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CODING FFOR TWO NOISY CHANNELS*

PeTErR ElLlas

Department of Electrical Engincering and Research Laboratory of Electronics,
Meassackusetls Institute of Technology, Cambridge, Massachusetts

INTRODUCTION

SuaNNON's original demonstration!s? that information could be transmitted
over a noisy channel at a positive rate with an arbitrarily small probability of
error at the receiver suggested that there was a relationship between permis-
sible delay or block size, transmission rate, channel capacity and error
probability. Rice?, investigating a special case, got an indication of exponen-
tial decrease of error probability with increasing coding delay. FeinsTen?
showed an exponential decrease in an upper bound to error probability in a
more general case, for transmission rates near to channel capacity. The
present paper derives much more detailed results for two particular channels
with binary input. It is shown that random coding, as initially discussed by
SHANNON!, is substantially as good as anything else for a considerable range
of signalling rates near to channel capacity, but that for very small rates
appreciably better codes exist.

For the binary symmetric noisy channel, Hamming?, GiLeerTS, ProTrin?
and Goray® have constructed a variety of error-correcting and detecting
codes and found some of the basic properties of the channel, LaemMEL?,
MuLLer!? and Reep!! have also constructed specific codes and classes of
codes. The first constructive coding procedure for error-free transmission at
a non-zero rate was discovered recently by the author'®. All of this work has
been concerned primarily with systematic, or check-symbol, codes. The
question arises whether this convenient restriction reduces the permissible
signalling rate or increases the error probability appreciably over what is
obtainable with non-systematic coding. It is shown in reference 16 that for
the two channels considered here it does not do so. Check-symbol codes are
as good as any other kind in terms of both maximum transmission rate and
error probability.

Some of the results presented here for the binary symmetric channel were
discussed by the author in an earlier paper’®. The overlap is not complete
for this channel, however, and all of the results for the erasure channel are
newf.

* This work was supported in part by the Signal Corps, the Office of Scientific Research,
Air Rescarch and Development Command, and the Office of Naval Rescarch, of the
United States.

- T This paper is an abbreviated version of reference 16, which is the full paper as distributed
at the Symposium. All prools are omitted here but will be found in reference 16,
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CODING FOR TWO NOISY CHANNELS

THE CHANNELS

The coding problems that we shall discuss are illustrated in Figure 1. The
first problem is to match the output of an ideal binary message source to a
binary symmetric noisy channel (BSC). The second problem is to match the
output of the same source to a channel which occasionally erases one of the
transmitted symbols: this channel will be called a binary crasure channel

(BEC). X g
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Figure 1. (a) Binary symmetric channel; {#) binary erasure channel.

The message source generates a sequence of zeros and ones. These two
symbols are selected with equal probability, and successive selections are
statistically independent.

The BSC accepts binary symbols as an input and produces binary symbols
as an output. Each input symbol has a probability p < 3 of being received
in error, and a probability ¢ =1 — p of being received as transmitted.
The transmission error probability  is a constant, independent of the value
of the symbol being transmitted: the channel is as likely to turn a one into a
zero as to turn a zero into a one. The channel, in effect, adds a noise
sequence to the input sequence to produce the output sequence; the noise
is a random sequence of zeros and ones, synchronous with the signal sequence,
in which the ones have probability p and the addition is addition modulo
two of cach signal digit to the corresponding noise digit (1+1= 040=0;
0+1=14+0=1)

The BEC accepts binary symbols as an input and produces ternary
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PETER ELIAS

symbols as an output. Each input symbol has probability # << 1 of being
; erased, and a probability § = | — p of being received as transmitted. The

iu{:-c ;I;h: erasure pm'E{nbliiit?' P is indcpﬂndtnt_uf the value of t_h:: transmitted symbol.
S An erasure is indicated to the receiver by the rccewcc_l symbol X. IE" the
o Gl receiver receives a zero or a one, it knows that it has received the transmitted
- channel M ; - N :
reoec gregrrrop7?
goo7 earoroeor o
ag7re reor g 0007
. o677 ;
| ar o0
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867170 d
Moo :
7000
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: F A
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Figure 2. A codebook,
& symbol correctly, but reception of an X gives the receiver no information
about the transmitted symbol.

