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Theorem 

Abstracl-Upper bounds are derived on the probability of error 
that can be achieved by using block codes on general time-discrete 
memoryless channels. Both amplitude-discrete and amplitude- 
continuous channels are treated, both with and without input 
constraints. The major advantages of the present approach are the 
simplicity of the derivations and the relative simplicity of the 
results; on the other hand, the exponential behavior of the bounds 
with block length is the best known for all transmission rates 
between 0 and capacity. The results are applied to a number of 
special channels, including the binary symmetric channel and the 
additive Gaussian noise channel. 

I. INTR~DTJOTI~N 

T 

HE CODING THEOREM, discovered by Shannon 
[l] in 1948, states that for a broad class of com- 

- munication channel models there is a maximum rate, 
capacity, at which information can be transmitted over 
the channel, and that for rates below capacity, informa- 
tion can be transmitted with arbitrarily low probability 
of error. 

For discrete memoryless channels, the strongest known 
form of the theorem was stated by Fano [2] in 1961. In 
this result, the minimum probability of error P, for 
codes of block length N is bounded for any rate below 
capacity’ between the limits 

e -.\‘LEL(R)+O(.&-)I 5 p, 5 2e-.\‘E(R, 
(1) 

In this expression, E,(R) and E(R) are positive functions 
of the channel transition probabilities and of the rate 
R; O(N) is a function going to 0 with increasing N. For 
a range of rates immediately beneath channel capacity, 
EL(R) = E(R). 

The function E(R), especially in the range in which 
E(R) = E,(R), appears to yield a fundamental charac- 
terization of a channel for coding purposes. It brings out 
clearly and simply the relationships between error prob- 
ability, data rate, constraint length, and channel be- 
havior. Recent advances in coding theory have yielded a 
number of effective and economically feasible coding 
techniques, and (1) provides a theoretical framework 
within which to discuss intelligently the relative merits 

Manuscript received March 11, 1964. This work was supported 
in part by the U. S. Army, Navy, and Air Force under Contract 
DA36-039-AMC-03200(E); and in part by the National Science 
Foundation (Grant GP-2495), the National Institutes of Health 
(Grant MH-04737-04), and the National Aeronautics and Space 
Administration (Grants NsG-334 and NsG-496). 

The author is with the Dept. of Electrical Engineering and the 
Research Lab. of Electronics, Massachusetts Institute of Tech- 
nology, Cambridge, Mass. 

1 This paper deals only with error probabilities at rates below 
capacity. For the strongest known results at, rates above capacit,y, 
see Gallager [3], Section 6. 

of these techniques. Even more important, the function 
E(R) provides a more meaningful comparison between 
different channels than can be made on the basis of 
capacity or SIVR. For example, if one is to use coding on 
a physical communication link, one of the first questions 
to be answered involves the type of digital modulation 
systems to use. Considering the modulation system as 
part of the channel, one can compare modulation sys- 
tems for coding applications on the basis of their E(R) 
curves. For an example of such a comparison, see 
Wozencraft and Kennedy [4]. 

In Section II of this paper, a simple proof is given 
that P, < edNEcR). In Section III, we establish a number 
of properties of E(R) and show explicitly how the func- 
tion E(R) can be calculated. This calculation is just 
slightly more complicated than the calculation of channel 
capacity. In Section IV, we give a number of applica- 
tions of the theory developed in Sections II and III. 
First, as an example, we derive E(R) for a binary sym- 
metric channel; then we derive a universal E(R) curve 
for very noisy channels; and finally, we relate E(R) for 
a set of parallel channels to the E(R) curves of the indi- 
vidual channels. 

In Section B, we derive an improved upper bound to 
P, for low rates; this yields a larger value of E(R) than 
was derived in Section II. There is some reason to suspect 
that the combination of these two bounds produces the 
true exponential behavior with block length of the best 
codes. In Section VI, these results are extended to chan- 
nels with constraints on the input and to channels with 
continuous input and output alphabets. Finally, the re- 
sults are applied to the additive Gaussian noise channel 
as an example. 

