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Alternating Projection for Subspaces

Let Py and Py be orthogonal projections onto closed subspaces U and W of
a Hilbert space V. For an arbitrary vy € V, what is the behavior of the vector
sequence v,, generated by alternating projection:

Pyv,, if niseven
Vo1 = . .
Pwy, if nis odd.

Since Pyv = v (resp. Pwyv = v) if and only if v € U (resp. v € W), itis
easy to see that any vector v € UN W is a fixed point of this recursion.

Letting Pynw denote the orthogonal projection onto U N W, one can show 2
that the sequence v,, converges to Pynwv,. w
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Theorem
The sequence v,, converges to Pynwvy, its projection onto U N W.




4.6: Projection onto Hyperplane Subspaces

The orthogonal projection of v € V onto a 1D subspace W = span(w) is

A subset of V that satisfies a single linear equality of the form (v,w) =0is a
subspace U C V with co-dimension one (i.e., dim(U) = dim(V) —1). Also,
U = W+ for a 1D subspace W and U is a hyperplane containing 0. Thus, X3
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Puv) = Py (v) = v <|VL||2>

X1
X2
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4.6: Projection onto Hyperplanes

The linear equation (v, w) = ¢ defines a shifted subspace U + v, (for any
vy € V satisfying (v,, w) = ¢) with co-dimension one (i.e., a hyperplane):

(v,w) = (u+ vy, w) = (u,w) + (vg,w) =0+ c=c.

One can project onto U + vy by shifting, projecting, and shifting back:
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Pusa (V) = ((vvo) - <°W>w> "




4.6: Solving Linear Equations via Alternating Projection

Let A€ R™*" and b € R™ be define a set of m linear equations in n variables
with at least one solution.

The goal is to use alternating projection find a solution x* such that Ax* = b.
If b =0, then the set of solutions is a subspace equal to the null space of A,

N(A) = {x € R"| Ax = 0} = ﬂ{gew@;oa,)jxj:b,:o}.
i=1

The result follows because N (A) is the intersection of m hyperplane
subspaces (i.e., subspaces of dimension n — 1). But, what if b # 07?
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4.6: Kaczmarz's Algorithm

The idea is to iteratively project a candidate vector onto linear equality
constraints. For a matrix A € R™*" and vector b € R™, the algorithm starts
from v, = 0 and defines v, ; to be the projection of v; onto the set

Z Ao (i),kVk = a(i)} )
k=1

W;—{VGR”

where (i) = (i mod m) + 1.

Using the previously derived projection formula, this gives

(v éo(i)> — by (i)

Vieg=0—=s)v;+sPw,.(v,)=v,—s
+1 @ [ERE

Ao (i)>

where s € (0, 1] is the step-size and a; is the j-th row of the matrix A.

Note: The true projection uses s = 1 but s < 1 may work better if b ¢ R(A).
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4.6: Alternating Projection onto Convex Sets

Let 1, G, ..., Gy, be closed convex subsets in a Hilbert space V. The
alternating projection algorithm finds a point in their intersection. Starting
from any v, € V, the alternating projection algorithm computes

Vipy = (1 —=s)v; +sPc,,(v),

where o (i) = (i mod m) 4+ 1 and s € (0, 1].

Remark

The intersection of convex sets is convex, so C = N, C; is convex set. a
Ideally, alternating projection would give v; — Pc(v,) but it does not :-(

—~
Theorem (Bregman) ‘w

For finite-dimensional V, there is some v € N, C; such that v; — v. : G



4.6: Orthogonal Projection onto Half Spaces

Forwe V,let H={v € V|{v,w) > c} be a closed convex half space.

@ For v € H, the projection satisfies Py(v) = v
o For v ¢ H, the projection satisfies Py(v) = Py, (v) because
the closest point in H achieves the inequality with equality

)= ¢
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It follows that

v if

Pr(v) = { _lvw—c s (

- wl® =

I<
S

)

Thus, alternating projection can find a feasible vector x € R3 satisfying H P
2x1 —x+x3 > —1
x1+2x3 > 2 iy

—Tx1+4x, —6x3 > 1
—3x1 + x2 — 2x3 > 0




@ To continue studying after this video —
o Try the required reading: Course Notes EF 4.6
o Look at the Mini-Project Handout on Alternating Projection

o Also, look at the related problems in Assignments 8 and 9
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