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Unconstrained Linear Optimization

Consider the unconstrained linear
optimization problem:

min
x∈Rn

cT x =

{
0 if c = 0

−∞ otherwise.

Figure shows labeled level sets of
cT x for n = 2 and c = (1, 2).
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Constrained Linear Optimization

Now, consider the constrained lin-
ear optimization problem:

min
x∈D

cT x .

Figure shows D with level sets of
cT x for n = 2 and c = (1, 2).

◦ The optimal point x∗ can be
found using gradient descent from
any initial feasible point.

◦ The negative gradient is reduced
by the constraint normal to give a
feasible descent direction.
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Linear Programs

The optimization of a linear function with arbitrary affine equality and
inequality constraints is called a linear program (LP).

LPs have many equivalent forms because:

x1=0 is the same as (x1 ≤ 0) ∧ (x1 ≥ 0)

x1 ≤ 0 is the same as (x1 + x2 = 0) ∧ (x2 ≥ 0) for slack variable x2

x1 free is the same as x1 = x2 − x3 with slack vars x2 ≥ 0 and x3 ≥ 0

negation swaps: min ↔ max for objective and ≥↔≤ for constraints

Definition
Any LP can be transformed into one of the standard min forms:

minimize cT x

subject to Ax = b

x ⪰ 0

minimize cT x

subject to Ax ⪰ b

x ⪰ 0
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Duality in Linear Programs

Let p∗ be the value of the linear program:

minimize x1 + 2x2

subject to 18x1 + 25x2 ≥ −47

96x1 − 87x2 ≥ 190

− 75x1 + 6x2 ≥ −355

Since (x1, x2) = (4,−4) satisfies the constraints, we know p∗ ≤ 4− 8 = −4.

One can lower bound p∗ by finding a positive linear combination of the
constraints that equals the objective.

Combining the constraints with coefs (λ1, λ2, λ3) =
(

52
661 , 0,

11
1983

)
gives

x1 + 2x2 ≥ − 17
3 ≈ −5.66.

In essence, this is how Lagrangian duality works and implies p∗ ≥ −5.66.
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5.4: Constrained Non-Linear Optimization

Consider a constrained non-linear optimization problem over D ⊆ Rn in the
following standard form. Let fi : D → R and hj : D → R be real functionals
for i = 0, 1, . . . ,m and j = 1, 2, . . . , p. Then, we write

minimize f0(x)

subject to fi (x) ≤ 0, i = 1, 2, . . . ,m

hj(x) = 0, j = 1, 2, . . . , p.

the function f0 is called the objective function

the functions f1, . . . , fm define inequality constraints

the functions h1, . . . , hp define equality constraints

feasible points in F ≜ {x ∈ D | fi (x) ≤ 0, i ∈ [m], hj(x) = 0, j ∈ [p]}
satisfy all constraints and the problem is feasible if F ̸= ∅.
the optimal value is p∗ ≜ inf {f0(x) | x ∈ F}
called convex if D = Rn, all fi convex, and all hj affine: hj(x)=aTj x−bj
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General Example

Contour plot of f0(x1, x2) = (x1 − 1)2 + (x2 − 1)2 − x1x2/2 whose minimum
occurs at (4/3, 4/3) (i.e., center of blue ellipse). The red line shows the
inequality constraint f1(x1, x2) = 1.85 + (x1 − 2.25)2/2− x2 ≤ 0
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Langrangian Formulation

Used to transform from constrained to unconstrained optimization

Definition
For the standard optimization, the Lagrangian L : D × Rm × Rp → R is

L(x , λ, ν) = f0(x) +
m∑
i=1

λi fi (x) +

p∑
j=1

νjhj(x),

where the Lagrange multipliers λi and νj define penalties associated with
violating the i-th inequality and j-th equality constraints, respectively.

Theorem (5.4.7) (Karush-Kuhn-Tucker)

If x∗ is a constrained local optimum that satisfies a constraint qualification
(e.g., mild technical conditions) and A = {i ∈ [m] | fi (x∗) = 0} is the set of
active constraints at x∗, then there exist λ∗ ≥ 0 and ν∗ such that

∇xL(x , λ, ν) = ∇f0(x
∗) +

∑
i∈A

λ∗
i ∇fi (x

∗) +

p∑
j=1

ν∗j ∇hj(x
∗) = 0.
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Langrangian Duality

Definition
The Lagrangian dual function is defined to be

g(λ, ν) ≜ inf
x∈D

L(x , λ, ν) = inf
x∈D

(
f0(x) +

m∑
i=1

λi fi (x) +

p∑
j=1

νjhj(x)

)
.

Lemma
The Lagrangian dual function is concave and the Lagrangian dual problem,

maximize g(λ, ν)

subject to λ ≥ 0,

has a unique max value d∗ ≤ p∗. This property is known as weak duality.

Definition
If d∗ = p∗, then one says that strong duality holds for the problem.
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Weak Duality Proof

Lagrangian dual is concave because pointwise infimum of affine functions:

g(αλ+(1− α)λ′, αν + (1− α)ν′)

= inf
x∈D

L(x , αλ+ (1− α)λ′, αν + (1− α)ν′)

= inf
x∈D

(
αL(x , λ, ν) + (1− α)L(x , λ′, ν′)

)
≥ inf

x∈D
αL(x , λ, ν) + inf

x′∈D
(1− α)L(x ′, λ′, ν′)

= αg(λ, ν) + (1− α)g(λ′, ν′).

Concavity implies unique maximum value d∗ upper bounded by

g(λ, ν) = inf
x∈D

L(x , λ, ν)
(a)

≤ inf
x∈F

L(x , λ, ν)

(b)
= p∗ +

m∑
i=1

λi fi (x)
(c)

≤ p∗,

where (a) is implied by F ⊆ D, (b) follows from hj(x) = 0 for x ∈ F , and (c)
holds by combining fi (x) ≤ 0 for x ∈ F and λi ≥ 0.
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The Lagrangian Dual Problem

While g(λ, ν) can be −∞, this is avoided by defining the dual feasible set:

C ≜ {(λ, ν) ∈ Rm × Rp |λ ⪰ 0, g(λ, ν) > −∞} .

The value of the dual optimization problem is

d∗ = sup
(λ,ν)∈C

g(λ, ν).

If C ̸= ∅, then the dual problem is feasible and, by definition, d∗ > −∞.

Consider the LP defined by

minimize cT x

subject to Ax = b

x ⪰ 0.
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Lagrangian Duality for Linear Programs

For the previous LP, the Lagrangian is given by

L(x , λ, ν) = cT x + νT (b − Ax)− λT x ,

where −λT x corresponds to x ⪰ 0 and the Lagrangian dual function is

g(λ, ν) = inf
x∈D

L(x , λ, ν) =

{
bTν if c − ATν − λ = 0

−∞ otherwise.

Adding the implied constraint and using λ ⪰ 0, one gets the dual LP problem

maximize bTν

subject to ATν ⪯ c .

Strong duality for linear programs says that, if the original LP has an optimal
solution (i.e., it is neither unbounded nor infeasible), then the dual LP has an
optimal solution of the same value.
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Next Steps

To continue studying after this video –

Try the required reading: Course Notes EF 5.4 - 5.4.3

Also, look at the problems in Assignment 9
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