II. DERIVATION OFTHE CODING THEOREM 

Let XN be the set of all sequences of length N that 
can be transmitted on a given channel, and let Y, be 
the set of all sequences of length N that can be received. 
We assume that both Xjv and Y, are finite sets. Let 
Pr (y / x), for y E YN and x e X,, be the conditional 
probability of receiving sequence y, given that x was 
transmitted. We assume that we have a code consisting 
of ii/r code words; that is, a mapping of the integers from 
1 to M into a set of code words x1, . . . , xlc,,where x, E X,; 
1 5 m 5 M. We assume that maximum likelihood de- 
coding is performed at the receiver; that is, the decoder 
decodes the output sequence y into the integer m if 

Pr(y Ixm) > Pr(ym Ix) for all m’ z m, 1 < m’ 2 M (2) 

3 
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For purposes of overbounding the probability of decoding 
error, we regard any situation in which no m satisfies (2) 
as a decoding error. Also, of course, a decoding error is 
made if the decoded integer is different from the input 
integer. Now let P,, be the probability of decoding error 
when x, is transmitted. A decoding error will be made if 
a y is received such that (2) is not satisfied. Thus we can 
express P,, as 

where we define the function &(y) as 

&(y) = 1 if Pr(y lx,) 5 Pr(yIxwc)) for some m’ # m (4) 

&n(y) = 0 otherwise (5) 

We shall now upperbound P,, by upperbounding the 
function 4,(y): 

L 

c Pr(yIXvJ’(l +P) 
&(Y) I m’fm 1 

p 

pr(ylx,jl’(l+p) - 

p > o 
(6) 

The reason for using (6) is not at all obvious intuitively, 
but we can at least establish its validity by noting that 
the right-hand side of (6) is always non-negative, thereby 
satisfying the inequality when $,(y) = 0. When&(y) = 1, 
some term in the numerator is greater than or equal to 
the denominator, thus the numerator is greater than or 
equal to the denominator; raising the fraction to the p 
power keeps it greater than or equal to 1. Substituting (6) 
in (3), we have 

p P,, 5 c P?“(yjx,,)““+p’ c Pr(ylx,?)““+p) 
YCYN [ WZ’fTlt 1 

for any p > 0 (7) 

Equation (7) yields a bound to P,, for a particular set 
of code words. Aside from certain special cases, this 
bound is too complicated to be useful if the number of 
code words is large. We will simplify (7) by averaging 
over an appropriately chosen ensemble of codes. Let us 
suppose that we define a probability measure P(x) on 
the set X, of possible input sequences to the channel. 
We can now generate an ensemble of codes by picking 
each code word, independently, according to the prob- 
ability measure P(x). Thus the probability associated 
with a code consisting of the code words x1, . . . , xM 
is n&I P(x,). Clearly, at least one code in the ensemble 
will have a probability of error that is as small as the 
ensemble-average probability of error. Using a bar to 
represent code ensemble averages, we now have 

1 I 12, 4 I I3 

P,,,L 5 c P7fylxm)‘i(1+p) 
YSYA’ 

[ c P~(YlX,.)‘-‘]’ (8) m ’ f 774 

We now impose the additional restriction that p < 1, 
and proceed to remove the numbered portions of the 
averaging bar in (8). First, observe that all of the terms 

of (8) under the bar are random variables; that is, they 
are real valued functions of the set of randomly chosen 
words. Thus we can remove part 1 of the bar in (8), 
since the average of a sum of random variables is equal 
to the sum of the averages. Likewise, we can remove 
part 2, because the average of the product of independent 
random variables is equal to the product of the averages. 
The independence comes from the fact that the code 
words are chosen independently. 

To remove part 3, let l be the random variable in 
brackets; we wish to show that 2 < .$‘. Figure 1 shows [‘, 
and it is clear that for 0 < p 5 1, 4’ is a convex upward 
function of E; i.e., a function whose chords all lie on or 
beneath the function.’ Figure 1 illustrates that 4” I 4’ 
for the special case in which E takes on only two values, 
and the general case is a well-known result.3 Part 4 of 
the averaging bar can be removed by the interchange of 
sum and average. Thus4 

Fern I ,z$ PT(yix,)“cl+p) zm Pr(ylx,,,)““‘P’ [ 1 p (9) 

Fig. 1. Convexity of ED. 

