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2.1 Quantifying Information

• How much “information” do the answers to the following questions provide?

(i) Will it rain today in Durham? (two possible answers)

(ii) Will it rain today in Death Valley? (two possible answers)

(iii) What is today’s winning lottery number? (for the Mega Millions Jackpot, 5 white balls
numbered between 1 and 70 are chosen followed by one gold ball numbered between 1
and 25. This gives 25

(
70
5

)
= 302, 575, 350 combinations.)

• The amount of “information” is linked to the number of possible answers. In 1928, Ralph
Hartley gave the following definition:

Hartley Information = log# answers

• Hartley’s measure of information is additive. The number of possible answers for two questions
corresponds to the product of the number of answers for each question. Taking the logarithm
turns the product into a sum.

• Example: Two questions

◦ What is today’s winning lottery number?

log2(302575350) ≈ 28(bits)
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◦ What are the winning lottery numbers for today and tomorrow?

log2(302575350× 302575350) = log2(302575350) + log2(302575350) ≈ 56(bits)

• But Hartley’s information does not distinguish between likely and unlikely answers (e.g. rain
in Durham vs. rain in Death Valley).

• In 1948, Shannon introduced measures of information that depend on the probabilities of the
answers.

2.2 Entropy and Mutual Information

In thermodynamics, the word entropy was coined by German physicist and mathematician Rudolf
Julius Emanuel Clausius in 1865 based on the Greek word trope (τρoπη) which means ”a turn, or
a change”. In the 1870s, Boltzmann formulated the equation

S = kB logW,

for the entropy S in statistical mechanics where kB is the Boltzmann constant and W is the number
of microstates corresponding to the system’s macrostate. As an equation, this is closely related to
Hartley’s measure of information but it is also congruent with the later definition by Shannon.

2.2.1 Entropy

• Let X be discrete random variable with pmf pX(x) for all x in its finite support X . To lighten
notation, we will typically use the shorthand p(x).

• The entropy of X is defined as

H(X) :=
∑
x∈X

p(x) log

(
1

p(x)

)
• Entropy can also be expressed as the expected value of the random variable log 1/p(X),

H(X) = E
[
log

1

p(X)

]
, X ∼ p(x)

• Binary Entropy: If X is a Bernoulli(p) random variable (i.e. P[X = 1] = p and P[X = 0] =
1− p), then its entropy is given by the binary entropy function

hb(p) := p log
1

p
+ (1− p) log

1

1− p
= −p log p− (1− p) log(1− p)

0 0.5 1
0

log(2)

p

hb(p)



ECE 587 / STA 563: Lecture 2 3

◦ The binary entropy function hb(p) is a concave. The maximum is hb(1/2) = log(2) and
has minimum is hb(0) = hb(1) = 0. When the context is clear, the subscript b will be
dropped.

• Example: Two Questions

◦ Will it rain Today in Durham? (say median 104 days of rain per year)

hb

(
104

365

)
≈ 0.862 bits

◦ Will it rain Today in Death Valley? (say median 1 day of rain per year)

hb

(
1

365

)
≈ 0.027 bits

• Fundamental Inequality: For any base b > 0 and x > 0,(
1− 1

x

)
logb(e) ≤ logb(x) ≤ (x− 1) logb(e)

with equalities on both sides if, and only if, x = 1. For the natural log, this simplifies to(
1− 1

x

)
≤ ln(x) ≤ (x− 1)

• Proof of upper bound:

x ∈ (1,∞) =⇒ (x− 1)− ln(x) =

∫ x

1

(
1− 1

u

)
︸ ︷︷ ︸

strictly positive

du > 0

x ∈ (0, 1) =⇒ (x− 1)− ln(x) =

∫ 1

x

(
1

u
− 1

)
︸ ︷︷ ︸

strictly positive

du > 0

• Proof of lower bound:

ln(y) ≤ y − 1 ⇐⇒ 1− y ≤ ln

(
1

y

)
⇐⇒ 1− 1

x
≤ ln(x)

• Theorem: Entropy satisfies
0 ≤ H(X) ≤ log |X |

• Proof of lower bound: Note that p(x) ≤ 1 and so log 1/p(x) ≥ 0.

