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Computation of Channel Capacity and 
Rate-Distortion Functions 

RICHARD E. BLAHUT, MEMBER, IEEE 

A&r&-By defining mutual information as a maximum over an 
appropriate space, channel capacities can be defined as double maxima 
and rate-distortion functions as double minima. This approach yields 
valuable new insights regarding the computation of channel capacities 
and rate-distortion functions. In particular, it suggests a simple algo- 
rithm for computing channel capacity that consists of a mapping from 
the set of channel input probability vectors into itself such that the 
sequence of probability vectors generated by successive applications of 
the mapping converges to the vector that achieves the capacity of the 
given channel. Analogous algorithms then are provided for computing 
ram-distortion functions and constrained channel capacities. The algo- 
rithms apply both to discrete and to continuous alphabet channels or 
sources. In addition, a formalization of the theory of channel capacity 
in the presence of constraints is included. Among the examples is the 
calculation of close upper and lower bounds to the rate-distortion function 
of a binary symmetric Markov source. 

I. INTRODUCTION 

C HANNEL capacity, a fundamental concept in in- 
formation theory, was introduced by Shannon [l] 

to specify the asymptotic lim it on the maximum rate at 
which information can be conveyed reliably over a channel. 
The rate-distortion function, also introduced by Shannon 
[l], [2], serves an analogous function in the area of data 
compression coding for sources. These two basic concepts 
are discussed in detail in Gallager [3], Jelinek [4], and 
Berger [ 51. 

Evaluation of a channel capacity C or a rate-distortion 
function R(D) involves the solution of a convex program- 
m ing problem. In most cases analytic solutions cannot be 
found. Programmed computer search techniques have 
proved to be tedious even for small alphabet sizes and to 
be impractical for the larger alphabet sizes. 

This paper reformulates the problems of computing C 
and R(D) from a new and slightly broader perspective, 
based on the observation that average mutual information 
Z(p,Q) can be written in either of the two following forms: 

Z(P,Q) = max xj%PjQklj log & 
P Pj  

Z(P,Q) = min XjxkPjQklj 1% 
!2!!lj 

>q qk ’ 

where P is an arbitrary transition matrix from the channel 
output alphabet to the channel input alphabet and q is an 
arbitrary probability distribution on the output alphabet. 
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Arimoto [ 131 used the first of the preceding expressions in 
an investigation of C, thereby obtaining Theorems 1 and 3 
as well as Corollary 2 of this paper.’ 

This approach places the existing theory of C and R(D) 
in a more transparent setting and suggests several new 
results. In particular, the approach in question results in 
algorithms for determining C and R(D) by means of map- 
pings from probability vectors to probability vectors. Under 
the first of these mappings, the sequence of average mutual 
informations associated with the successive channel input 
probabiiity vectors increases monotonically to C. The other 
mapping produces a sequence of (information, distortion) 
pairs (Z,D) that converges to a point on the R(D) curve; the 
convergence is monotonic in the (Z,O) plane in the direction 
perpendicular to the slope of R(D) at the lim iting point. 

II. CAPACITY OF UNCONSTRAINED DISCRETE CHANNELS 

For the purposes of information theory, a discrete channel 
is described by a probability transition matrix Q  = [Q,lj] 
where Qklj is the probability of receiving the kth output 
letter given that the jth input letter was transmitted. In 
general, Q  is not square. The capacity of the channel is 
defined as 

C = max Z(p,Q) = max ~j~kPjQk,j log Qklj 
PEP” PEP” XjPjQklj ’ 

where 

P” = {peR”:pj 2 OVj; Cjpj = l} 

is the set of all probability distributions on the channel 
input, and Z(p,Q) is known as the mutual information 
between the channel input and channel output. The choice 
of logarithm base affects C only by a scale factor. It is 
usually convenient in applications to take base 2 so that C 
is expressed in terms of bits-per-channel use; for theoretical 
work, natural logs are more convenient. 

The utility of the concept of capacity is widely discussed 
in the literature. Intuitively, the capacity of a channel 
expresses the maximum rate at which information can be 
reliably conveyed by the channel. Any coding scheme that 
superficially appears to operate at a rate higher than C will 
cause enough data to be lost because of uncorrectable 
channel errors so that the actual information rate is not to 
be greater than C. 

Our concern in this section is with the calculation of 
capacity. The approach is to broaden the definition of 

1 The author is indebted to the editor for pointing out the prior 
existence of the Arimoto paper. 
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capacity to a  larger maximization problem, which allows 
greater flexibility. This is done in the following theorem. 
Here, and  in the sequel, maxima or m inima are understood 
to be  over the appropriate space of probability vectors or 
probability transition matrices (unless the doma in is 
explicitly stated). 

Theorem 1: Suppose the channel  transition matrix Q  is 
n x m. For any m x n transition matrix P, let 

J(P,Q,P) = Cj&PjQklj log F  
3 

Then the following is true. 

a> C = max max J(p,Q,P). 
P P 

b) For fixed p, J(p,Q,P) is maximized by 

pjlk = PjQklj . 
ZjPjQklj 

c) For fixed P, J(p,Q,P) is maximized by 

exp (&&xl j log pjlk> 

‘j = Cj exp (&Qklj log Pjlk) * 

Proof: 
a) It suffices to show that 

Z(p,Q) = max ~j~kPjQk,j log % . 
P J 

Let 

and  

so that 

Then 

Z(P,Q) 

p* = pjeklj- 
Jik 

‘jPjQk,j 

!?k = XjPjQklj 

Z(p,Q) = ~j&qkP;,k log “. 
pi 

~j’kPjQk\j 1% - ‘J* = ~jCkqkP,~k log $ 
pj jlk 

2 cjxkqkpj*lk - xjjckqkpjlk 

= 0 

with equality’ iff Pjlk = P,Tk. 
b) This fact is an  immediate consequence of the 

equality condit ion of part a). 
c) If for some k, Pjlk = 0, then pj should be  set 

equal  to zero in order to maximize J as it is. Such a  j can 
be  deleted from the sum and dropped from further con- 
sideration. J(p,Q,P) can now be  maximized over p by 
temporari ly ignoring the constraint pi 2 0, and  using a  
Lagrange mu ltiplier to constrain 