Since the code words are chosen with the probability 
P(x), 

Pr(ylx7J 
l/(l+P) = & P(x)P7”(y~x)1’~‘+~) 

Observing that the right-hand side of (10) is independent 
of m, we can substitute (10) in both the m and m’ term 
in (9). Since the summation in (9) is over M - 1 terms, 
this yields 

foranyp,O < p _< 1 (11) 

The bound in (11) applies to any discrete channel, 

2 Let f(x) be a real valued function of a vector x over a region R. 
We call the region convex if for any xre$, xseR; and X, 0 < X < 1, 
we have Xx1 + (1 --X)xzcR. The functron f(x) is convex upward 
over the convex region if for anv xteR. x?eR. and 0 < X < 1 we 
have Xj(xI) + (1 z X)j(x2) < f[*Xxr-+‘(l-- ‘A),,]. The function is 
strictly convex if the inequality, 5, can be replaced with strict 
inequality, <. 

3 See, for example, Blackwell and G&hick [5], page 35. 
4 By a minor modification of the argument used here, only 

pair-wise independence in the code-word selection is necessary to 
get from (8) to (9). This makes it possible to apply the bounds 
developed here to special ensembles of codes such as parity check 
code ensembles. 
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memoryless or not, for which Pr (y 1 x) can be defined. 
It is valid for all choices of P(x) and all p, 0 < p 5 1. 

We shall now assume that the channel is memoryless 
so as to simplify the bound in (11). Let zl, . . . , x,, . . . , XN 
be the individual letters in an input sequence x, and let 
yl, -* ’ , yn, ” ’ , YN be the letters in a sequence y. By 
a memoryless channel, we mean a channel that satisfies 

WYlx) = lj WYnl~n) w> 

for all x E XN and y E YN and all N. Now we restrict the 
class of ensembles of codes under consideration to those 
in which each letter of each code word is chosen inde- 
pendently of all other letters with a probability measure 
p(x); x 8 Xl. 

P(x) = fi P(GJ ; z = (x, , * * * ) 2, ) *. - ( x.7$) (13) 
n=1 

Substituting (12) and (13) in (ll), we get 

[ C fi P(G) Pr (yn I xdl’(‘+‘) 1 I+’ P., 5 (M - 1)” .FN 
XCXN n=* 

(14) 

We can rewrite the bracketed term in (14) to get 

Fe, 5 (M - l)p .FA 

. L, znPX, 
fi C ~(4 Pr (yn I xJ1’(l+p) 1 I+’ 

(15) 

Note that the bracketed term in (15) is a product of 
sums and is equal to the bracketed term in (14) by the 
usual arithmetic rule for multiplying products of sums. 
Finally, taking the product outside the brackets in (15), 
we can apply the same rule again to get 

O<p<l (16) 

We can simplify the notation in (16) somewhat by 
observing that X1 is the set of input letters, which is 
denoted a,, . . . ak, . ’ . aK, where K is the size of the 
channel input alphabet. Also, Y, is the set of output 
letters, denoted b,, . . . , bi, . ” b,, where J is the size 
of the output alphabet. Now let Pi, denote the channel 
transition probability Pr (bi / a!+) and let P(a,) = Pk 
denote the probability with which letter ak is chosen in 
the code ensemble. Substituting this notation in (16), 
noting that all terms in the product are identical, and 
including the trivial case p = 0, we get 

O_<P<l (17) 

If we now upperbound M - 1 by M = eNR, where R 
is the code rate in nats per channel symbol, (17) can be 
rewritten as 

pR - In 5 
i=1 

kg p, Pikl’(l+‘) 
ICP 

P,, 5 exp - N - ) 1 
(1% 

Since the right-hand side of (18) is independent of m, 
it is a bound on the ensemble probability of decoding 
error and is independent of the probabilities with which 
the code words are used. Since at least one code in the 
ensemble must have an error probability as small as the 
average,5 we have proved the following fundamental 
theorem: 