If the message source were connected directly to either of the channels, a
fraction of the received symbols would be in error or erased; a coding

E}ESE' two ; procedure for reducing the effect of the errors is illustrated in Figures 1 and 2.
llons are The output of the message source is segmented into consecutive blocks of
: length M. There are 2% such blocks, and they are selected by the source with
5‘.‘-’m_b015 ! equal probability. To each input block of A binary symbols is assigned an
I‘CCFWEd output block of N binary symbols, N > M.
ismitted. The input sequences of length M are the messages to be sent; the output
he _Val‘-m : sequences of length N are the transmitted signals; and the correspondence
neinto a : between input and output blocks is the code used. The use of the word
a noise : “code’ is justified by Figure 2, where the correspondence between input and -
‘he noise output blocks is given in the form of a codebook. On the left is a column of
squence, ; the 2¥ possible messages, listed as M-digit binary numbers in numerical
modulo order. Following each message is the N-digit binary sequence which is the
FO=0; corresponding signal, so that the codebook has 2™ entries in all,
The system in operation is shown in Figure I. The source selects a message
ternary : that is coded into a transmitted signal and sent over the noisy channel. The

63




CODING FOR TWO NOISY CHANNELS

received block of ¥ (the received, or noisy, signal) differs from the transmitted

signal in about pV of its N symbol values. The decoder receives this noisy

signal and reproduces one of the 2 possible messages, with an average
probability P, of making an incorrect choice. In order to minimize P, the
decoder must operate so that the message selected, when a given noisy
signal is received, is the one corresponding to the signal most likely to have
been transmitted.

For the BSC, the signal most likely to have been transmitted is the one
that differs from the received signal in the fewest symbol positions. This
follows from the fact that a particular group of j errors has probability
p’¢¥ 1 of being introduced by the channel. This probability decreases as j
increases, for any p << 4. If the received sequence differs from two or more
signals in the same (minimal} number of places, the decoding decision is
ambiguous and an error may be made. Ifthe noise has altered half or more of
the positions in which the transmitted signal differs from some other per-
missible signal, then the decoding decision will be incorrect or ambiguous,
and an error may be made. :

For the BEC, the signal most likely to have been transmitted is the one
that agrees with all of the received symbols that have not been erased. T
there is more than one such signal, the decoding process is ambiguous and
may lead to an error. In later computation it is more convenient to discuss
the probability @ of an ambiguity or error in the decoding operation than to
discuss the error probability P, itself. The probability of ambiguity is greater
than the probability of error, since some guesses in ambiguous situations
will be correct. However for ambiguity to exist there must be at least two
cquiprobable alternatives. Thus we have the inequalities

Q=P =1Q

For given M and N the probability of ambiguity Q depends critically on
the set of signal sequences that are used in the code. This may be discussed
most easily in a geometric language introduced by Hamving®. Each signal
sequence is taken as a point or vector in an N-dimensional space, with
co-ordinates equal to the values (zero or one) of its NV binary symbols. The
distance between two points is defined as the number of co-ordinates in
which they differ. Then the probability @ will be large if all of the signal
sequences used are clustered together in a small region of the space: it will
be small if they are far from one another.

Shannon’s second ceding theorem, as specially referred to these two
channels, states an asymptotic relation between Af, N, and P, or Q for a
suitable selection of signal sequences. A number of definitions of channel
and code parameters are necessary before stating some stronger versions of
this theorem for the binary symmetric and binary erasure channels.

CODE AND CHANNEL PARAMETERS
Given a BSC, with transmission error probability p < %, and g =1 — b
its capacity C = C(p) can be defined in terms of the entropy H(p) of the
F, ¢ distribution.
H{p) = —plog p — glog q, and naa ()
Clp) =1 — H(p) > ac (@)

64

For &

(Equa
numbers
cquatior

Either
type. T
code) w:
single pz
is deterr
of Figure

and the

In or
probabil
it is com
to define

For th
while fo

Ris d
possible,
4 Noisy ¢
transmit:
correctec
informat
in each
an equiv
of possib

where th

The max

a result ¢




asmitted
his noisy
average
rc P, the
¢n noisy
r to have

the one
15. This
sbability
:ASEs as J
or maore
«cision is
-more of
her per-
biguous,

the one
ased. If
wous and
5 discuss
than to
3 greater
tuations
EasL two

cally on
liscussed
h signal
ze, with
ils. The
nates in
¢ signal
: it will

ese two
¢ for a
channel
sions of

ST =12,
} of the

)