‘The inequality used here is the wel l-known log x 2  1  - (l/x) 
with equality iff x  =  1. This inequality will be  used in the sequel  

Corollary 3: A vector p E P” achieves capacity for the 
channel  with transition matrix Q  if and  only if there exists 

without further comment.  a number  C such that 

Izjpj = 1. 

fh + qxjpj - 1) = 0  
pj 1  

Hence, 
-log pj - 1  +  EkQklj log Pj[k + A = 0. 

Pj = 
exp &dc?klj log Pjlk 

cj exp %Qklj  log Pjlk ’ 

where 2  is selected so that 
xjpj = 1. 

Notice that this pi is always positive so that the inequality 
constraint pi 2 0  is not operative. 

The  following corollary states a  familiar condit ion on  the 
solution of the basic problem. It is stated here both because 
it follows immediately from Theorem 1  and because the 
particular form that arises motivates the remainder of this 
section. 

Corollary 1: If p achieves capacity, then 

pj exp %kQklj 1% ~ 
Pj = 

Fg 
j j W  

xjpj exp %Qklj 1% 
QI. ’ k J 

‘jPjQklj 

Proof: This is just the simultaneous satisfaction of 
parts b) and  c) of the theorem. 

The  form of the equat ion in Corollary 1  is meant  to 
suggest that any p can be  used in the r ight-hand side in 
order to generate a  new p on the left. Under appropriate 
conditions, this new p gives a  better estimate of capacity as 
proved in Theorem 3. 

Corollary 2 : 

C = maX log ~j eXp (~kkQk,j log Pj\k)a 
P  

Proof: This follows from substituting part c) into 
part a). 

The  following specialization of the Kuhn-Tucker theorem 
will be  used in the proof of Theorem 3. 

Theorem 2: A vector p E P” achieves capacity for the 
channel  with transition matrix Q  if and  only if there exists 
a  number  C such that 

&Qklj log Q I. k  ' 
CjPjQklj 

= c, Pj + O 

&Qklj log 
Q I. k J 

EjPjQklj 
I c, pj = 0. 

For a  proof, see Ga llager or Jelinek. The  condit ions are 
sometimes called the Kuhn-Tucker conditions. The  number  
C is then the channel  capacity. It proves convenient to 
restate Theorem 2  as follows. 
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exP (-~C) exp EkQklj log Q I. k J 
ZjPjQklj 

= 1, Pj f O  

exP C-C) exP &Qklj lOi3 QI. <1 
cjPIiklj - ’ 

pj = 0. 

Theorem 3: For any p E P", let 

Cj(P) = ev %Qklj log &, . 
J kJ 

Then, if p” is any element of P" with all components strictly 
positive, the sequence of probability vectors defined by 

is such that Z(p’,Q) + C as r -+ 00. 
Proof: Given any p”, we increase J(p,Q,P) by using 

Theorem l-b) to pick Pjlk and then, with Pjlk fixed, using 
Theorem l-c) to pick a new p vector. The composition of 
these two operations is just the operation that appears in 
the theorem. Hence, the algorithm in question increases 
mutual information. It also follows easily that the mutual 
information is strictly increasing unless Corollary 1 is 
satisfied by p’, which in turn implies satisfaction of the first 
condition of Corollary 3. Thus, Z(p,Q) is stable only for 
those p for which the first of the Kuhn-Tucker conditions 
is satisfied. We shall show that I’ can converge only to 
values of Z(p,Q) that are stable in this way, and furthermore, 
that convergence is impossible unless the second of the 
Kuhn-Tucker conditions also is satisfied at the lim it point. 

Since Z(p’,Q) is increasing and is bounded by C, I’ 
must converge to some number I” I C. Let V(pr) = 
Z(p*‘l,Q) - Z(pr,Q). Then V(p”) -+ 0 since I’ converges. 
By the Bolzano-Weierstrass Theorem, the sequence (p’) 
has a lim it point p* and a subsequence (p’) converging to 
p*. Therefore, by continuity of V, V(p”) + V(p*). But 
V(p’) + 0. Therefore, V(p*) = 0 and hence p* satisfies 
the first of the Kuhn-Tucker conditions. 

Now suppose p* does not achieve capacity. Then by the 
sufficiency condition of Corollary 3, 

c.* -J>l 
Cjpj*Cj* 

for some j, where cj” = cj(p*). 
Since some subsequence {p’“} converges to p*, then by 

continuity {cj’“} converges to cj” for all j. But, 

where 

pi’ = pjo h bj” 
n=O 

bj” = Gin 
CjpjnCjn 

and {bj”} has a subsequence converging to a number 
greater than 1. Therefore, the sequence of partial products 
does not converge and pi’ does not converge, which is a 
contradiction. 

Therefore, p* a\:hieves capacity and Z” = C. This 
completes the proof of the theorem. 
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INPUT 

P. = pp 

‘I I 

I 
L 

= log(~jpjcj) 

I u = log\ (my cj) 

I c = IL 
c. 