Theorem 1 

Consider a discrete memoryless channel with an input 
alphabet of K symbols, a,, . . . aK; an output alphabet 
of J symbols, bl, . . . b,; and transition probabilities 
Pjk = Pr (bj / a,). F or any block length N, any number 
of code words M = eNR, and any probability distribu- 
tion on the use of the code words, there exists a code for 
which the probability of decoding error is bounded by 

f’, I exp - N[ - PR + EJP, PII (19) 

.WP, PI = - In. $ (k$ pk Pik”‘l+P’)l+’ (20) 

where p is an arbitrary number, 0 I: p < 1, and p = 
(PI, PZ, . . . , PK) is an arbitrary probability vector.’ 

Theorem 1 is valid for all p, 0 < p < 1, and all prob- 
ability vectors p = (pl, . . . , pK); thus we get the tightest 
bound on P. by minimizing over p and p. This gives us 
the trivial corollary: 

Corollary 1: Under the same conditions as Theorem 1, 
there exists a code for which 

P, 5 exp - NE(R) 

E(R) = max [ - PR + ZAP, PII 
P.P 

(21) 

(22) 

where the maximization is over all p, 0 I p I 1, and all 
probability vectors, p. 

The function E(R) is the reliability curve discussed 
in the last section. Except for small values of R (see 
Section V), Corollary 1 provides the tightest known 
general bound on error probability for the discrete memo- 
ryless channel. We discuss the properties of E(R) in 
Section III and, in particular, show that E(R) > 0 for 
0 < R < C, where C is the channel capacity. 

It is sometimes convenient to have a bound on error 
probability that applies to each code word separately 
rather than to the average. 

Corollary 2: Under the same conditions as Theorem 1, 
there exists a code such that, for all m, 1 < m 5 M, the 
probability of error when the mth code word is transmitted 
is bounded by 

6 The same code might not satisfy (18) for all choices of prob- 
abilities with which to use the code words; see Corollary 2. 

6 A probability vector is a vector whose components are all 
non-negative and sum to one. 
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P,, 5 4emNEcR) 

where E(R) is given by (22). 

(23) 

Proof: Pick a code with M’ = 2M code words which satis- 
fies Corollary 1 when the source uses the 2M code words 
with equal probability. [The rate, R’ in (21) and (22) is 
now (In 2&9/N.] Remove the M words in the code for 
which P,, is largest. It is impossible for over half the words 
in the code to have an error probability greater than 
twice the average; therefore the remaining code words 
must satisfy 

P,, 5 2eeNEcR” (24) 

Since R’ = (In 2M)/N = R + (In 2)/N, and since O<p< 1, 
(22) gives us 

E(R’) > E(R) - F (25) 

Substituting (25) in (24) gives us (23), thereby com- 
pleting the proof. 

III. PROPERTIES OF THE RELIABILITY CURVE, E(R) 

The maximization of (22) over p and p depends on the 
behavior of the function E,,(p, p). Theorem 2 describes 
Eo(p, p) as a function of p, and Theorem 3 describes 
Eo(p, p) as a function of p. Both theorems are proved in 
the Appendix. 

Theorem 2 

Consider a channel with K inputs, J outputs, and 
transition probabilities 

Pik, 1 < 7c 5 K 

Let p = (pl, . . . , pl() be a probability vector on the 
channel inputs, and assume that the average mutual 
information 

I(p) = 5 5 pr, P,,ln “’ 
k=l ,=I 

*J$l Pi pii 

is nonzero. Then, for p 2. 0, 

NP, PI = 0 for p = 0 (26) 

E~(P, P) > 0 for p > 0 (27) 

dEo(p, P) > o 
8P 

for p > 0 (2% 

~-UP, P) 
8P 

= I(P) (29) 
p=o 

a2E;;, P) I o (30) 

with equality in (30) if and only if both of the following 
conditions are satisfied: 

1) PiA is independent of Ic for j, k such that pkPik # 0 
2) xk;Pili+, p, is independent of j. 

