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4.2: Normal Equations

Let W be a subspace of a Hilbert space V that is spanned by the linearly
independent (but not orthogonal) set of vectors w1, . . . ,wn ∈ V .

The projection theorem shows that v̂ ∈ W is the best approximation of v ∈ V
if and only if (v − v̂)⊥w j for j = 1, . . . , n. This implies that〈

v − v̂ ,w j

〉
=

〈
v −

n∑
i=1

siw i ,w j

〉
= 0

or, equivalently, the normal equations
n∑

i=1

si
〈
w i ,w j

〉
=

〈
v ,w j

〉
.

The gives a system of n linear equations in n unknowns defined by
⟨w1 ,w1⟩ ⟨w2 ,w1⟩ · · · ⟨wn ,w1⟩
⟨w1 ,w2⟩ ⟨w2 ,w2⟩ · · · ⟨wn ,w2⟩

...
...

. . .
...

⟨w1 ,wn⟩ ⟨w2 ,wn⟩ · · · ⟨wn ,wn⟩


︸ ︷︷ ︸

G


s1
s2
...
sn


︸ ︷︷ ︸

s

=


⟨v ,w1⟩
⟨v ,w2⟩

...
⟨v ,wn⟩


︸ ︷︷ ︸

t

.
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4.2: The Gramian

Definition
For w1, . . . ,wn, the n × n Gramian matrix is defined to be

G =


⟨w1 ,w1⟩ ⟨w2 ,w1⟩ · · · ⟨wn ,w1⟩
⟨w1 ,w2⟩ ⟨w2 ,w2⟩ · · · ⟨wn ,w2⟩

...
...

. . .
...

⟨w1 ,wn⟩ ⟨w2 ,wn⟩ · · · ⟨wn ,wn⟩


Since gij =

〈
w j ,w i

〉
, we see G is Hermitian symmetric (i.e. GH = G ).

Definition

A matrix M ∈ F n×n is positive-semidefinite if M = MH and vHMv ≥ 0 for all
v ∈ F n − {0}. If the inequality is strict, then it is positive-definite.

Theorem
A Gramian matrix G is always positive-semidefinite. It is positive-definite if
and only if the vectors w1, . . . ,wn are linearly independent.

Proof in live session.
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4.3: Least-Squares Solution of a Linear System

For V = Fm, let A ∈ Fm×n be a matrix whose i-th column is w i ∈ V . Then,
a vector v̂ ∈ W = colspace(A) can be written as

v̂ = As =
n∑

i=1

siw i .

Also, the best approximation of v by vectors in W is found by solving

min
v̂∈W

∥v − v̂∥ = min
s

∥v − As∥.

For the induced norm, any solution must satisfy the normal equations〈
v − v̂ ,w j

〉
=

〈
v − As ,w j

〉
= 0, j ∈ [n].

For the standard inner product, these equations can be expressed as

0 =

 wH
1
...

wH
n

 (v − As) = AHv − AHAs = t − Gs,

where G = AHA is the Gramian and t is the cross-correlation vector.
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4.3.2: Pseudo-Inverse and Projection

When the vectors w1, . . . ,wn are linearly independent, the Gramian matrix is
positive definite and hence invertible. Thus, the optimal solution for the
least-squares problem is given by

s = G−1t =
(
AHA

)−1
AHv ,

where the matrix
(
AHA

)−1
AH is the pseudoinverse of A in this case.

Using this, the best approximation of v ∈ V by vectors in W is equal to

v̂ = As = A
(
AHA

)−1
AHv .

The matrix P = A
(
AHA

)−1
AH is the projection matrix for the range of A. It

defines an orthogonal projection onto the range of A (i.e., the subspace
spanned by the columns of A).



5 / 9

4.3.3: Weighted Least-Squares Solution of a Linear System

For the standard Euclidean norm ∥v∥E =
√
vHv and any invertible B,

consider the weighted least-squares problem

min
v̂∈W

∥B(v − v̂)∥E = min
s

∥B(v − As)∥E

But, ∥Bv∥E equals the induced norm ∥v∥ for the weighted inner product

⟨u , v⟩ ≜ vHBHBu.