Pd 3 ,=pj- 

/ 

C.P.C. 3 3 I 

+ 
HALT 

Fig. 1. Capacity algorithm. 

The application of Theorem 3 to the computation of 
channel capacity is illustrated in Fig. 1. The termination is 
based on the fact that for any probability assignment p the 
following holds 

4 

b 

where 

C 2 log ~jpjCj 

C I log (max Cj), 
i 

Cj = eXp xkQklj log 
Q 1. 

k J . 

‘jPjQk[j 

Part a) is a simple consequence of Corollary 2 and part b) 
appears as a problem in Gallager [3, p. 5241. 

III. RATE-DISTORTION FUNCTIONS FOR DISCRETE SOURCES 

A discrete-alphabet memoryless source, which produces 
the jth letter with probability pj, is to be reproduced in 
terms of a second alphabet that need not be of the same 
size, although often it is identical to the source alphabet. 
A distortion matrix with elements pjk specifies the distortion 
associated with reproducing the jth source letter by the kth 
reproducing letter (0 < j 5 m  - 1, 0 I k I it - 1). With- 
out loss of generality, it can be assumed that for each source 
letter, there is at least one reproducing letter such that the 
resulting distortion equals zero. 

Rate-distortion theory is concerned with the average 
amount of information about the source output that must 
be preserved by any data compression scheme such that 
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the reproduction can be  subsequent ly generated from the 
compressed data with average distortion less than or equal  
to some specified D. The rate-distortion function is def ined 
as 

Proof: 
a) It suffices to prove that Z(p,Q) = m in, F(p,Q,q). 

xj%PjQkIj log GU - I(P,Q) = ~j&PjQklj log g/Q 
qk qk 

- ~j&cPjQklj log 
Q I. 

kJ 
CjPjQklj 

R(D) = m in Cj&pjQkIj log Qkli = m in I(p,Q), 
QEQD EjPjQklj QeQo 

where 

Q, = {Q E R” X R”: EkQklj = 1, Qklj 2  0, d(Q) I D} 

and  

The  definition of rate-distortion functions is justified by 
source compression theorems, which are widely reported 
[3]-[5]. Intuitively, if average distortion D is specified, 
then any compression must retain an  average of at least 
R(D) bits per source letter, and  conversely, compression to 
a  level arbitrarily close to R(D) is possible by appropriate 
selection of the compression scheme. 

The  investigation of rate-distortion functions is usually 
carried out parametrically in terms of a  parameter s, which 
is introduced as a  Lagrange mu ltiplier. This parameter 
turns out to be  equal  to the slope of the rate-distortion 
curve at the point it parameterizes [5]. These facts will be  
assumed in the following and the discussion will begin 
with the following parametric expression for R(D). 

R(D) = Illill ~jCkpjQk,j log 
Q I’ 

Q xjP~~k, j 

where 

- 
@jxkPjQkIjPjk - D, ) 

D = ~j&d’jQ?~jPjk 
and Q* is the point that achieves the above m inimum. 

The  m inimization is now over all transition matrices Q . 
The  value of D, however, is no  longer an  input to the 
computation; rather, a  value of s is specified whereupon 
both D and R(D) are generated for the point on  the R(D) 
curve that has slope S. 

Theorem 4: Let 

P(p Q  4) = ~jCkPjQk)j IOg “I’ - SCjCkPjQkIjPjk. 3 9  
qk 

Then 
a> 

R(D) = SD + m in m in F(p,Q,q), 
4  Q  

where 
D = CJkPjQ?,jPjk 

and Q* achieves the above m inimum. 
b) For fixed Qklj, F(p,Q,q) is m inimized by 

qk = CjPjQklj. 

c) For fixed q, F(p,Q,q) is m inimized by 

Qklj = qk exp (SPjk) 

xkqk exp csPjk) ’ 

= ~j%PjQklj log Cj PjQklj 
qk 

2 CjCkPjQkIj - xkqk = 0 

with equality if and  only if 

qk = CjPjQklj. 

b) This follows immediately from the equality con- 
dition of part a). 

c) Temporari ly ignore the inequality constraint 
Qklj 2  0  and introduce a  Lagrange mu ltiplier to constrain 
CkQklj = I- 

Pj log Qklj - Pj log qk + Pj - sPjPjk + Aj = 0. 

Hence 

Qklj = qk exp tsPjk) 

ckqk exp csPjk) ’ 

where Aj has been selected as that 

XkQklj = 1. 
Notice that this is always nonnegat ive so that the inequality 
constraint Qklj 2  0  is satisfied. 

A familiar condit ion on  the m inimizing Q  is the following. 
Corollary 4: If Q  achieves a  point on  the R(D) curve 

parameterized by s, then 

Qklj = qk exp bP& 

xkqk exp csPjk) ’ 

where 

qk = EjPjQklj = qkcjPj 
exp (sPjk) 

ckqk exp csPjk) 

Proof: This is just the simultaneous satisfaction of 
parts b) and  c). The  first equat ion of Corollary 4  defines a  
transition matrix Q(q) given any q. This will form the basis 
for the algorithm of Theorem 6. 

Corollary 5: In terms of the parameter s, 

R(f),) = SD, + m in [ -Cjpj log &$I, exp (spjk)] 
4 

D, = Cjpj qk* exp csPjk) p ,k 

xkqk* exp (sPjk) ’ ’ 

where qk* achieves R(D,). 
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Proof: This follows immediately by substituting part c) 
of the theorem into part a). 

Corollary 5  expresses the substance of a  theorem by 
Haskell [6]. The  following variation is also useful. 