Using this theorem, we can easily perform the maxi- 
mization of (22) over p for a given p. Define 

E(R, 1-4 = max [ - PR + JWP, PII 
OSP<l 

(31) 

Setting the partial derivative of the bracketed part of (31) 
equal to 0, we get 

R = f?_Eo(~t P) 

dP 
(32) 

From (30), if some p in the range 0 5 p 5 1 satisfies (32), 
then that p must maximize (31). Furthermore, from (30) 
dE,(p, p)/ap is nonincreasing with p, so that a solution 
to (32) exists if R lies in the range 

@o(~, P) 
dP 

5 R L: I(P) p=i 

In this range it is most convenient to use (32) to relate 
E(R, p) and R parametrically as functions of p. This 
gives us 

E’(R p) = &’ (p p) - p i!%‘(” p, 0 , 
dP 

R = GLP, P) 

dP 
O<Pll 

Figure 2 gives a graphical construction for the solution 
of these parametric equations. 

For R < dE,(p, p)/dp jpcl, the parametric equations 
(34) and (35) are not valid. In this case, the function 
-pR + E,,(p, p) increases with p in the range 0 5 p 5 1, 
and therefore the maximum occurs at p = 1. Thus 

E(R,p) = E,(l,p) -R for R < dE’o(P, P) 
dP 

(36) 
+?=I 

The behavior of E(R, p) as a function of R given by 
(34)-(36) is shown in Fig. 3; this behavior depends upon 
whether t?Eo(p, p)/dp2 is negative or 0. If it is negative, 
then R as given by (35) is strictly decreasing with p. Differ- 
entiating (34) with respect to p, we get -p d’E,,(p, p)/dp’; 
thus E(R, p) is strictly increasing with p for p >_ 0, and 
is equal to 0 for p = 0. Thus if R < Z(p), then E(R, p) > 0. 
If p is chosen to achieve capacity, C, then for R < C, 
E(R, p) > 0, and the error probability can be made to 
vanish exponentially with the block length. 

Taking the ratio of the derivatives of (34) and (35), 
we see that 

WR, P) 
aR =-P 

Thus the parameter p in (34) and (35) has significance 
as the negative slope of the E, R curve. 

From the conditions following (30), it is clear that if 
d2Eo(p, p)/dp’ = 0 for one value of p > 0, it is 0 for all 
p > 0. Under these circumstances, R and E(R, p) as 
given by (34) and (35) simply specify the point at which 
R = I(p), E(R, p) = 0. The rest of the curve, as shown 
in Fig. 4, comes from (36). 
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ECRP) 

P P= I 

Fig. 2. Geometric construction of E(R, p), 

E F$f’) 

Fig. 3. Exponent, rate curve. 

The class of channels for which daEO(p, p)/+’ = 0 is 
somewhat pathological. It includes noiseless channels, 
for which one can clearly achieve zero error probability 
at rates below capacity. The exponential bounds here 
simply reflect the probability of assigning more than one 
message to the same code word. The bound in Section V 
yields zero error probability in these cases. As an example 
of a noisy channel with #E,,(p, p)/dp’ = 0, see Fig. 4. 

An alternative approach to the maximization of (31) 
over p is to regard the function -pR + E,,(p, p) as a 
linear function of R with slope -p and intercept Eo(p, p) 
for fixed p, Thus E(R, p) as a function of R is simply the 
upper envelope of this set of straight lines (see Fig. 5). 
(In this paper, the upper envelope of a set of lines will 
be taken to mean the lowest uppes bound to that set of 
lines.) This picture also interprets E,,(p, p) as the E-axis 
intercept of the tangent of slope -p to the E, R curve. 

Since E(R, p) is the upper envelope of a set of straight 
lines, it must be a convex downward function of R; i.e., 
a function whose chords never lie below the function. This 
fact, of course, also follows from &%‘(R, p)/aR decreasing 
with p and thus increasing with R. 

Et&P) E,(p,P) = ph. 312 

\ 

FOR p = (l/3, l/3,1/3) 

I 
R 

Fig. 4. Exponent,, rate curve for channel with @&(p, p)/dpz = 0. 

E,(I,P) 

R 

Fig. 5. Exponent,, rate curve as envelope of straight lines. 

