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Engineering and Optimization

The foundation of engineering is the ability to use math and physics to design
and optimize complex systems.

Computers have now made this possible on an unprecedented scale.

Well-known applications include:

Physical Modeling: fitting large physical models (e.g., weather) to huge
amounts of collected data

Machine Learning: optimizing non-linear functions (e.g., neural networks)
to minimize classification loss on supervised samples

In both cases, optimization benefits from computing derivatives
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Derivatives

In vector analysis, derivatives provide local linear approximations:

For f : Rn → Rm with Jacobian matrix J(x) ∈ Rm×n, this gives

f (x+h) ≈ f (x)+J(x)h, J(x) ≜ f ′(x) ≜
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
For f : X → Y , it is best to view f ′(x) as a linear transform T : X → Y
from the domain to codomain. This transform maps an infinitesimal
input perturbation h to an infinitesimal output perturbation

f ′(x)(h) = Th = J(x)h

Notice that this definition of the derivative requires a linear structure (to
define differences) and a topology (to define convergence) for X and Y
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Gradient Descent in Rn

Consider a cost function f : Rn → R
Can we adjust x ∈ Rn to minimize the cost?

The gradient vector ∇f (x) ≜ f ′(x)T equals
the direction of maximum increase

∇f (x) =

(
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)T

Gradient descent

Discrete time (step size δn)

xn+1 = xn − δn ∇f (xn)

Continuous time:

d

dt
x(t) = −∇f

(
x(t)

)
Standard method for training machine learning
models like neural networks
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Derivatives in Banach Spaces

In abstract math, derivatives are usually introduced using Banach spaces:

For a function f : X → Y , the concept of a derivative requires a linear
structure (to define differences) and a topology (to define convergence)
on both X and Y

If X = Rn and Y = Rm, then the derivative of f is a linear transform
from X to Y represented by the Jacobian matrix f ′(x) ∈ Rm×n

Thus, we generally assume that f : X → Y is a mapping from the
Banach space (X , ∥ · ∥X ) to the Banach space (Y , ∥ · ∥Y )

For directional derivatives, one needs even less structure and it suffices to
let X be only a vector space.



5 / 12

What is Meant by Differentiable?

In abstract math, there are many related definitions that are slightly different.
To distinguish between these, one often uses names that are less common in
the engineering literature (e.g., Hamel vs. Schauder basis).

Definition (Differentiable)

Let f : X → Y be a mapping from a Banach space (X , ∥ · ∥X ) to a Banach
space (Y , ∥ · ∥Y ). Then, f is Fréchet differentiable at x if there is a
continuous linear transformation T : X → Y satisfying

lim
h→0

∥f (x + h)− f (x)− T (h)∥Y
∥h∥X

= 0,

where the limit is with respect to the implied Banach space mapping X → R.
In this case, the Fréchet derivative f ′(x) equals T .
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Properties of the Derivative

A useful property of the derivative is a characterization Lipschitz continuity.

Lemma
Let X ,Y be Banach spaces and f : X → Y be a function. If the Fréchet
derivative f ′(x) exists and satisfies ∥f ′(x)∥op ≤ L for all x in a convex set
A ⊆ X, then f is Lipschitz continuous on A with Lipschitz constant L.

One can also prove a general chain rule for the Fréchet derivative.

Theorem
Let X ,Y ,Z be Banach spaces and let f : X → Y and g : Y → Z be
functions. If f is Fréchet differentiable at x and g is Fréchet differentiable at
y = f (x), then (g ◦ f )(x) = g(f (x)) is Fréchet differentiable at x with
derivative g ′(f (x)) ◦ f ′(x).
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Directional Derivatives

Directional derivatives differ from standard derivatives in that the perturbation
vector is provided as a argument. For f : Rn → Rm, this means that the
directional derivative is not a linear transform but just a vector in Rm.