Corollary 6: 

WI = sepy~o,  min [SD - cjPj 1% ckqk exp (SPjk)I* 
9 4 

Proof: Let Q  achieve R(D) and let D, be the average 
distortion value parameterized by s. Then  

R(D) - m in [so - Ejpj log C, exp (sPjk)qk 
4  

= R(D) - SD - m in [SD, - cjpj log c,q, Eip (Spjk)] 
4  

+ SD, 

= R(D) - SD - R(D,) + SD, 

Fig. 2. I-D plane. 

Qklj exp (sPjk) Qklj = qk exp (sPjk) - mill ~j~kPjQk,j log 
Q  XjPjQklj ’ zkqk exp csPjk) 

2 0. is that q satisfy 

The  content of this corollary can be  expressed in a  Ck = Cjpj exp tsPjk) 
1, qk f o 

pleasant form if ckqk exp (sPjk) = 

xj exp csPjk> 
ck = cjpj fw (SPjk) < 1 

ckqk exp (sPjk) - ’ 

qk = 0. 
is independent of k. W e  digress further to illustrate this in 
a  special case. For a  proof, see Berger or Ga llager. 

Corollary 7: Suppose the alphabet consists of binary The  ma jor theorem of this section is the following. 
n-tuples and the distortion is Hamming distance. Then Theorem 6: Let the parameter s < 0  be  given. Let q” be 

R(D) = max m in [D log p + (1 - 0) log (1 - p) 
any probability vector such that all components are non- 

Per.O.31 4  zero. Let qr+l be given in terms of qr by. 
+ cjPj log xkAjk(P)qkl 3 

P.Ax 
where Ajk(p) is the n-tuple transition matrix of a  binary 

q;+l = qk’cj JJ) 
%xAjkqk 

symmetric channel  of transition probability p. In particular, 
if where A, = exp (spjk). Then, 

CjAjk-‘(D)pj 2 0 Vk D(QW>) -+ Ds, as r -+ co 

then Z(p>QW)> + R(4), asr+ co, 

R(D) = D log D + (1 - D) log (1 - D) - Cjpj logpj. where (D,,R(D,)) is a  point on  the R(D) curve parameterized 

Proof: Let the superscript n denote the block length 
and notice that the matrix exp (spjkn) can be  expressed 
inductively by 

exp (Spjk”) = 
exp (spJkl) ev 6) ew (sP;;') 

exp 6) exp hf/i ') exp (spJ; ‘) * 

Define p by exp (s) = p/(p - 1). The  result then follows 
from the previous corollary. 

The  analog of Theorem 2  is the following. 
Theorem 5: A necessary and sufficient condit ion on  an  

output probability assignment q to yield a  point on  the 
R(D) curve via the transition matrix 

by s. 
Proof: Theorem 4  can be  used to provide the first part 

of the proof. The  following proof will, however, bring out 
the geometrical role of the parameter s. 

For any probability vector q, recall that Q(q) is given by 

Qklj(4) = e  a  
k ‘k k 

Consider the I-D plane of F ig. 2. For any probability 
vector q, let V(q) = Z(q) - SD(q), where I(q) = I(p,Q(q)). 
Then V(q) is the value at which a  line of slope s through the 
point (Z(q),D(q)) intercepts the Z  axis. The  point in the 
R(D) curve parameterized by s has a  tangent that is parallel 
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to every such line of slope s, and  lies beneath them. W e  will 
show that the sequential values V(q*) are strictly decreasing 
unless (I(q),D(q)) is a  point on  the R(D) curve in which 
case V(q) is stationary. 

Let 

Then  
Q r+l = Q(q’). 

Q;;’ = &f&$ 

k jk k 

and 

Then 
4;+l = CjpjQ$? 

V W  ‘1 
= ~j~kpjQ;~’ IOg a  - s~j~kpjQ;;lpjk 

4kr+l 

=  ~jC,pjQ~iti' IOg Ajkqk 
d+lxkAjkqk 

- ~j~kPjQf;ifi’ log Ajk 

= -EjZkpjQ;;l log CkAjkq; + CjCkpjQ;;’ log qkl 
4;+l 

= -~jCkPjQ;rj log CkAjkqkr + ~kq;‘l IOg qkr. 
4kr+l 

Now let 

so that 
W(q’) = V(q’) - v(q’+l) 

w(qr) =  ~~~~~~~~~~ log QhjCkAjkqkr +  ckq;+l log 4;+' 
qk'Ajk 6?kr 

2 Ej&PjQLlj L 1  - qk’Ajk 1  
QL$kAjkqk 

+ &q;+l [l - $1  = 0  + 0  = 0  

with strict inequality unless qk* = qk*+l Vk. 
Thus, V(q*) is nonincreasing and is strictly decreasing 

unless 

which is just the first condit ion of Theorem 5. Since V(q’) 
is decreasing and is bounded below by R(D) - SD, it must 
converge to some number  V”. W e  now argue as in the 
proof of Theorem 3  to show that V” = R(D) - SD. That 
is, by the Bolzano-Weierstrass Theorem, the sequence qr 
has a  lim it point q* and by continuity of V(q) this lim it 
point satisfies 

qk* 
A jk 

= qk*Cjpj ~’ 

&Ajkqk* 

In addition, this lim it point must satisfy the second of the 

1  1  \ \ 
= c p. = c p. A A 

'k j] - 'k j] - jk jk 
CqA CqA k k k k jk jk 

'k 'k = qkck = qkck 

T T 
u u = ckqk log Ck = ckqk log Ck 

max max 
TL = TL = k k 109 Ck 109 Ck 

1- 1- 

A  
jk 'k 

*klj=, A  
k jk'k 

D=C.C p.Q 
I k I klj 'jk 

R(D) = SD- Cipi loq Ek Aik qk- Zk qk log 

1 
HALT 

Fig. 3. Rate-distortion algorithm. 