All of the results in this section thus far have dealt 
with the function E(R, p) defined in (31). The function, 
E(R), in (22) can be expressed as 

E(R) = max E(R, p) 
P 

(33) 

where the maximization is over all K-dimensional prob- 
ability vectors, p. Thus E(R) is the upper envelope of all 
of the E(R, p) curves, and we have the following theorem. 

Theorem 3 
For every discrete memoryless channel, the function 

E(R) is positive, continuous, and convex downward for 
all R in the range 0 < R < C. Thus the error probability 
bound P, < exp - NE(R) is an exponentially decreas- 
ing function of the block length for 0 < R < C. 

Proof: If C = 0, the theorem is trivially true. Other- 
wise, for the p that achieves capacity, we have shown 
that E(R, p) is positive for 0 < R < C, and thus E(R) 
is positive in the same range. Also, for every probability 
vector, p, we have shown that E(R, p) is continuous 
and convex downward with a slope between 0 and - 1, 
and therefore the upper envelope is continuous and convex 
downward. 

One might further conjecture that E(R) has a con- 
tinuous slope, but this is not true, as we shall show later. 
E(R, p) has a continuous slope for any p, but the p that 
maximizes E(R, p) can change with R and this can lead 
to discontinuities in the slope of E(R). 
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We next turn our attention to the actual maximization 
of E(R, p) over p. We may rewrite (22) as 

E(R) = max [ - PR + Max J%(P , P) I (39) 
O<PSl P 

Now define 

(40) 

From (2% Eo(p, P> = -ln F(p, p), so that minimizing 
F(p, p) over p will maximize Eo(p, p). 

Theorem 4 

F(p, p), as given by (40), is a convex downward func- 
tion of p over the region in which- p = (pl, * - * , ,pJ is a 
probability vector. Necessary and sufficient conditions on 

the vector (or vectors) p that minimize F(p, p) [and 
maximize Eo(p, p)] are 

F P::“+P)& 2 T cr:+’ for all k (40 

with equality if p, # 0, where aj = clc pJ’$(l+c) 
This theorem is proved in the Appendix. If all the pk 

are positive, (41) is simply the result of applying a 
Lagrange multiplier to minimize F(p, p) subject to 
&k = 1. As shown in the Appendix, the same tech- 
nique can be used to get the necessary and sufficient 
conditions on p to maximize I(p). The result, which 
has also been derived independently by Eisenberg, is 

with equality if pk # 0. 
Neither (41) nor (42) is very useful in tiding the 

maximum of Eo(p, p) or I(p), but both are useful theo- 
retical tools and are useful in verifying that a hypothe- 
sized solution is indeed a solution. For channels of any 
complexity, E,(p, p) and I(p) can usually be maximized 
most easily by numerical techniques. 

Given the maximization of E,,(p, p) over p, we can 
find the function E(R) in any of three ways. First, from 
(39), E(R) is the upper envelope of the family of straight 
lines given by 

- PR + max Eo(p, P> O<Pll (43) 
P 

Also, we can plot max, Eo(p, p) as a function of p, 
and use the graphical technique of Fig. 2 to find E(R). 

Finally, we can use the parametric equations, (34) 
and (35), and for eakh p use the p that maximizes Eo(p, p). 
To see that this generates the curved portion of E(R), 
let p. be a fixed value of p, 0 < p. < 1, and let p. maxi- 
mize Eo(po, p). We have already seen that the only 
point on the straight line -poR + Eo(po, po) that lies 
on the curve E(R, po), and thus that can lie on E(R), 
is that given by (34) and (35). Since the straight lines 
--pR + max, Eo(p, p) generate all points on the E(R) 

curve, we see that (34)-(36), with Eo(p, p) rmximized 
over p, generate all points on the E(R) curve. These 
parametric equations can, under pathological conditions, 
also lead to some points not on the E(R) curve. To see 
this, consider the channel of Fig. 6. From (41), we can 
verify that for p 2 0.51, Eo(p, p) is maximized by pl = 

ry =pp 
p2 = p4 = 4. For p > 0.51, Eo(p, p) is maximized 

= pe = 4. The parametric equations are dis- 
continuous at p = 0.51 where the input distribution 
suddenly changes, Figure 6 shows the E(R) curve for 
this channel and the spurious points ‘generated by (34) 
and (35). 