Lo slZ
o sl

PETER ELIAS
For a BEC with erasure probability p < 1, the capacity C(p) is given by
C'{p}:l—p=g 2o ool )

(Equations that refer to both the BSC and the BEC have unprimed
numbers. Equations that refer to the BSC alone have a single prime on the

~ equation number; those that refer to the BEC alone have a double prime.)

Either of the parameters, C or p, completely defines a channel of either
type. To define completely a code of the type shown in Figure 2 (a block
code) we need a specification of all its signal points, The most important
single parameter of the code, however, is the number of signal points, which
is determined by the rate R of transmission, in bits per symbol. In terms
of Figure 2, we have

R= ¥ s ool
and the total number of signal points in the code is 2¥ = ¥R,

In order to transmit over a noisy channel with arbitrarily small error
probability, R must be iess than C. Just as C may be defined in terms of p,
it is convenient to introduce an auxiliary probability p; which may be used
to define R. This probability is selected to make Np, an integer:

k= Npy sec o)
For the BSC, it is required that
| p<m<i (59
while for the BEC
p<p <l 5 %)

R is defined in terms of p; (or £;) as the maximum rate at which it is
possible, by the rules of information theory, to transmit information over
a noisy channel and correct all sets of k; or fewer errors in each block of N
transmitted symbols. For the BSC, if all sets of ¥, or fewer errors are to be
corrected by the decoding procedure, then the code could transmit error-free
information over a binary channel in which all such sets of errors occurred
in each block of N with equal probability., Such a channel would have
an equivocation per block NV equal to the logarithm of the number, Vlky),
of possible error patterns of k; or less out of N, given by :

kN
Valky) = ‘?;(;) R (G)
where the terms in the sum are the binomial coefficients
N Nt
The maximum permissible rate R, in bits per symbol, is given by
R=1— (1N} log V,(k) SePRN( 80

a result obtained by Hammmvg by a slightly different argument®,
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For the BEC the argument is simpler. Ifk; erasures are made, only N — Iy
unerased symbols remain, and only 2¥~% messages can possibly be dis-
tinguished without ambiguity. Thus the rate R is just
N —k

N

R= =1—p =q o oelT)

Shannon’s original version of the second coding theorem states that, for
fixed R < C, block codes exist where the ambiguity probability @, may be
made arbitrarily small by choosing N ‘sufficiently large. Feinstein
strengthened this result by showing that @, may be bounded above by a
decreasing exponential in N. We shall show that for the BSC and the BEC,
@, is bounded above and below by decreasing exponentials in N, and that
for a considerable range of channel and code parameters the two exponents
agree. :

gl';:u define this range, two more parameters p; and g.u are needed.

These are defined for the BSC by
b g ssectlp?
Derit Ps_ + '?*, Herit Pl _|_ E'}
and for the BEC by

i b tgdd,
Lerit = I—:i'_"—'ﬁ ) Ferit = m

LOWER BOUND

First we need an ambiguity probability @, which is smaller than the
smallest attainable ambiguity probability for block coding, @,. For the
BSC, with transmission rate R given by equation &', the ambiguity probability
will be minimized if every possible received sequence differs from one (and
only one) of the 2¥% signal sequences in £, or fewer positions. This follows
from the fact that the probability p?g¥—7 of a particular set of j errors is a
monotonic decreasing function of j for p << 4. This minimum ambiguity
probability @, is just the tail of the binomial distribution—the probability
of more than k; errors in transmission. Thus

Qopt = ﬁ (I'f?) oo olEh)

j-klﬂ'l J
For the BEC, with transmission rate R given by equation 8, the same

equation (equation 9) holds. For, if more than k; errors occur, it is not
possible to distirguish all of the 2¥® messages, and ambiguity must arise.