For the weighted inner product, the normal equations look the same〈
v − v̂ ,w j

〉
=

〈
v − As ,w j

〉
= 0, j ∈ [n].

but they solve a different problem and they reduce to

0 =

 wH
1
...

wH
n

BHB (v − As) = AHBHBv − AHBHBAs
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4.4.2: Linear Minimum Mean-Squared Error Estimation

Let Y ,X1, . . . ,Xn be zero-mean random variables. Linear minimum
mean-squared error (LMMSE) estimation finds s1, . . . , sn such that

Ŷ = s1X1 + · · ·+ snXn

minimizes the mean squared-error E[|Y − Ŷ |2]. Using the inner product

⟨X ,Y ⟩ = E
[
XY

]
,

the normal equations for the LMMSE estimate Ŷ are Gs = t, where

G =


E
[
X1X 1

]
E
[
X2X 1

]
· · · E

[
XnX 1

]
E
[
X1X 2

]
E
[
X2X 2

]
· · · E

[
XnX 2

]
...

...
. . .

...
E
[
X1X n

]
E
[
X2X n

]
· · · E

[
XnX n

]
 , t =


E
[
YX 1

]
E
[
YX 2

]
...

E
[
YX n

]
 .

If G is invertible, then s = G−1t implies E[|Ŷ |2] = sHGs = sHt and

∥Y ∥2 −
∥∥∥Ŷ ∥∥∥2 = E

[
|Y |2

]
− E

[
|Ŷ |2

]
= E

[
|Y |2

]
− sHt.
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4.5.1: Dual Approximation and Minimum-Norm Solutions

An underdetermined system of linear equations has an infinite number of
solutions. It often makes sense to prefer the minimum-norm solution.

Let V be a Hilbert space and w1,w2, . . . ,wn be a basis for subspace W . For
any v ∈ V , the best approximation of v in W can be found by solving

⟨w1 ,w1⟩ ⟨w2 ,w1⟩ · · · ⟨wn ,w1⟩
⟨w1 ,w2⟩ ⟨w2 ,w2⟩ · · · ⟨wn ,w2⟩

...
...

. . .
...

⟨w1 ,wn⟩ ⟨w2 ,wn⟩ · · · ⟨wn ,wn⟩




s1
s2
...
sn

 =


⟨v ,w1⟩
⟨v ,w2⟩

...
⟨v ,wn⟩

 . (1)

Theorem
Let V be a Hilbert space and w1,w2, . . . ,wn be a basis for W ⊆ V . The dual
approximation problem is to find the minimum-norm vector w ∈ V satisfying
⟨w ,w i ⟩ = ci for i = 1, . . . , n. Then, the solution w satisfies

w =
n∑

i=1

siw i ∈ W ,

where s1, s2, . . . , sn can be found by solving (1) with ⟨v ,w i ⟩ = ci .
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4.5.2: Minimum-Norm Solutions

For A ∈ Cm×n with m < n and v ∈ Cm, consider the underdetermined linear
system As = v . Then, the dual approximation theorem can be applied to
solve the minimum-norm problem

min
s:As=v

∥s∥.

To see this as a dual approximation, we can rewrite the constraint As = v as
BHs = v where B = AH . Then, the theorem concludes that the
minimum-norm solution lies in the column space of B = AH .

Using s ∈ R(AH), there is a t such that ŝ = AHt and the constraint gives
A(AHt) = v . If the rows of A are linearly independent, then the columns of
B = AH are linearly independent and (BHB)−1 = (AAH)−1 exists.

Thus, the solution ŝ can be obtained in closed form and is given by

ŝ = AH
(
AAH

)−1
v .
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Next Steps

To continue studying after this video –

Try the required reading: Course Notes EF 4.2 - 4.3.4

Or the recommended reading: LADR 6C

Also, look at the problems in Assignment 7