h bz b, b, 
:; 0.06 0.82 0.82 0.06 0.06 0.06 0.06 0.06 

a3 0.06 0.06 6.82 0.06 
a4 0.06 0.06 0.06 0 .82 
a5 0.49 0.49 0.01 0.01 
a6 0.01 0.01 0.49 0.49 

TRANSITION PROBABILITY 
MATRIX 

0.3 0.405 0.5 

Fig. 6. A pathological channel. 

The preceding discussion has described in detail the 
exponent E(R) controlling the upper bound to error 
probability described in Section I. It can be shown that 
the exponent EL(R) controlling the lawer bound to error 
probability in (1) is given by 

EL(R) = g.1.b. [ - pR + max Eo(p, ~$1 
o<p<m P 

(44) 

Comparing (39) and (44), we see that the only difference 
is in the range in which p is to be maximized. Interpret- 
ing E(R) and E,(R) as the upper envelopes of a family 
of straight lines of slope -p, we see that E(R) = EL(R) 
for Ro,it < R < C, where the critical rate Rc,it is defined 
as the g.1.b. of R values for which the slope of E,(R) 
is not less than - 1. This is a nonzero range of R unless, for 
the p that maximizes Eo(p, p), we have #Eo(p, p)/ap’ = 0 
for 0 < p 5 1; the channel in Fig. 5 is such a channel. 

IV. EXAMPLES AND APPLICATIONS 

Binary Symmt+ric Channel 

A binary symmetric charnel has 2 inputs, 2 outputs, 
and transition probabilities Plz = P,, = q, and P,, = 

. 



1965 Gallager: Derivation of Coding Theorem 

P,, = 1 - q. Thus q is the probability of error on the 
channel with no coding. Clearly, the input probability 
vector that maximizes Eo(p, p) is p, = pZ = 4. [Formally 
this can be shown by substitution in (41).] For this 
choice of p, 

. . Expanding (1 + ~jk)“““’ in a power series m eik, and 
dropping terms of higher order than the second, we get 

Eo(P, P) 

A ( P4k 
71+p 

z--lnxq, Cpkl+f&-- 
5x1 + PI” ).I (54) k 

The bracketed term to the (1 + p) power in (54) may be 
again expanded as a power series in the ejk to give 

Using (52), this becomes 
I 

= p In 2 - (1 + p) In [ql”‘+” + (1 - g)““+” 

(45) 

We now differentiate (45) and evaluate the parametric 
expressions for exponent and rate, (34) and (35). After 
some manipulation, we obtain 

R = In 2 - N(q,) (46) 

H(q,) = - qp ln qp - (1 - qp) In (1 - q,) (47) G(P, P) x - ln i 1 - 2(1 “+ p) 

E(R, p) = qP In f + (1 - q,) In e 

where 

P 
l/o+P) 

9P = 
P 

l/(l+P) + (1 _ q)l/(l+P) 

These equations are valid for 0 2 p < 1, or for 
In 2 - [H &/( di + d-)] < R < C. For rates 
below this, we have (36), which becomes 

E(R,p) = In2 - 2 In (& + dl - q) - R (50) 

Except for the lack of a coefficient, P, < e--NE(R*p) 
[where E(R, p) is given by (46), (48), and (50)] is the 
random coding bound to error probability on the binary 
symmetric channel, first derived by Elias [6]. 