UPPER EBOUND

An upper bound to the ambiguity probability @, is computed by Shannon’s
original procedure of random coding, here carried to a quantitative con-
clusion. ‘Random coding’ means that the 2¥% signal sequences are selected
from the 2% possibilities independently at random, with equal probabilities
assigned to each possible sequence. @, the average of the ambiguity
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PETER ELIAS

probabilities of all such codes, is certainly larger than the ambiguity prob-
ability of the best of them!. This quantity is evaluated in reference 16,

The results may be summarized in a theérém. Since the exponential
nature of the dependence of @, on N is of interest, results will also be given
for asymptotic bounds obtained by using Stirling’s approximation for all the
factorials in the binomial coefficients, and for the exponents
. log @

Al Sy

of the assorted kinds of @'s.

Thegrem I. (a) For fixed p and p,, with P <py < pep, the ambiguity
probability @, for the best block code of transmission rate R given by equation
8 is bounded as a function of N for the BSC by

= 'w-"t‘-‘;. Py N@:L( A ﬁlﬁ :
Q< Quw <pg Npl)[pl—p+l—(?fﬁ)(ﬁﬂ?ﬂ“}

AL

SN0)

& N
o ;:;,.#_ NP Ng( ) 71
=N e P By e e

In terms of rate R (equation 8'), and capacity C (equation 2), we have the
asymptotic bounds

- bq ] ] —N[— =
o4 == . F=N[—C+ B+(p —plloglgip)]
Sehsievs Lal — T T= Gl '
=2 Qope &~ {Ef%ﬁ'} 9 =N[—C+ R+(p,— pllog(afp)] S (1125)

and the exponent -

ay=lim 2L (Gt tim R+ (4, — p) log (alp)]

= —[—H(py) + H(p) + (p, — p) log afp] ....(13)

The corresponding results for the BEC give the same lower bound:

b N, 1
= Wy g;‘rp. X ( . ){ - = )
Q<@ g NpJloy—o 1 — (gfp)(2a/240)

N
> > o2 Ml(? )_f.ll__ 1)1
s i e g il

The asymptotic bounds are

1| P 1
{2 {Qﬂ.\r { 2 Iﬁ;lr ;'{ 1 }
e e e T
v 9 =N[H{p)—H(p))+(p, —pllogla/p)] 5 oo oI

= Qant A (Eﬂﬂﬁﬁx}_}(‘ﬂ'—) 2 =NH(p) = Hip) +(p, —p)loala/p))
1

The exponent is unchanged :

I
AR [ getis

lim =2 = —[H(p) — H(p) + (5, — p) log (glp)] ....(13")
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(6) For p; > pet» the lower bound is unchanged. For the BSC the
upper bound has the exponent

Aﬂ-‘l" —_— ]im ]f"gj;&; = _[Ctﬂlr = lim R) + Am-“_
N=rm N—m
= —(H(py) — H(perit)) + Aenie e e (14)

and for the BEC _ 3
Ay = —(Ceit — R) + Ao = — (7 — Pent) + Acrie nocollkE])

where A is Ayo(py) evaluated at py; = puir, and Cyyy is C(p) at p = peny
This theorem is proved in reference 16. '
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Figure 3{a). BSC exponent.

GEOMETRICAL INTERFPRETATION
The most dramatic implications of the theorem concern the nature of the
exponential decrease in probability of ambiguity. €, and @, the upper
and lower bounds to §,, have the same exponent for g << fr.y, and their
ratio approaches a constant for large N. Furthermore, as p;, — p the
asymptotic ratio of 3, to @y approaches unity. This means that random
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PETER ELIAS

coding is as good as anything else for transmission rates near to channel
capacity. In fact, for any p; << fi.y, random coding is very nearly as good
as anything else. For any e > 0 at sufficiently large values of N, ot Tor
coding in blocks of length N will be greater than Q,, for coding in blocks of
length (1 4 €)N.

