ECE 586: Vector Space Methods Lecture 22: Alternating Projection

> Henry D. Pfister Duke University

Alternating Projection for Subspaces

Let P_U and P_W be orthogonal projections onto closed subspaces U and W of a Hilbert space V. For an arbitrary $\underline{\nu}_0 \in V$, what is the behavior of the vector sequence $\underline{\nu}_n$ generated by alternating projection:

$$\underline{v}_{n+1} = \begin{cases} P_U \underline{v}_n & \text{if } n \text{ is even} \\ P_W \underline{v}_n & \text{if } n \text{ is odd.} \end{cases}$$

Since $P_U \underline{v} = \underline{v}$ (resp. $P_W \underline{v} = \underline{v}$) if and only if $\underline{v} \in U$ (resp. $\underline{v} \in W$), it is easy to see that any vector $\underline{v} \in U \cap W$ is a fixed point of this recursion.

Letting $P_{U \cap W}$ denote the orthogonal projection onto $U \cap W$, one can show that the sequence \underline{v}_n converges to $P_{U \cap W} \underline{v}_0$.

Theorem

The sequence \underline{v}_n converges to $P_{U \cap W} \underline{v}_0$, its projection onto $U \cap W$.

4.6: Projection onto Hyperplane Subspaces

The orthogonal projection of $\underline{v} \in V$ onto a 1D subspace $W = \operatorname{span}(\underline{w})$ is

$$P_W(\underline{v}) = rac{\langle \underline{v}, \underline{w}
angle}{\left\| \underline{w}
ight\|^2} \underline{w}.$$

A subset of V that satisfies a single linear equality of the form $\langle \underline{v}, \underline{w} \rangle = 0$ is a subspace $U \subset V$ with co-dimension one (i.e., $\dim(U) = \dim(V) - 1$). Also, $U = W^{\perp}$ for a 1D subspace W and U is a hyperplane containing <u>0</u>. Thus, x₃

$$P_U(\underline{v}) = P_{W^{\perp}}(\underline{v}) = \underline{v} - \frac{\langle \underline{v}, \underline{w} \rangle}{\left\| \underline{w} \right\|^2} \underline{w}$$

U =
$$W^{\perp}$$

 x_2 w w x_1

The linear equation $\langle \underline{v}, \underline{w} \rangle = c$ defines a shifted subspace $U + \underline{v}_0$ (for any $\underline{v}_0 \in V$ satisfying $\langle \underline{v}_0, \underline{w} \rangle = c$) with co-dimension one (i.e., a hyperplane):

$$\langle \underline{v}, \underline{w} \rangle = \langle \underline{u} + \underline{v}_0, \underline{w} \rangle = \langle \underline{u}, \underline{w} \rangle + \langle \underline{v}_0, \underline{w} \rangle = 0 + c = c.$$

One can project onto $U + v_0$ by shifting, projecting, and shifting back:

$$P_{U+\underline{v}_{0}}(\underline{v}) = \left((\underline{v} - \underline{v}_{0}) - \frac{\langle \underline{v} - \underline{v}_{0}, \underline{w} \rangle}{\|\underline{w}\|^{2}} \underline{w} \right) + \underline{v}_{0}$$

$$= \underline{v} - \frac{\langle \underline{v}, \underline{w} \rangle - c}{\|\underline{w}\|^{2}} \underline{w},$$

$$U + \frac{1}{2} \underline{w}$$

$$X_{1}$$

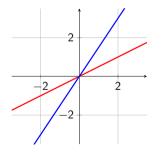
4.6: Solving Linear Equations via Alternating Projection

Let $A \in \mathbb{R}^{m \times n}$ and $\underline{b} \in \mathbb{R}^m$ be define a set of *m* linear equations in *n* variables with at least one solution.

The goal is to use alternating projection find a solution \underline{x}^* such that $A\underline{x}^* = \underline{b}$. If $\underline{b} = \underline{0}$, then the set of solutions is a subspace equal to the null space of A,

$$\mathcal{N}(A) = \{ \underline{x} \in \mathbb{R}^n \, | \, A \underline{x} = \underline{0} \} = \bigcap_{i=1}^m \left\{ \underline{x} \in \mathbb{R}^n \, | \, \sum_{j=0}^n a_{i,j} x_j = b_i = 0
ight\}.$$

The result follows because $\mathcal{N}(A)$ is the intersection of *m* hyperplane subspaces (i.e., subspaces of dimension n-1). But, what if $\underline{b} \neq \underline{0}$?



