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4.2: Normal Equations

Let W be a subspace of a Hilbert space V that is spanned by the linearly
independent (but not orthogonal) set of vectors wy,...,w, € V.

The projection theorem shows that ¥ € W is the best approximation of v € V
if and only if (v — ) Lw; for j =1,...,n. This implies that

(v -0, w;) = <v Zsiwiawj> =0
i=1

or, equivalently, the normal equations
n

> si{wy,wp) = (v, w).
i=1
The gives a system of n linear equations in n unknowns defined by

<>

(wy,wy) (wo,wq) o (w,,w,) s1 (v, wy)

(wy,wy) (wo,wp) - (W, w,) 2 | (v, wy)

(wy,w,) (wo,w,) - (W,,w,) Sn (v, w,)
G s
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4.2: The Gramian

Definition
For wy,...,w,, the n x n Gramian matrix is defined to be
(wy,wy) (wo,wy) oo (w,,wy)
oo | o) (wo,wy) e (W, w,)
<ﬂ1 ) ﬂn> <ﬂ2 7ﬂn> e <ﬂn ) ﬂn>

Since gjj = (w;,w;), we see G is Hermitian symmetric (i.e. G = G).

Definition

A matrix M € F"*" is positive-semidefinite if M = M and v'My > 0 for all
v € F" — {0}. If the inequality is strict, then it is positive-definite.

Theorem

A Gramian matrix G is always positive-semidefinite. It is positive-definite if
and only if the vectors wy, ..., w,, are linearly independent.
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4.3: Least-Squares Solution of a Linear System

For V.=F™, let A€ F™*" be a matrix whose i-th column is w; € V. Then,
a vector ¥ € W = colspace(A) can be written as

n
V=As= E Siw;.
i=1

Also, the best approximation of v by vectors in W is found by solving

min [l — o] = min v - As].
vew s

For the induced norm, any solution must satisfy the normal equations

(v—0,w;)=(v—As,w;) =0, jeln]

For the standard inner product, these equations can be expressed as

H
wy

[«
Il

D | (v—As) = Ay — APAs = £ — Gs,
WH

—n

where G = A" A is the Gramian and t is the cross-correlation vector. 3/9



4.3.2: Pseudo-Inverse and Projection

When the vectors wy, ..., w, are linearly independent, the Gramian matrix is
positive definite and hence invertible. Thus, the optimal solution for the
least-squares problem is given by

s=Glt=(A"A) T Ay,

where the matrix (A"’A)_1 AH is the pseudoinverse of A in this case.

Using this, the best approximation of v € V by vectors in W is equal to
0 =As=A(A"A) T AHy.

The matrix P = A (AHA)f1 AH is the projection matrix for the range of A. It
defines an orthogonal projection onto the range of A (i.e., the subspace
spanned by the columns of A).
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4.3.3: Weighted Least-Squares Solution of a Linear System

For the standard Euclidean norm ||v||e = v/vHv and any invertible B,
consider the weighted least-squares problem

min [[B(v.— D)|e = min|[B(v — As)lle
But, ||Bv||e equals the induced norm ||v|| for the weighted inner product
(u,v) £ v'B"Bu.
For the weighted inner product, the normal equations look the same
(v—90,w;)=(v—As,w;) =0, jeln]

but they solve a different problem and they reduce to

0=1| : |B"B(v—As)=A"B"Bv - A"B"BAs
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4.4.2: Linear Minimum Mean-Squared Error Estimation

Let Y, Xi,..., X, be zero-mean random variables. Linear minimum
mean-squared error (LMMSE) estimation finds s, ..., s, such that

9251X1—|—'~'—|—San
minimizes the mean squared-error E[|Y — Y|?]. Using the inner product
(X,Y)=E [Xﬂ ,

the normal equations for the LMMSE estimate Y are Gs = t, where

EXX:) E[XX)] - E[XX) E[YX,]
| Elxx] Bpexa] o BlxX] || E[YX]
E[XX,] EPeX) - E[XX,) E[YX,]
If G is invertible, then s = G~'t implies E[|Y[2] = s"Gs = s"t and
Y12~ || =B 0YP) - B[V =E[vP) - st
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4.5.1: Dual Approximation and Minimum-Norm Solutions

An underdetermined system of linear equations has an infinite number of
solutions. It often makes sense to prefer the minimum-norm solution.

Let V be a Hilbert space and wy, w,,...,w, be a basis for subspace W. For
any v € V, the best approximation of v in W can be found by solving
(wy,wy) (wo,wy) - (w,,wy) | | 51 (v, wy)
(wy,wo) (wp,wp) - (w,,wy) 2| (v, wy) (1)
<ﬂl ’ﬂn> <ﬂ2 ) ﬂn> U <ﬂn 7ﬂn> Sn <!a ﬂn)

Theorem

Let V be a Hilbert space and wq, ws, ..., w, be a basis for W C V. The dual
approximation problem is to find the minimum-norm vector w € V satisfying

(w,w;) =cj fori=1,...,n. Then, the solution w satisfies
n
w=) sw,eW,
i=1
where s1, 5, ..., s, can be found by solving (1) with (v, w;) = c;.
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4.5.2: Minimum-Norm Solutions

For A € C™ " with m < n and v € C™, consider the underdetermined linear
system As = v. Then, the dual approximation theorem can be applied to
solve the minimum-norm problem

To see this as a dual approximation, we can rewrite the constraint As = v as
BHs = v where B = A". Then, the theorem concludes that the
minimum-norm solution lies in the column space of B = A".

Using s € R(AH), there is a t such that 3 = A”t and the constraint gives
A(AHt) = v. If the rows of A are linearly independent, then the columns of
B = AH are linearly independent and (B"B)~! = (AAH) ! exists.

Thus, the solution § can be obtained in closed form and is given by

5= A (AAM) Ty
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@ To continue studying after this video —
o Try the required reading: Course Notes EF 4.2 - 4.3.4
o Or the recommended reading: LADR 6C

o Also, look at the problems in Assignment 7
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