The behaviour of the exponents of Q;; 'and.@,, have a simple geometric
interpretation. The expression [H(p) — H(p,) -+ (p, — ) log (g/p)] is the
difference between the change in H, between points p and p,, and the change
in a tangent to H at p:

dH(p)/dp = log (q/p) - (13)

This geometry is illustrated in Figure 3. Figure 3a shows the BSC exponent.
The capacity curve C(p) = 1 — H(p) is plotted against p. For given g, a
tangent is drawn to this curve at (p, C(g)). For any p, < peny, the length of
a perpendicular dropped from the capacity curve to the tangent line is the
exponent of the ambiguity probability, for either optimum or random
coding. For p; > poy;, the optimum coding exponent is still the length of a
perpendicular from the capacity curve to the tangent line, but the average
coding exponent is srnaller, and its perpendicular terminates on a curve
lying above the tangent line. For p; — 1, the values of 4, and 4_,; approach
the limits shown in the illustration. It also can be deduced from results given
by Protxin? and Grieert® that A, approaches a limit different from either
of these. For p; near 1, and thus for signalling rates very near to channel
capacity, the best block code is definitely better than average coding but not
so good as optimum coding. (The two dotted lines diverging from this point
and bounding the region of uncertainty in the illustration are derived in
Appendix 2 of reference 16 from Plotkin and Gilbert’s work.)
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Figure 3(8). BEC exponent, R 1
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Figure 35 shows the same sort of plot for the BEC. In this case the capacity
curve is a straight line. The exponent is still the length of a perpendicular
dropped from the curve 1 — H(p) to the tangent line for optimum coding, to
the curve which diverges from it at p;, for random coding, and to somewhere
in the region of uncertainty, for best possible block coding. The limiting
values of the exponents as p; — 1 are shown on the right.

One conclusion which may be drawn from these figures is that it only pays
to be clever in designing a code when g, > p..; that is, when transmission
1s at rates appreciably below channel capacity. Another conclusion follows
from the fact that, for both channels, A, approaches 34, as C approaches 0.
This means that for transmission at very low rates, in order to obtain a given
ambiguity probability with the best possible block code, it is necessary to use
a block length N2, where N is the length which would suffice if a noiseless
feedback channel were available and optimum coding could be used.

CONSTRUCTION

Theorem 1 shows that for signalling in blocks of length N at rates R near to
the channel capacity, random coding is essentially as good as optimum
coding. Optimum coding requires a noiseless feedback channel. Plotkin’s
results show this for the BSC for p = 1, and it seems likely to hold for any
£ = 0for sufficiently large N. For the BEC, we shall show that no block code
can be optimum in its behaviour for any fixed p > 0 and sufficiently large N.
If the feedback channel is not available, then random coding is the only
quasi-constructive procedure suggested by the theorem for taking advantage
of the exponential decrease of @, with N.

Random coding has been criticized on the basis of lack of uniformity,
Since only average error probabilities are computed, there is no guarantee
that any one code, or any one signal sequence in a code, will be near to the
average in its behaviour; but, SnaNNON has pointed out!:M if the average of 2
set of positive quantities is €, then at most (1/n) of them can be as large as ne.
Thus most codes are good codes and, in a good vode, by throwing away the
worst half of the signal sequences and thus reducing R by only (1/N) bits per
symbol, the signal sequences may be made uniformly good.

There is one far more practical objection, however. There are 2¥® entries
in a codebook and N binary digits in cach entry. This codebook must be
stored at transmitter and receiver, which is impractical for values of N and
R large enough to be useful in greatly reducing the ambiguous detection
probability @,. Furthermore, the receiver must compare each incoming
sequence with every entry in the codebook, which takes a great deal of
computing time. It is, of course, possible to devise coding schemes that are
systematic, and have simple schemes giving the signal sequence in terms of
the message sequence, and the message sequence in terms of the cortupted
sequencell,!%, However, the only scheme of this kind that has been shown to
transmit information at a positive rate does not attain channel capacityl®,
nor does its error probability decrease as rapidly as it should. This is reason-
able enough, for the codes deseribable by a simple set of rules are a very
small fraction of all codes, when N is large, and the fact that the average
behaviour of all codes is good is no guarantee of the behaviour of this very

small subset.
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PETER ELIAS

There is an alternative procedure. This is to find a small subset of codes
that have a simple encoding and decoding procedure and are typical of the
set of all possible codes, in the sense that they have the same average prob-
ability of error. The random selection of one of these codes will provide a
practical solution to the problem, although it may not be as satisfying as the

- actual construction of a single coding scheme known to be well behaved.