• Proof of upper bound:∑
x

p(x) log
1

p(x)
=
∑
x

p(x) log

(
|X |

p(x)|X |

)
= log(|X |) +

∑
x

p(x) log

(
1

p(x)|X |

)
≤ log(|X |) +

∑
x

p(x) log(e)

(
1

p(x)|X |
− 1

)
Fundamental Inq.

= log(|X |) + log(e)− log(e)

= log(|X |)
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• The joint entropy of two random variables, X and Y , with joint distribution pXY (x, y)
(written as p(x, y) in shorthand) is simply the entropy of the vector (X,Y )

H(X,Y ) :=
∑
x∈X

∑
y∈Y

p(x, y) log

(
1

p(x, y)

)

If X and Y are independent, then p(x, y) = p(x)p(y) and log(p(x)p(y)) = log p(x) + log p(y)
together imply that H(X,Y ) = H(X) +H(Y ).

• The entropy of an n-dimensional random vector X = (X1, X2, · · · , Xn) with pmf p(x) is
defined as

H(X) = H(X1, X2, · · · , Xn) =
∑
x∈X

p(x) log

(
1

p(x)

)
If X is a vector of iid random variables, then H(X) = nH(X1) by induction.

• Conditional Entropy: The entropy of a random variable Y conditioned on the event {X =
x} is a function of the conditional distribution pY |X(y | x) (written as p(y | x) in shorthand):

H(Y | X = x) :=
∑
y∈Y

p(y | x) log
(

1

p(y | x)

)

Averaging over x gives the conditional entropy of Y given X as a function of p(x, y):

H(Y | X) =
∑
x∈X

p(x)H(Y | X = x) =
∑
x,y

p(x, y) log

(
1

p(y | x)

)

• Warning: Note that H(Y | X) is not a random variable! This is differs from the usual con-
vention for conditioning where, for example, E[Y | X] and Var(X | Y ) are random variables.

• Chain Rule: The joint entropy of X and Y can be decomposed as

H(X,Y ) = H(X) +H(Y | X)

and, more generally, for any random vector X = (X1, . . . , Xn), we have

H(X1, X2, · · · , Xn) =

n∑
i=1

H(Xi | Xi−1, · · · , X1)

• Proof of chain rule:

H(X,Y ) =
∑
x,y

p(x, y) log

(
1

p(x, y)

)
=
∑
x,y

p(x, y) log

(
1

p(x)

1

p(y | x)

)
=
∑
x,y

p(x, y)

[
log

(
1

p(x)

)
+ log

(
1

p(y | x)

)]
= H(X) +H(Y | X)

and the general result follows by induction.
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2.2.2 Mutual Information

• Mutual information is a measure of the amount of information that one random variable
contains about another random variable

I(X;Y ) :=
∑
x∈X

∑
y∈Y

p(x, y) log

(
p(x, y)

p(x)p(y)

)

• Mutual information can be expressed as the amount by which knowledge of X reduces the
entropy of Y :

I(X;Y ) = H(Y )−H(Y | X)

I(X;Y ) = H(X)−H(X | Y )

• Proof:∑
x∈X

∑
y∈Y

p(x, y) log

(
p(x, y)

p(x)p(y)

)
=
∑
x∈X

∑
y∈Y

p(x, y)

[
log

(
1

p(y)

)
− log

(
1

p(y | x)

)]

=
∑
x∈X

∑
y∈Y

p(x, y) log

(
1

p(y)

)
︸ ︷︷ ︸

H(Y )

−
∑
x∈X

∑
y∈Y

p(x, y) log

(
1

p(y | x)

)
︸ ︷︷ ︸

H(Y |X)

• Venn diagram of entropy, conditional entropy, and mutual information

H(X | Y ) H(Y | X)I(X;Y )

H(X)H(X) H(Y )

• The conditional mutual information between X and Y given Z is

I(X;Y | Z) :=
∑
x,y,z

p(x, y, z) log

(
p(x, y | z)

p(x | z)p(y | z)

)

• Using this, we get the chain rule for mutual information:

I(X;Y1, Y2) = I(X;Y1) + I(X;Y2 | Y1)

and more generally

I(X;Y1, Y2, · · · , Yn) =
n∑

i=1

I(X;Yi | Y1, Y2, · · · , Yi−1)
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2.2.3 Example: Testing for a disease

There is a 1% chance I have a certain disease. There exists a test for this disease which is 90%
accurate (i.e. P[test is pos | I have disease] = P[test is neg | I don’t have disease] = 0.9). Let

X =

{
1, I have disease

0, I don’t have disease
and Yi =

{
1, ith test is positive

0, ith test is negative

Assume the the test outcomes Y = (Y1, Y2) are conditionally independent given X.