4.6: Kaczmarz's Algorithm

The idea is to iteratively project a candidate vector onto linear equality constraints. For a matrix $A \in \mathbb{R}^{m \times n}$ and vector $\underline{b} \in \mathbb{R}^m$, the algorithm starts from $\underline{v}_0 = \underline{0}$ and defines \underline{v}_{i+1} to be the projection of \underline{v}_i onto the set

$$W_i = \left\{ \underline{v} \in \mathbb{R}^n \, \middle| \, \sum_{k=1}^n a_{\sigma(i),k} v_k = b_{\sigma(i)} \right\},$$

where $\sigma(i) = (i \mod m) + 1$.

Using the previously derived projection formula, this gives

$$\underline{v}_{i+1} = (1-s)\underline{v}_i + s \, P_{W_{\sigma(i)}}(\underline{v}_i) = \underline{v}_i - s rac{\langle \underline{v}_i, \underline{a}_{\sigma(i)}
angle - b_{\sigma(i)}}{\|\underline{a}_{\sigma(i)}\|^2} \underline{a}_{\sigma(i)},$$

where $s \in (0, 1]$ is the step-size and \underline{a}_i is the *j*-th row of the matrix A.

Note: The true projection uses s = 1 but s < 1 may work better if $\underline{b} \notin \mathcal{R}(A)$.

4.6: Alternating Projection onto Convex Sets

Let C_1, C_2, \ldots, C_m be closed convex subsets in a Hilbert space V. The alternating projection algorithm finds a point in their intersection. Starting from any $\underline{v}_0 \in V$, the alternating projection algorithm computes

$$\underline{v}_{i+1} = (1-s)\underline{v}_i + s P_{C_{\sigma(i)}}(\underline{v}_i),$$

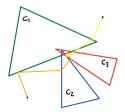
where $\sigma(i) = (i \mod m) + 1$ and $s \in (0, 1]$.

Remark

The intersection of convex sets is convex, so $C \triangleq \bigcap_{i=1}^{m} C_i$ is convex set. Ideally, alternating projection would give $\underline{v}_i \to P_C(\underline{v}_0)$ but it does not :-(

Theorem (Bregman)

For finite-dimensional V, there is some $\underline{v} \in \bigcap_{i=1}^{m} C_i$ such that $\underline{v}_i \to \underline{v}$.



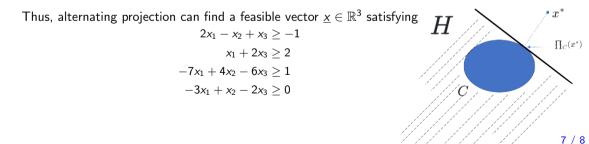
4.6: Orthogonal Projection onto Half Spaces

For $\underline{w} \in V$, let $H = \{\underline{v} \in V \mid \langle \underline{v}, \underline{w} \rangle \ge c\}$ be a closed convex half space.

- For $\underline{v} \in H$, the projection satisfies $P_H(\underline{v}) = \underline{v}$
- For <u>v</u> ∉ H, the projection satisfies P_H(<u>v</u>) = P_{U+v₀}(<u>v</u>) because the closest point in H achieves the inequality with equality

It follows that

$$\mathcal{P}_{\mathcal{H}}(\underline{v}) = egin{cases} \underline{v} & ext{if } \langle \underline{v}, \underline{w}
angle \geq c \ \underline{v} - rac{\langle \underline{v}, w
angle - c}{\|\underline{w}\|^2} \underline{w} & ext{if } \langle \underline{v}, \underline{w}
angle < c \end{cases}$$



- To continue studying after this video -
 - Try the required reading: Course Notes EF 4.6
 - Look at the Mini-Project Handout on Alternating Projection
 - Also, look at the related problems in Assignments 8 and 9