This programme is carried out below for the BEC, and a random coding
scheme with algebraic (rather than codebook) encoding and decoding
procedures is shown to behave as well as the unrestricted random coding we
have been discussing. Similar results for the BSC have been given elsewhere'®.

RANDOM PARITY-CHECK CODING FOR THE BEG

In the codes to be constructed, the first (N — k;) symbols in the signal
sequence are simply the message symbols. The remaining k; symbols are

Tror
Teor|e
g1 10|7 Coded eigral
T 7Te7 arro7r7
Messoge Check
eora)e digits aiigits
gerzr)r
aroe)r
Noizy signal
780 X TE 00X @X7X717
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¢ 1|7 ox; + 743 = 7
EA - T O+ 0x, =7
Sefeudion ,{'1=.'.". &y =T .
Jecoded message
Trar

Figure 4. Parity-check coding and decoding.

check symbols, cach of which completes a parity-check, like those used by
Hammmc®, on a random selection of about half of the first (N — &)
symbols. The procedure is illustrated in Figure 4. The binary digits in the
(N — k;) X k, coefficient matrix are selected independently at random, with
ones and zeros equiprobable. The N — £, message digits are written above
the matrix. Denoting the matrix elements by a,;, the message digits by m;,
and the check digits by ¢;, where 1 < i<k, 1 <j< N — k, the check

digits are determined by e
3y = Z’lal-jmj s oo ol(E])
i=1
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where the summation is modulo two. Thus ¢, is unity if there is an odd
number of columns in which the message and the ith matrix row both have
ones present, and is zero otherwise. The block of N digits is transmitted
by sending the message digits reading from left to right across the top of
the matrix, and then the check digits reading down the right side.

In transmission over the channel, suppose that j erasures occur, j; of them
among the message digits, and j, among the check digits. The receiver has
available the coefficient matrix || a;;|| used by the transmitter.. Writing the
received sequence above and to the right of the matrix, in the order used by
the transmitter, the receiver selects those columns of the matrix which corre-
spond to erased message digits and those rows which correspond to unerased
check digits. These are written as the coefficient matrix of a set of equations,
with the erased message digit values as the unknowns. The right-hand terms
d; of this set of equations are formed by adding to each unerased check
digit ¢; the sum of a;m;,

o=k p,
d; = ¢; +j21 g4, ----(177)

where the addition and summation are again modulo two, the prime indicates
summation only over unerased m;, and the equation holds for unerased €

This gives a set of », — j, equations, modulo two, in the j, unknown
message digit values. If these equations are soluble, the erased symbols are
determined. If j, > &, — f,, so that j =j; 4 j, > k,, then there are not
enough equations to determine the missing digit values, and there will be
ambiguity in the decoding. If k; — j, > j, then there are more equations
than unknowns. No question of over-determination arises, since one solution
of the set of equations certainly exists: the digits present in the original
message, which have been erased by the channel. There will be no ambiguity
if j < k;, then, unless fewer than j; of the equations are linearly independent.
Thus the probability Q.. (j) of ambiguous decoding, which is unity for j > k;,
is for j <C k; just the probability of an indeterminate set of equations. This is
evaluated in reference 16. It gives the same bound on @,,.

This finishes the demonstration that random parity-check coding has
essentially the same ambiguity probability as does the random coding. Thus
the remainder of the random coding derivation applies unaltered, and the
resulting statements about @, still hold. In fact, we have

Theorem 2. The results of Theorem 1 are unchanged by the restriction of
permissible codes to codes of the parity-check type.