Definition (Directional Derivative)

Let f : X → Y map vector space X to a Banach space (Y , ∥ · ∥). Then, if it
exists, the Gâteaux differential of f at x in direction h is given by

δf (x ; h) ≜ lim
t→0

f (x + th)− f (x)

t
.

Example

Consider X =Y =R2 and f (x)=(x1x2, x1 + x22 ). For x=(1, 1), h=(1, 2):

δf (x , h) =
d

dt
((1 + t)(1 + 2t), (1 + t) + (1 + 2t)2)

∣∣∣
t=0

= (3, 5).



8 / 12

Properties of the Directional Derivative

Lemma

Let Y = R and suppose that δf (x ; h) exists and is negative for some f , x,
and h. Then, there exists t0 > 0 such that, for all t ∈ (0, t0), one has

f (x + th) < f (x).

Proof in live session.

Definition
Let f : X → Y be a mapping from a vector space X to a Banach space
(Y , ∥ · ∥). Then, f is Gâteaux differentiable at x if the Gâteaux differential
δf (x ; h) exists for all h ∈ X and is a continuous linear function of h.
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On the Gradient in Hilbert Space

For f : Rn → Rm with m = 1, the Jacobian is related to the gradient

∇f (x) ≜ f ′(x)T =
[

∂f
∂x1

(x) ∂f
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(x) · · · ∂f
∂xn

(x)
]T

.

It is worth noting that the orientation of the gradient vector (i.e., row versus
column vector) is sometimes defined differently. This is because derivatives
can be understood as linear transforms and either orientation can be used to
define the correct linear transform.

Example

Let X be a Hilbert space over R and f : X → R be a real functional. If the
Fréchet derivative f ′(x) exists, then it is a continuous linear functional on X .
Thus, the Riesz representation theorem guarantees that there is a vector
u ∈ X such that f ′(x)(h) = ⟨h, u⟩ for all h ∈ X . This vector is called the
gradient ∇f (x) and it follows that

f ′(x)(h) = ⟨h,∇f (x)⟩ for all h ∈ X .
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Gradient Descent

Gradient descent subtracts the gradient ∇f (x) from an element of X

For a Banach space, the derivative is a linear functional mapping X to R!
How can one add a linear mapping to X?

In Hilbert space, the Riesz representation theorem states every linear
functional is represented by the inner product with a fixed vector

Thus, the gradient ∇f (x) ∈ X is defined as the representative vector

Definition (Gradient Descent)

Let f : X → R be a mapping from a Hilbert space X to the standard Banach
space of real numbers. Starting from x1 ∈ X , gradient descent defines the
sequence

xn+1 = xn − δn∇f (xn),

where δn is the step size for the n-th step.
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Bounds for a Lipschitz Gradient

Lemma

Let f : X → R map the Hilbert space X to the real numbers. If ∇f (x) exists
and satisfies ∥∇f (y)−∇f (x)∥ ≤ L∥y − x∥, then∣∣f (y)− f (x)− ⟨y − x ,∇f (x)⟩

∣∣ ≤ 1

2
L∥y − x∥2.

Proof.

Let h = y − x and ϕ(t) = f (x + th). Then, ϕ′(t) = ⟨h,∇f (x + th)⟩ and∣∣f (y)− f (x)− ⟨h,∇f (x)⟩
∣∣ = ∣∣∣∣∫ 1

0

(ϕ′(t)− ϕ′(0))dt

∣∣∣∣
=

∣∣∣∣∫ 1

0

⟨h,∇f (x + th)−∇f (x)⟩dt
∣∣∣∣

≤
∣∣∣∣∫ 1

0

∥h∥ ∥∇f (x + th)−∇f (x)∥ dt
∣∣∣∣

≤
∫ 1

0

∥h∥L∥th∥dt = 1

2
L∥h∥2.
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Next Steps

To continue studying after this video –

Try the required reading: Course Notes EF 5.1

Also, look at the gradient descent problem in Assignment 6