• The probability mass functions can be computed as

p(x,y) y = (0, 0) y = (0, 1) y = (1, 0) y = (1, 1)

x = 0 0.8019 0.0891 0.0891 0.0099
x = 1 0.0001 0.0009 0.0009 0.0081

and

p(x)

x = 0 0.99
x = 1 0.01

p(y)

y = (0, 0) 0.8020
y = (0, 1) 0.0900
y = (1, 0) 0.0900
y = (1, 1) 0.0180

p(y1)

y1 = 0 0.8920
y1 = 1 0.1080

• The individual entropies are

H(X) = Hb(0.01) ≈ 0.0808

H(Y1) = H(Y2) = Hb(0.1080) ≈ 0.4939

• The conditional entropy of X given Y1 is computed as follows:

H(X|Y1 = 1) = Hb(0.9167) ≈ 0.4137

H(X|Y1 = 0) = Hb(0.0011) ≈ 0.0126

and so

H(X|Y ) = P[Y1 = 1]H(X|Y1 = 1) + P[Y = 0]H(H|Y1 = 0) ≈ 0.0559

• The mutual information is

I(X;Y1) = H(X)−H(X|Y1) ≈ 0.0249

I(X;Y1, Y2) = H(X)−H(X|Y1, Y2) ≈ 0.0469

• The conditional mutual information is

I(X;Y2|Y1) = H(X|Y1)−H(X|Y1, Y2) ≈ 0.0220
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2.2.4 Relative Entropy

• The relative entropy between a distributions p and q is defined by

D(p ∥ q) :=
∑
x∈X

p(x) log

(
p(x)

q(x)

)

This is also known as the Kullback-Leibler divergence. It can be expressed as the expectation
of the expectation of the log likelihood ratio

D(p ∥ q) = E[Λ(X)], X ∼ p, Λ(x) = log

(
p(x)

q(x)

)

• Note that if there exists x such that p(x) > 0 and q(x) = 0, then D(p ∥ q) = ∞.

• Warning: D(p ∥ q) is not a metric since it is not symmetric and it does not satisfy the triangle
inequality.

• The mutual information between X and Y is equal to the relative entropy between pX,Y (x, y)
and pX(x)pY (y),

I(X;Y ) = D(pX,Y (x, y) ∥ pX(x)pY (y))

• Theorem: Relative entropy is nonnegative, i.e D(p ∥ q) ≥ 0. It is equal to zero if and only if
p = q.

• Proof:

−D(p ∥ q) =
∑
x

p(x) log
q(x)

p(x)

≤
∑
x

p(x) log(e)

(
q(x)

p(x)
− 1

)
Fundamental Inq.

= log(e)
∑
x

q(x)− log(e)
∑
x

p(x)

= 0

• Important consequences of the non-negativity of relative entropy:

◦ Mutual information is nonnegative, I(X;Y ) ≥ 0, with equality if an only if X and Y
are independent.

◦ This means that H(X) −H(X|Y ) ≥ 0, and thus conditioning cannot increase en-
tropy,

H(X|Y ) ≤ H(X)

◦ Warning: Although conditioning cannot increase entropy (in expectation), it is possible
that the entropy of X conditioned on an specific event, say {Y = y}, is greater than
H(X), i.e. H(X|Y = y) > H(X).
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2.3 Convexity & Concavity

• A function f(x) is convex over an interval (a, b) ⊆ R if for every x1, x2 ∈ (a, b) and 0 ≤ λ ≤ 1,

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

The function is strictly convex if equality holds only if λ = 0 or λ = 1.

• Illustration of convexity. Let x∗ = λx1 + (1− λ)x2

x1 x2
0 x

f(x)

λx1 +
(1−λ)x2

• Theorem: H(X) is a concave function p(x), i.e.