Kuhn-Tucker condit ions since otherwise convergence could 
not occur. This completes the proof of the theorem. 

The  application of this theorem to the numerical com- 
putation of rate-distortion functions is illustrated in F ig. 3. 
In order to estimate the accuracy after any finite number  of 
steps, the following theorem is emp loyed. 

Theorem 7: Let the parameter s I 0  be  given and let 
A,, = exp (Spjk). Suppose q is any output probability Vector 

and let 
Ajk Ck = cjpj-----. 

CkAjkqk 

Then at the point 
Ajkqk D = CjEkpj ~ 

CkAjkqk 
Pjk 

we have 
a> 

R(D) 5 SD - cjpj log &Ajkqk - &q&k bg ck 

b) 
R(D) 2 SD - Cjpj log CkAjkqk - max log ck 

k 
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C(E) = maX 
P 

EjCkPjQklj log $& - S(Cjpjej - E)] , 
J J k’ 

Proof: 
a> 

Qklj = Ajkqk 

%cAjkqk 

where 
E = Cjpj*ej 

is a transition matrix giving distortion D. Hence and p* achieves the above maximum. 
Q kj R(D) 5 I(P,Q) = xj%pjQk[j 1% ZjPjbk,j 

The maximization is now over all input probability vec- 
tors p. The generalization of Theorem 1 is the following. 

Theorem 8: Let 

= xj%PjQkIj 1% Ajkqk 
@kAjkqk@jPjQk\j) 

= SD - Cjpj log CkAjkqk - ~kqkck log ck. Then 

b) A lower bound theorem for rate-distortion func- a> 

tions states that C(E) = SE + max max J(p,Q,P), 
p P 

R(D) r SD + I;jpj log ~j, where 
where lj is any vector such that E = Xpj*ej 

~jpj~jAjk I I 

(see Berger or Gallager). Let 

C 
Ajk 

mar. = max Zjpj ~ 
k CkAjkqk 

and let 

and p* achieves the above maximum. 
b) For fixed p, J(p,Q,P) is maximized by 

pjlk = PjQkfj . 
CjPjQklj 

c) For fixed P, J(p,Q,P) is maximized by 

Then 

and 

lj = (Cmax xkAjkqk)-l. 

CjpjAjAjk s 1 

exp @kQk\j 1% Pjlk - sej) 

‘j = zj eXp (&Qklj log Pjlk - Sej) ’ 

Proof: The proof is essentially the same as that of 
Theorem 1. 

R(D) 2 SD - ~jpj log CkAjkqk - max log ck. 
k 

IV. CAPACITY OF CONSTRAINED DISCRETE CHANNELS 

Many channels have an associated expense of using each 
channel letter. A common example is the power associated 
with each output symbol. A constrained discrete channel is 
a discrete channel with the requirement that the average 
expense be less than or equal to some specified number E. 

Although capacity at an expense E has been investigated 
in the past, and occasionally the function C(E) has been 
determined, there does not seem to have been developed 
any formalization of the theory of C(E) functions. This 
formalization is straightforward and is provided in the 
Appendix. 

pj exp 
( 

Q . CkQklj log A- - 
Pj F 

CjPjQklj 
sej 

> . 

Cjpj exp 
( 

Q klj ~kQk,j log ___ - 
XjPjQklj 

sej 
) 

Proof: This is just the simultaneous satisfaction of 
parts b) and c). 

Corollary 9: A parametric solution in terms of s is 

C(EJ = SE, + max [log Cj exp (~kQk,j log Pjlk - sej)] 
P 

A vector ej is specified, where ej is called the expense of 
using thejth input letter. The capacity at expense E is then 
defined as 

E, = Cjej 
exp (ZkQklj log PTlk - sej) 

Cj exp (CkQklj log P$k - sej) ’ 

where P* achieves the maximum. 

Corollary 8: If p achieves capacity at expense E, then for 
some s E [O,co] 

Qk j C(E) = Ez Cj~kPjQkjj log zjPjhk,j = max Z(p,Q), Corollary 10 : 
PEPE 

where 
PE = {p E P”: Xjpjej I E}. 

C(E) = min max 
ss[O,mI P 

’ [SE + log ~j eXp (EkQk/j log Pjlk - sej)]. 

As discussed in the Appendix, this can be rewritten Proof: Let p* achieve C(E) and let Es be the expense 
parametrically as parameterized by s. Then 
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P<= Pq 
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c. 

3 
= exp 

c 

'k 'k/j log -- se. 

c.P.Q 
1 

I I klj 

IL 
= log 

( ‘jpjcj ) 

5 
= log 

( 

max 

j ‘j> 

I 

HALT 

Fig. 4. Constrained capacity algorithm. 

C(E) - max [SE + log Cj exp (CkQklj log Pjlk - sej)] 
P 

= C(E) - SE - max [SE, + log Cj exp (&Qklj log Pjlk 
P 

- sej)] + SE, 

= C(E) - SE + C(E,) + SE, 

= Cjk Pj*Qkl j log Qklj exp C-d 
Cj Pj*Qklj 

- max CjkPjQkIj log Q  klj exp (-sej> 

P  Cj PjQklj 

I 0. 

Theorem 9: A vector p E P” achieves capacity at some 
expense Es parameterized by s for the channel  with transition 
matrix Q  and expense vector e  if and  only if there exists a  
number  V such that 

Qklj %Qklj log ~ - 
Cj PjQk/j 

sej = V, Pj #  O  

&Qklj log Q/clj 
CjPjQklj - 

sej I I/, pj = 0. 