For the BEC, this follows from the identical behaviour of random sequence
coding and random parity-check coding. A restriction on the class of
permissible codes can only increase the minimum attainable error prob-
ability, so that the error probability of the optimum code is a lower bound to
that of the parity-check code a fortiori. For the BSC it is also possible to use a
random parity-check code, and to show that it leads to the same bound on
@y (see reference 12, Appendix) and this completes the proof of Theorem 2.
Itis even possible to make a stronger statement : the bounds used in Appendix
2 of reference 16 for obtaining the behaviour of the error probability at low
transmiss.on rates, as illustrated in Figure 3 by the dotted lines, all apply to
parity-check codes as well, so that the remainder of Figure 3 and the formulas
of Appendix 2 of reference 16 are still valid.
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PETER ELIAS

OTHER RANDOM PARITY-CHECK CODES

The random selection invelved in constructing-a random parity-check code
is the choice of the (N — k&) X k, matrix of Figure 4, which
requires N°q; << (})V® random binary digits, rather than the I - 2¥R
required for random selection of signal sequences. It is possible to construct
a random parity-check code requiring only (¥ — 1) random binary selec-
tions by modifying the coefficient matrix, as shown in Figure 5. Here, the
first N — £, random digits are used for the first row in the matrix, the second
to the (N — & + 1)® for the second row . . . , the £,th to the (¥ — 1) for

T7re7 =
aregee|z
7007 @ Coded signal
007 7|7 ;?ﬂ? Teroeeg
essage Lheck
ORTRGIN2 digrts digits
rrTrro| o
rree|e
Nedgy signal
7404 74 0k TXI1X00
7 ol Messags Chock
aigits digits
..-(=
7 7 T RO =7
A oX + 14, = 7
a|o :.ur1 + o, =7
7 a|a .'-"..r?’,1 + b =7

Sefution « Ky =Tady=7
Decoded message
rrer

Figure 5, Sliding parity-check coding and decoding,

the last row. Itis again possible to show that for both the BEC and the BSG
the same bounds still hold for @,,, and Theorem 2 still applies. (The
demonstration is outlined for the BSC in reference 13 and will not be given
here.) Ifin a code of this type, which may be called a sliding parity-check
code, the check digits are interspersed among the information digits, then
the block length N can be made indefinit.ly large. If the receiver waits long
enough, for any p, > p he is assured, with probability unity, that he will
ultimately obtain an independent set of equations large enough to determine
all of the symbols which have been erased up to that point. This is, of course,

not a highly practical procedure, since it has an indefinitely large memory .-

requirement, but it serves to give the NV in the expressions for @,y the inter-
pretation, not of a block length, but of a delay time, which is much more
intuitively appealing. With a sliding code, N symbols after the receipt of a
given message symbol the receiver can produce a decoded version of that
symbol with an error probability bounded by the expressions given in
Theorem 1. Ifhe is willing to wait longer he may get the lower probability
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DISCUSSION

associated with a larger value of N, without requiring the transmitter to
modify the coding procedure. Such a coding procedure is error-free, in the
sense defined in reference 12, and answers the question raised there as to
whether or not error-free coding was possible at no sacrifice in transmission
rate of error probability.

After the analysis reported in references 16 and 13 was completed, but before it had been
organized for presentation, I discovered that C. E. Shannon was also working on the pmbfsm of
error probability. In discussing our results he mentioned the geometric interprelation giving the
error exponent Sor small (py — p) as the difference betrween the capacily curve and a tangent line,
wred in Figure 8. The geomelric piclure is essential: any other presemtation of the resulls pels
lost in families of curves, since the exponent is a function of both p and p,.

This work has benefited from the interest of my colleagues, Professors Fano, Huffman, and
Yngue of the Research Laboratory of Electronics at M.I.T.
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DISCUSSION

D. Scepian: Dr. Elias has shown that it is possible to signal at rates arbitrarily close
to the capacity of the binary symmetric channel with arbitrarily small probability of
crror, using codes of certain restricted ciasses. One such class of codes is the parity-
check codes first introduced by Hamming. These codes have some very special
properties to make them attractive from the practical point of view: one such obvious
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DISCUSSION

and well-known property is the ease with which they can be generated. I have
recently investigated this class of code in more detail and have found several other
simple, practical propertics which they possess. In the first place, maximum likeli-
hood detection is much easier to accomplish with these codes than one might have
expected beforchand. Secondly, for certain values of the signal parameters, there
cxist nio better codes; this is true in the practical case of a channel with little noise.
Thirdly, all transmitted messages have the.'same probability of being decoded
correctly. I have compiled a list of best parity-check codes of ten binary digits length
or less. This list, together with the theory of these codes, is available in my paper
which has been circulated to you but has not been read at this Symposium®.