H(λp1 + (1− λ)p2︸ ︷︷ ︸
p∗

) ≥ λH(p1) + (1− λ)H(p2)

◦ This can be proved using the fundamental inequality (try it yourself)

◦ Here is an alternative proof which uses the fact that conditioning cannot increase entropy.
Let Z be Bernoulli(λ)and let

X ∼

{
p1, Z = 1

p2, Z = 0

Then,
H(X) = H(λp1 + (1− λ)p2)

Since conditioning cannot increase entropy,

H(X) ≥ H(X|Z) = λH(X|Z = 1) + (1− λ)H(X|Z = 0).

Combining the displays completes the proof.

• Jensen’s Inequality: If f is a convex function over an interval I and X is a random variable
with support X ⊂ I then

E[f(X)] ≥ f(E[X])

Moreover, if f is strictly convex, equality occurs if and only if X = E[X] is a constant.

• Example: For any set of positive numbers {xi}ni=1, the geometric mean is no greater than
the arithmetic mean: (

n∏
i=1

xi

)1/n

≤ 1

n

n∑
i

xi

Proof: Let Z be uniformly distributed on {xi} so that P[Z = xi] = 1/n. By Jensen’s
inequality,

log

(
n∏

i=1

xi

)1/n

=
1

n

n∑
i=1

log xi = E[log(Z)] ≤ log(E[Z]) = log

(
1

n

n∑
i

xi

)
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2.4 Data Processing Inequality

• Markov Chain: Random variables X,Y, Z form a Markov chain, denoted

X → Y → Z

if X and Z are independent conditioned on Y .

p(x, z | y) = p(x | y)p(z | y)

◦ alternatively

p(x, y, z) = p(x)p(y, z | x) always true

= p(x)p(y | x)p(z | x, y) always true

= p(x)p(y | x)p(z | y) if Markov chain

◦ Note X → Y → Z implies Z → Y → X

◦ If Z = f(Y ) then X → Y → Z.

• Theorem: (Data Processing Inequality) If X → Y → Z, then

I(X;Y ) ≥ I(X;Z)

• In particular, for any function g defined on Y, we have X → Y → g(Y ) and so

I(X;Y ) ≥ I(X; g(Y )).

No clever manipulation of Y can increase the mutual information!

• Proof: By chain rule, we can expand mutual information two different ways:

I(X;Y,Z) = I(X;Z) + I(X;Y | Z)

= I(X;Y ) + I(X;Z | Y )

Since X and Z are conditionally independent given Y , we have I(X;Z | Y ) = 0. Since
I(X;Y | Z) ≥ 0, we have

I(X;Y ) ≥ I(X;Z)

2.5 Fano’s Inequality

• Suppose we want to estimate a random variable X from an observation Y .

• The probability of error for an estimator X̂ = ϕ(Y ) is

Pe = P
[
X̂ ̸= X

]
• Theorem: (Fano’s Inequality) For any estimator X̂ such that X → Y → X̂,

Hb(Pe) + Pe log(|X |) ≥ H(X | Y )

and thus

Pe ≥
H(X | Y )− log 2

log(|X |)
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• Remark: Fano’s Inequality provides a lower bound on Pe for any possible function of Y !

• Proof of Fano’s inequality:

◦ Let E be a random variable that indicates whether an error has occurred:

E =

{
1, X̂ = X

0, X̂ ̸= X

◦ By the chain rule, the entropy of (E,X) given X̂ can be expanded two different ways

H(E,X|X̂) = H(X | X̂) +H(E | X, X̂)︸ ︷︷ ︸
=0

= H(E | X̂)︸ ︷︷ ︸
≤Hb(Pe)

+H(X | E, X̂)︸ ︷︷ ︸
≤Pe log |X |

◦ H(X | X̂) ≥ H(X | Y ) by the data processing inequality,

◦ H(E | X, X̂) = 0 because E is a deterministic function of X and X̂.

◦ H(E | X̂) ≤ H(E) = Hb(Pe) since conditioning cannot increase entropy

◦ Furthermore,

H(X|E, X̂) = P[E = 1]H(X|X̂, E = 1)︸ ︷︷ ︸
=0

+P[E = 0]H(X|X̂, E = 0)︸ ︷︷ ︸
≤log |X |

◦ Putting everything together proves the desire result.