Proof: The proof is lengthy but only trivially different 
from the proof of Theorem 2. The  reader can readily mod ify 
any publ ished proof of Theorem 2. 

Theorem 10: Let s E [O,co] be  given, and  for any p E P” 
let 

461  

Cj(p) = eXp ~kQk,j log $% - Sej) . 
J j kJ 

Then if p” is any element of P” with all components strictly 
positive, the sequence of probability vectors def ined by 

r+1 _  
Pj _  pj’ Cjr 

ZjPj’Cj 
is such that 

I(P’,Q> --f WA as Y -+ co 

e(p? -, E,, asr-, co, 

where Es is the expense of the point parameterized by s. 
Proof: Let 

V(p) = I(p) - se(p) = Cjpj log cj 

and  show that V(p) is increasing. Let 

W(p) = v(P’+l> - % ‘I 

=  CjPj’ Cjr 
.zjpj’cj’ 

log c;” - zip,* log Ci’ 

= r~r [Ci~jpi*pj'C; log Cs+ ' 

jj~ 

- CiCjpilpj'Cj' log Ci'] 

1 

[ 

~ipi'Cjpj'cj' log ,;+1 
CjPj'Cjr Ci' 1 

2 1 - zip,' 2 
c;+ 1 

with equality iff 

cS+l/q’ = 1  V i, j 3 pi # 0 # pj. 

W e  now substitute the defining equat ion for cj and  apply 
Jensen’s inequality. 

CjPi'Qklj 

2 1 - CjPj’CkQklj exp log CjPg+'Qk/j 
CjPJQklj 

Therefore 

W(p’) 2  1  - CkCjpS”Qklj = 0. 

Thus, V(p) is increasing; moreover, V(p) is strictly in- 
creasing unless 

,;+I = q’, Vi,j 3 pi # 0 # pj, 

which condit ion reduces to the first condit ion of Theorem 9. 
W e  now argue as in the proof of Theorem 3  to show that 
V(p) converges to C(E) - SE. That is, by the Bolzano- 
W e ierstrass Theorem, {p*} has a  lim it point and  by con- 
tinuity it must satisfy the above Kuhn-Tucker condition. 
In addition, this lim it point must satisfy the second of the 
Kuhn-Tucker condit ions since otherwise convergence could 
not occur. 

A flow diagram for the algorithm of Theorem 10 is shown 
in F ig. 4. 
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The following theorem provides a termination for this 
algorithm. 

Theorem II: Let the parameter s be given. Suppose p is 
any probability vector, and let 

cj = exp CkQklj log Qklj - sej . 
Cj PjQk/j 

-I ‘hen, at the point 
E = CjpjCj 

b) 

C(E) 2 SE + log ~jpjCj 

C(E) 5 SE + log max Cj. 

densities, then the earlier discussion can be m imicked in 
order to provide the analogous theory for continuous 
probability distributions. 

We shall not develop this continuous distribution theory 
in detail here, both because this would be largely a repetition 
of the discrete case and because a detailed treatment is 
available elsewhere [12]. However, several comments will 
be made to indicate the necessary modifications. 

Suppose for any input x, Q(~/x) is a probability density 
function describing the channel. Capacity is defined as 

C(E) = sup 
P(X) E PE ss P(x)QW) log s Qc;x;zx, dx dx dy, 

where 

Proof. 
a) p is a probability vector giving expense E. Hence PE = (p: R + RI 

s 
p(x) dx = 1, p(x) 2 0, 

C(E) 2 I(p,Q) = CjPjCkQklj log -~~ 
xj PjQklj 

= Cjpj log cj + sej = SE + Cjpj log Cj. 

b) Suppose p* achieves capacity at expense param- 
eterized by s. Then by Corollary 10, 

C(E) I SE + log Ejpj* exp CkQklj log Qklj 
xjpj*Qklj - sej * 

Hence 

C(E) - (SE + max Cj) 
j 

2 log xjpj* eXp ~kQk,j log 
Qklj 

Cj Pj*Qklj - 
Sej - max log cj 

j 

I log CjPj* exp EkQklj log Qklj - log cj 
Cjpj*Qklj - seJ 

. 

We now use 

QkIj log cj + sej = CkQk,j log ~ 
Cj PjQklj 

so that 

C(E) - (SE + max Cj) 
i 

I log CjPj* eXp ~kQk,j log Cj PjQk1.i 
xj Pj*Qklj 

I log Xjpj*CkQklj exp log ‘jPjQklj 
Cj Pj*Qklj 

(Jensen’s inequality) 
= log ~kCjPjQk,j = 0. 

f 
p(x)e(x) dx 5 E . 

Rate-distortion functions are similarly defined as an infimum 
of a mutual information over a space of conditional prob- 
ability distributions. 

The use of the supremum and infimum suggest that, in 
general, these are not actually achieved by any continuous 
probability distribution (e.g., convergence is to a discrete 
distribution) so that Kuhn-Tucker-like conditions on the 
extremizing probability distribution may be vacuously true. 
However, these conditions can nonetheless be stated and 
are useful for recognizing points that do not achieve the 
solution. 

The search for extremizing probability distributions is 
now a problem in the calculus of variations with con- 
straints, but otherwise closely follows the discrete case. The 
continuous versions of Theorems 6 and 10 can be stated. 
However, since the extremum m ight not be achieved, the 
proof cannot assert the existence of a lim iting distribution. 
The proof must be modified to show that any point below 
the supremum (respectively above the infimum) cannot be 
a lim it point. 