I should like now to comment on a remark made by Dr. Golay. There has been
considerable confusion in’ the literature between codes and decoding schemes.
Shannon’s encoding theorem is proved on the basis of using the best possible detection
scheme, mainly a maximum likelihood detector which identifies each possible
received signal with the nearest possible sent signal. Now most computations that I
have seen on the probability of error associated with parity-check codes have not
used maximum likelihood detection. Rather these computations are based on the
notion of drawing disjoint spheres about the possible sent messages. Received
messages inside a sphere are associated with the centre of that sphere. Received
signals which do not lie in any of these spheres are ignored; thatis, they are counted as
errors in computing the probability that a sent message be decoded correctly. Let us
call this method of detection ‘bounded distance detection’. Itis not hard to show that
one cannot achieve the ideal signalling of Shannon's theorem with bounded distance
detection if p, the probability of error per binary digit on the channel, is between
} and }. Infact, in the appendix of Elias’s full paper you will find a proof of this fact
with the figure } being replaced by a somewhat smaller number. These remarks hold,
of course, for parity-check codes, It is known that they arc not good if one uses
bounded distance detection and if p is in the range just referred to. It is my guess that
with bounded distance detection they cannot be used to approach the codes of
Shannon’s theorem for any value of 5. What Elias showed at the New York meeting
of the I.R.E. this Spring, and has mentioned, is that if one uses maximum likelihood
detection, then parity-check codes are as good as the average code and hence can be
used to approach the results of Shannon’s theorem.

D. A. Bern: The British Standards Institute Glossary of Terms used in Telecommunica-
tion defines Channel as ‘a means of one-way communication’ and, in this sense, the
author is correct in speaking of a ‘binary symmetric channel’. (Any system in which
the occurrence of an error was made known to the transmitter would require at least
twe channels on this definition.) Yet in spite of the Glossary I am still tempted to
think of a channel as that which exists between terminal equipments ¢.g. an allocation
of bandwidth for radio transmission, an open-wire line or a cable in which any
repeaters are linear amplifiers. Now the binary-symmetric or binary erasurc charac-
teristic of a channel is a function of its terminal equipment, and I suggest therefore that
the investigation of the merits of a coding system for a channel (in the author’s sense
of channel) is not complete until we have considered also the merits of the terminal
equipment. If over the greater part of the distance between terminals there is a
channel having continuous properties which can be defined in terms of bandwidth
and noise power, the communication rate achieved by a code should ultimately be
compared with the maximum rate predicted by Shannon for a continuous channel.”

B. MaxpeLeroT: Some of Dr. Elias’ results can also be deduced by continuing the
argument of Feinstein (¢f. B. Mandelbrot, Ann. Telecomm., June 1955). I should like
to ask Dr. Elias if he can say more about the relationship between Feinstein’s work
and random coding.

" * A summary of Dr. Slepian's paper appears on page 399.
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P. Ev1as in reply: Dr. Slepian’s statements are quite correet, and the confusion
which has existed between bounded distance detection and maximum likelihood
detection was admirably illustrated in a note of Dr. Zaremba’s circulated to the
participants of this symposium. ;

Dr. Bell is of course correct in saying that if a channel which is not binary or
symmetric is available, then its capacity should not be computed as if it were binary
and symmetric; but his definition of ‘channel’ sounds exceedingly narrow. It would,
for example, rule out scatter channels in which noise is not additive but in part
multiplicative, and would also rule out a human operator repeating his best puess ata
noisy received signal.

Dr. Mandelbrot’s question is difficult to answer briefly, but in gencral Feinstein’s
work may be considered as random coding operating under constraints. These
constraints do not reduce channel capacity, nor do they alter the exponent in the
exponentially decreasing error probability, so far as the leading term for rates very
near channel capacity is concerned. However, they do increase the error probability
for somewhat lower transmission rates compared with what unconstrained random
cading can do.

76

"
t—

-

Tl

Depari

A

LNEAR se
filters. T
over an i
character
operator,
networks
adders ar
steady-sta
Several m
one of wh
attention
sinee, if a
are clearl

A binary:
outputs,
symbols d

with the a
the preser
voltage, «
further as:
tion with
* This w~

(Air Resear
States,