2.6 Summary of Basic Inequalities

• Jensen’s inequality:

◦ If f is a convex function then

E[f(X)] ≥ f(E[X])

◦ if f is a concave function then

E[f(X)] ≤ f(E[X])

• Data Processing Inequality: If X → Y → Z form a Markov chain, then

I(X;Y ) ≥ I(X;Z)

• Fano’s Inequality: If X → Y → X̂ forms a Markov chain, then

P
[
X ̸= X̂

]
≥ H(X|Y )− log 2

log(|X |)
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2.7 Axiomatic Derivation of Mutual Information [Optional]

This section is based on lecture notes from Toby Berger.

• Let X, Y denote discrete random variables with respective alphabets X and Y.
(Assume |X | < ∞ and |Y| < ∞.)

• Let i(x, y) be the amount of information about event {X = x} conveyed by learning {Y = y}

• Let i(x, y|z) be the amount of information about event {X = x} conveyed by learning {Y = y}
conditioned on the event {Z = z}

• Consider the four postulates:

(A) Bayesianness: i(x, y) depends only on p(x, y), i.e.

i(x, y) = f(α, β)
∣∣∣ α=p(x)
β=p(x|y)

for some function f : [0, 1]2 → R.

(B) Smoothness: partial derivatives of f(·, ·) exist.

f1(α, β) =
∂f(α, β)

∂α
, f2(α, β) =

∂f(α, β)

∂β

(C) successive revelation: Let y = (w, z). Then

i(x, y) = i(x,w) + i(x, z|w)

where i(x,w) = f(p(x), p(x|w)) and i(x, z|w) = f(p(x|w), p(x|z, w)) and so the function
f(·, ·) must obey

f(α, γ) = f(α, β) + f(β, γ), 0 ≤ α, β, γ ≤ 1

(D) Additivity: If (X,Y ) and (U, V ) are independent, i.e. p(x, y, u, v) = p(x, y)p(u, v),
then

i((x, u), (y, v)) = i(x, y) + i(u, v)

where i(x, u) = f(p(x, u), p(x, u|y, v)) = f(p(x)p(u), p(x|y)p(u|v)) and so the function
f(·, ·) must obey

f(αγ, βδ) = f(α, β) + f(γ, δ) 0 ≤ α, β, γ, δ ≤ 1

• Theorem: The function

i(x, y) = log

(
p(x, y)

p(x)p(y)

)
is the is the only function which satisfies our four postulates above.
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2.7.1 Proof of uniqueness of i(x, y)

• Because of B, we can apply ∂
∂β to left and right sides of C

0 = f2(α, β) + f1(β, γ) =⇒ f2(α, β) = −f1(β, γ)

Thus f2(α, β) must be a function only of β, say g′(β). Integrating w.r.t. β gives∫
f2(α, β)dβ = f(α, β) + c(α)

i.e. ∫
g′(β)dβ = g(β) = f(α, β) + c(α)

and so
f(α, β) = g(β)− c(α)

• Put this back into C

f(α, γ) = g(γ)− c(α) = g(β)− c(α) + g(γ)− c(β)

⇒ c(β) = g(β)

⇒ f(α, β) = g(β)− g(α)

• Next, write D in terms of g(·)

g(βδ)− g(αγ) = g(β)− g(α) + g(δ)− g(γ)

Take derivative w.r.t δ of both sides to get

βg′(βδ) = g′(δ)

Set δ = 1/2 (could be δ = 1 but scared to try)

βg′(β/2) = g′(1/2) = K, a constant

and so
g′(β/2) = K/β

Take the integral of both sides with respect to β to get

g(β/2) = K ln(β) + C

So
g(x) = K ln(2x) + C

or
g(x) = K ln(x) + C̃

Thus

f(α, β) = g(β)− g(α) = K ln(β)−K ln(α) = K ln(β/α)

• By A,

i(x, y) = K ln

(
p(x|y)
p(x)

)
Choosing K is equivalent to choosing the log base:

◦ K = 1 corresponds to measuring information in nats

◦ K = log2(e) corresponds to measuring information in bits
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