VI. MULTIPLE CONSTRAINTS 

Some channels may have more than one constraint 
specified simultaneously. The most common example is a 
continuous channel that is constrained both in peak power 
and in average power. It is straightforward to generalize 
capacity-expense theory to handle this situation. The basic 
definition for the discrete channel is as follows 

C(E’,E’) = max CjCkpjQkIj log Qklj 
PEPE’E2 xj PjQklj ’ 

V. CONTINUOUS CHANNEL AND SOURCE ALPHABETS where 

The discussion of the preceding sections has been con- 
fined to discrete channels and sources. If we turn attention 

pEIEl = {p E P”: Cjpjejl 5 E’ and Xjpjej2 < E’}. 

to channels or sources that are described by probability The generalization of Theorem 10 is the following. 
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Upper  and  lower bounds  for the rate-distortion function of a  binary symmetric Markov source JJ = 0.25. 

Theorem 13: Let (sl ,sJ E [O,co] x [O,co] be  given and 
for any p E P” let 

Cj(p) = exp CkQklj log &, - srejr - S,t?j 2, . e”(f) + ESz2, asr-t co, 

J  kiJ where C(ES1’,ES,2) is a  point on  the capacity-expense surface 
Then, ifp’ is any element of P” with all components strictly parameterized by (S1~S2). 
positive, the sequence of probability vectors def ined by This theorem is offered without proof. 

The  analogous situation for rate-distortion functions can 

pg+’ = Pi’ -Cjr be  considered. Thus, it may be  desired that two (or more) 
~Pj'C j’ separate definitions of distortion be  satisfied [8]. One  situa- 

tion where this would occur is if the reproduced data is to 
is such that be made  available to two different users with different 
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Fig. 6. Rate-distortion function,of binary symmetric source with erasure option. 

applications in mind. The appropriate definition is as The generalization of Theorem 6 is the following. 
follows Theorem 14: Let s1 I 0, s2 I 0  be given. Let q” be any 

R(D’,D2) = min ~j~kPjQk~j log Qklj output probability vector such that all components are non- 

QEQo’D’ CjPjQklj ’ 
zero. Let qr+l be given in terms of qr by 

where Pj Ajk 
Q 

qk 
r+l = qk*xj 

n,nz = {Q: d’(Q) I D’, d2(Q) I D’} CkAjkqk 

d’(Q) = xjCkPjQkIjpjkl where 

d’(Q) = C,JkPjQk\jPjk2* Ajk = exp (SlL’jk’ + s2Pjk2). 
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Fig, 7. Capaci ty-expense function for binary asymmetr ic channel  with expense equal  to percent of ones  transmitted. 
False-alarm probabil ity =  0.001. 

Then VII. EXAMPLES 

d’(q’) -+ D,,‘, as Y -+ co A long-standing problem in information theory is the 

d2(qr) --f Dsz2, as r -i cc determination of the rate-distortion function for a binary 

z(q*) --f Wh1A2>~ 
symmetric Markov source [7]-[9]. Gray [lo] has recently 

asr + co. 

This theorem is offered without proof. 
solved this problem for a range of small D, but the problem 
for arbitrary D is unsolved. The rate-distortion function 
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for a source with memory is defined as 

R(D) = lim inf R,(D), 

where R,(D) is the rate-distortion function of a source 
whose alphabet is the set of words of length n with prob- 
abilities assigned to these words by the Markov source 
starting in an equiprobable state. 

The algorithm of Theorem 6 has been used to calculate 
R,,(D) as shown in Fig. 5. Also shown is a lower bound to 
R(D) based on a recent theorem of Wyner and Ziv [ll]. 
This theorem states that 

R(D) 2 R,(D) + H - ; H( p,), 

where His the source entropy rate and H(p,) is the entropy 
of the set of n-words. For the binary symmetric Markov 
case. this becomes 

R(D) 2 R,(D) - ‘, [P log P + (1 - p) log (1 - p) + 1-J 

where p is the transition probability. 
Tighter bounds can be obtained by calculating R,(D) for 

n > 10. However, the tightness is improving as l/n while 
the computations increase exponentially. Computation to 
an accuracy of lo- 3 bits of all R,(D) curves from y1 = 2 to 
n = 10 by taking 9 points per curve required 12 min of 
execution time on the IBM 360 model 65. 

The second example is a multiple-distortion problem. A 
memoryless source produces equiprobable i.i.d. outputs 
from a binary alphabet. In order to facilitate compression, 
a user agrees to allow a certain percentage D, of erasures. 
Of the unerased data, he requires at most a percentage D, 
be in error. Thus. the relevant distortion matrices are 

pjk’ = 
0 1 0 

pjk’ = 1 0 0 . 
I I 

The numerical solution of the problem is shown in Fig. 6. 
These curves were prepared by computing R(D1,D2) for 
1600 different values of (Dl,D’) to an accuracy of 10m3 
bits. This required 83 s of computation time on an IBM 360 
model 65. 

The final example postulates the existence of a noisy 
binary channel, which transmits a one by the presence of a 
pulse and a zero by the absence of a pulse. The receiver is 
characterized by a probability of detection and by a prob- 
ability of false alarm. The only design option available to 
the user is to conserve power by minimizing the percentage 
of ones used in a message. Fig. 7 shows the capacity-expense 
functions. These were computed by generating 300 points 
to an accuracy of 10m3 bits, which required 5 s of computa- 
tion time on an IBM 360 model 65. 
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APPENDIX 

CAPACITY-EXPENSE FUNCTIONS 

Dejinifion: An expense schedule for a channel Q is a vector e 
whose jth component ej is called the expense of using the jth 
channel input letter. 

