University

6.1/6.3: Vector Space of Linear Transforms and Norms

Definition

Let L(V, W) denote the vector space of all linear transforms from V into W, where V and W are vector spaces over a field F.

An operator norm is a norm on a vector space of linear transforms.

Definition (Induced Operator Norm)

Let V and W be two normed vector spaces and let $T: V \to W$ be a linear transformation. The induced operator norm of T is defined to

$$\|T\|_{\mathrm{op}} = \sup_{\underline{\nu} \in V - \{\underline{0}\}} \frac{\|\underline{T}\underline{\nu}\|_{W}}{\|\underline{\nu}\|_{V}} = \sup_{\underline{\nu} \in V, \|\underline{\nu}\|_{V} = 1} \|T\underline{\nu}\|_{W}.$$

A common question about the operator norm is, "How do I know the two expressions give the same result?". To see this, we can write

$$\sup_{\underline{v}\in V-\{\underline{0}\}} \frac{\|\underline{T}\underline{v}\|_{W}}{\|\underline{v}\|_{V}} = \sup_{\underline{v}\in V-\{\underline{0}\}} \left\|\underline{T}\frac{\underline{v}}{\|\underline{v}\|_{V}}\right\|_{W} = \sup_{\underline{u}\in V, \|\underline{u}\|_{V}=1} \|\underline{T}\underline{u}\|_{W}$$

6.3: Operator Norms

The induced operator norm has another property:

$$\|T\| = \sup_{\underline{\nu} \in V - \{\underline{0}\}} \frac{\|T\underline{\nu}\|}{\|\underline{\nu}\|} \ge \frac{\|T\underline{\mu}\|}{\|\underline{\mu}\|},$$

for non-zero $\underline{u} \in V$. This implies that $||T\underline{u}|| \le ||T|| ||\underline{u}||$ for all non-zero $\underline{u} \in V$. By checking $\underline{u} = \underline{0}$ separately, one can see it holds for all $\underline{u} \in V$.

Definition

For the space L(V, V) of linear operators on V, a norm is called submultiplicative if $||TU|| \le ||T|| ||U||$ for all $T, U \in L(V, V)$.

Using the above inequality, induced operator norms are submultiplicative:

 $\|UT\underline{v}\| \leq \|U\| \, \|T\underline{v}\| \leq \|U\| \, \|T\| \, \|\underline{v}\|.$

Continuity of Linear Transforms

Definition

A linear transform is called **bounded** if its induced operator norm is finite.

Theorem

A linear transformation $T \colon V \to W$ is bounded if and only if it is continuous.

Proof.

Suppose that T is bounded; that is, there exists M such that $||T\underline{v}|| \le M ||\underline{v}||$ for all $\underline{v} \in V$. Let $\underline{v}_1, \underline{v}_2, \ldots$ be a convergent sequence in V, then

$$\| T \underline{v}_i - T \underline{v}_j \| = \| T (\underline{v}_i - \underline{v}_j) \| \le M \| \underline{v}_i - \underline{v}_j \|.$$

This implies $T\underline{v}_1, T\underline{v}_2, \ldots$ is convergent in W and, thus, T is continuous. Conversely, assume T is continuous and notice that $T\underline{0} = \underline{0}$. Then, for any $\epsilon > 0$, there is a $\delta > 0$ such that $||T\underline{v}|| < \epsilon$ for all $||\underline{v}|| < \delta$. It follows that

$$\|T\underline{u}\| = \left\|T\frac{\delta\underline{u}}{2\|\underline{u}\|}\right\|\frac{2\|\underline{u}\|}{\delta} < \frac{2\epsilon}{\delta}\|\underline{u}\|.$$

Thus, $M = \frac{2\epsilon}{\delta}$ serves as an upper bound on ||T||.

6.3.3: Matrix Norms

A norm on a vector space of matrices is called a matrix norm.

Definition

For $A \in F^{m \times n}$, the matrix norm induced by the ℓ^p vector norm $\|\cdot\|_p$, is:

$$|A||_{p} \triangleq \max_{\|\underline{\nu}\|_{p}=1} \|A\underline{\nu}\|_{p}.$$

In special cases, there are exact formulae:

$$\begin{split} \left\|A\right\|_{\infty} &= \max_{i} \sum_{j} |a_{ij}| \\ \left\|A\right\|_{1} &= \max_{j} \sum_{i} |a_{ij}| \\ \left\|A\right\|_{2} &= \sqrt{\rho(A^{H}A)} \,, \end{split}$$

where the $\rho(B)$ is the maximum absolute value of all eigenvalues. Examples in live session.

Definition

Let W be a vector space over F and let $T: W \to W$ be a linear operator. A scalar $\lambda \in F$ is an eigenvalue of T if there exists a non-zero vector $\underline{v} \in W$ with $T\underline{v} = \lambda \underline{v}$. Any vector \underline{v} such that $T\underline{v} = \lambda \underline{v}$ is called an eigenvector of T associated with the eigenvalue value λ .

Definition

A matrix $A \in F^{n \times n}$ is diagonalizable if there is an invertible matrix $V \in F^{n \times n}$ (whose columns are eigenvectors) such that $V^{-1}AV = \Lambda$ is diagonal.

Example of A^m in live session.

6.3.2: Neumann Expansion

Theorem

Let $\|\cdot\|$ be a submultiplicative operator norm on the space L(V, V) and let $T \in L(V, V)$ be a linear operator with $\|T\| < 1$. Then, $(I - T)^{-1}$ exists and

$$(I - T)^{-1} = \sum_{i=0}^{\infty} T^{i}.$$

Proof.

- Observe that $\sum_{i=0}^{\infty} \|T^i\| \le \sum_{i=0}^{\infty} \|T\|^i = \frac{1}{1 \|T\|}$ because $\|T\| < 1$
- Recall an infinite sum $\sum_{i=0}^{\infty} T^i$ converges if $\sum_{i=0}^{\infty} \|T^i\|$ converges
- Next, observe that $(I T) \left(I + T + T^2 + \dots + T^{n-1} \right) = I T^n$
- $T^n \rightarrow 0$ because $||T^n|| \le ||T||^n \rightarrow 0$ since ||T|| < 1
- Thus, $\sum_{i=0}^{\infty} T^i$ is a right inverse for I T
- Same argument works on the left, so we're done.

- To continue studying after this video -
 - Try the required reading: Course Notes EF 3.5, 6.3
 - Or the recommended reading: MMA 4.1-4.2
 - Also, look at the problems in Assignment 5