Definition: The capacity at expense E is 

Qklj C(E) = max XjkpjQklj log ~ = n-m Z(p,Q), 
PGPB CjPjQklj PEPE 

where 
PE = {p E P”: Xjpjej I E}. 

This is well definedif PE is nonempty since PE is compact and 
hence Z(p,Q) attains its maximum on PE. 

Remark: Without loss of generality, we can assume that 
Emin = 0 and C(E) exists for all E 2 Emin. This is equivalent to 
assuming min ej = 0, which can be obtained by adding an 
appropriate constant to all ej, thereby performing a simple 
horizontal translation of the C(E) graph. 

Remark: If E’ > E then PEr c PE and hence C(E) is a 
monotonic nondecreasing function. 

Theorem: C(E) is a convex upward function. That is, given 
E’, E”, and 1 E [O,l], then C(IE’ + (1 - L)E”) 2 IC(E’) + 
(1 - I)C(E”). 

Proof: Let p’,p” achieve (E’,C(E’)),(E”,C(E”)), respec- 
tively. Let p* = Ap’ + Ap”, where 1 = (1 - A). Then 

e(p*) = Xj(Apj’ + lpj”)ej = 1E’ + XE“. 

Hencep* E PnEs,.~Ej# so that 

C(IE’ + XE”) 2 Z(p*,Q) 

C(IE’ + IE”) - AC(E’) - XC(E”) 

2 Z(p*,Q) - AZ(p’,Q) - ;2Z(p”,Q) 

= 0. 

Corollary: C(E) is continuous except possibly at E = 0. 
Proof: C(E) is convex and monotonic. 

Corollary: 
lim C(E) = C, 

E-+Elll.X 

where C is the channel capacity, 

E max = zjpj*ej 

and p* achieves C. 
Proof: C(E) is continuous. 

Corollary: C(E) is strictly increasing in E < E,,,,,. 
Proof: C(E) is convex. 

Corollary: If E I: E,,,,, then (E,C(E)) is achieved by some P 
such that 

e(P) = Cjpjej = E. 

Proof: C(E) is strictly increasing if E < E,,,,,. 

Theorem: If p’,p” both achieve the point (E,C(E)), then so 
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does  

Proof: 

p = lpzp’ -!- 2pp”, va E [O,l]. 

e(p) = Zj(Lpj’ + jpj”)ej = 1E + /iE = E. 

Therefore, p E PE so that 

C(E) 2 I(p,Q) 2 LI(p’,Q) + XI(p”,Q) = C(E). 

Theorem: Suppose 0  I E 5  E,,,,,. Then C(E) can be  ex- 
pressed parametrically in terms of a  parameter s E [O,co] by  

C(E,) = SE, + v, 

ES = Zjpj*ej, 

where 

Qklj V’5 = max CjpjQklj log ~ - szjPjej 
PEP xj PjQk 1 j 

and  p* achieves this maximum. 
Proof: Any such point (E,,C(E,)) is clearly on  the C(E) 

curve. It is only necessary to prove that every point on  the C(E) 
curve can be  so generated.  

Since C(E) is concave,  it has  a  derivative everywhere except 
possibly at a  countable set of points and  it has  a  left and  a  right 
derivative everywhere.  Given the point E, let s be  the left deriv- 
ative of C(E) at E. Then for any  E’, by convexity of C(E), 

C(E’) 2 C(E) + s(E’ - E). 

Now, the parameter s generates some point on  C(E). Let 
(E,,C(E,)) be  this point. Then 

Qklj C(E,) = max CjCkpjQklj log ~ - sZjpjej + SE, 
PEP CjPjQklj 

2 max Qw xjxk PjQklj log ~ 
p~f~:Z~p~e~=E) x.t PjQk I j 

- sZjpjej + sE,~ 
I 

C(ES) L C(E) - sE + SE,. 

Therefore, C(&) =  C(E) + s(E, - E) so that either E = ES 
or they are connected by a  straight line of s lope s. In the latter 
case, the convexity of C(E) assures that every intermediate 
point on  this straight line is also a  point of C(E) and  it is straight- 
forward to verify that every point on  this connect ing line satisfies 
the parametr ic equat ion of the theorem. 

Corollary: If C(E) is strictly concave in the ne ighborhood of 
some point, then the value of s that generates this point generates 
only this point. 

Corollary: If .rl,.rZ are the left and  right derivatives at a  point 
E, then s generates (E,C(E)) if and  only ifs E [s,,s,]. 
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Orthogonal Functionals of the Poisson Process 
HISANAO OGURA 

Abstrucl-In analogy to the orthogonal  functionals of the Brownian- 
motion process developed by W iener, Ito, and  others, a  theory of the 
orthogonal  functionals of the Poisson process is presented making use 
of the concept  of multivariate orthogonal  polynomials. Following a  brief 
discussion of Charlier polynomials of a  single variable, multivariate 
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Charlier polynomials are introduced. An explicit representat ion as well 
as  an  orthogonali ty property are given. A multiple stochastic integral of 
a  multivariate function with respect to the Poisson process, called the 
multiple Poisson-Wiener integral, is def ined using the multivariate 
Charlier polynomials. A multiple Poisson-Wiener integral, which gives 
a  polynomial functional of the Poisson process, is orthogonal  to any  
other of different degree.  Several explicit forms are given for the sake of 
application. It is shown that any  nonl inear functional of the Poisson 
process with finite var iance can be  developed in terms of these orthogonal  
functionals, corresponding to the Cameron-Mart in theorem in the case 