Very Noisy Channels 

In this section, we shall consider channels that are 
very noisy in the sense that the probability of receiving 
a given output is almost independent of the input. We 
shall see that a universal exponent, rate curve exists for 
these channels in the limit. It will be assumed that the 
channel is discrete and memoryless, although the result 
can be easily extended to continuous channels. Let 

T Qi [ F PkE:k - (F p&k)l]} (56) 

Finally, expanding (56) and dropping terms of higher 
than second order in Ejk, we have 

Eo(P, P) = j+, f(P) 

where the constant f(p) is given by 

f(P) = ; c qj 
1 

F pkE;k - (T Pk6ik)2] 

(57) 

(53) 

If we take the mutual information, I(p), use (51) for 
the transition probabilities, and expand I(p) as a power 
series in the Eik, dropping terms of higher than second 
order, we get f(p). Thus channel capacity C is given 
approximately by 

C m max f(p) 
D 

(59) 

mm Eo(p, PI wlc 
l+P 

(60) 
P 

We can now solve explicitly for p to find E(R) = 
maxo<pS1 [-pR + max, Eo(p, p)]. The solution is 

PI, * * * , QJ be a set of probabilities defined on the channel 
outputs, and define Ejk by 

P, 2 esNEcR) 

pik = qj(l + cjk) (51) 
E(R) cz (I& - v’?i)’ R 2 T (61) 

We assume that l~i~] < 1 for all j, k. Note that if (51 
is multiplied by Pk and summed over k, we get 

E(R) M ; - R R<$ (62) 

F qjcjlc = 0 for all k (52) It is to be observed that the exponent rate curve given 
by (61) and (62) is identical to that for orthogonal signals 

We now compute Eo(p, p) for this channel: in white Gaussian noise [2]. 
Noisy channels, as defined in this way, were first con- 1fP 

Eo(p, p) = - In F p,q:“‘+“(l + ~~&l’(‘+‘) 1 (53) 
sidered by Reiffen [7], who showed that the exponent 
corresponding to zero rate was C/2. 
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Parallel Channels 

Consider two discrete memoryless channels, the first 
with K inputs, J outputs, and transition probabilities 
Pik, and the second with I inputs, L outputs, and transi- 
tion probabilities Qli. Let 

E*o(p, p) = - In 5 5 P~P:~(~+~) ( > 

l+P 

i=l k=l 

-@*(P, q) = - In & @ qiQii(l+p))“p 

where p = (pl, . . . , pK) and q = (ql, . . + , nr) represent 
arbitrary probability assignments on the inputs to the 
first and second channel, respectively. 

Let us consider using these two channels in parallel; 
that is, in each unit of time, the transmitter sends one 
symbol over the first channel and one symbol over the 
second channel. If we consider this pair of channels as a 
single channel with KI inputs, JL outputs, and transi- 
tion probabilities PikQli) then we can find an upper 
bound to the probability of error achievable through 
coding on the two channels together. The following 
theorem, the first half of which is due to R. M. Fano [8], 
relates the E(R) curve for the parallel combination to 
the E(R) curves for the individual channels. 

Theorem 5 

The minimum error probability achievable through 
coding can be upperbounded by 

P, I exp - N[ - PR + I-UP, WI 
forany p,O<p<l (63) 

where 

&(P, pcl) = J%(P, P) + EO**b, 9) (64) 

Furthermore, if we choose p and q to maximize E*,(p, p) 
and E$*(p, q), respectively, for a given p, then 

J-UP, pq) = Max WP, r) r (65) 

where r = (rll, rlZ, + . 3 , rlr, rzl, . 1 . , rzr, . . . , rKy) repre- 
sents an arbitrary probability assignment to an input 
pair and Eo(p, r) is the usual E, function [see (20)] as 
applied to the parallel channel combination. 

Proof: Regarding the parallel channels as a single 
channel with input probability vector r, we get 

[. 1 l+P 
E,,(p, r) = - In C kF rki(PikQ~J1'(l'p) 036) i;l 

Now assume that the input probability assignment uses 
letters from the two channels independently; i.e., ?ki =pkqi, 
wheri: p,, *. . , pK and pl, e.0 , ql are probability assign- 
ments on the individual channels. Substituting rki = pkqi 
in (66) and separating the sum on k and i, we get 

1 1+0 
EO(p, r) = - In c c pkP::(lcp) 

I,1 k 

. [ c qiq::(~+@)]‘+p 
i 

Separating the aum on j and 1, we obtain 

-WP, 4 = -G(P, P) + -G*(P, 9) (67) 

Next, we must show that rki = pkqi maximizes E,,(p, r) 
when p and q maximize E*, and E,**. We know from (41) 
that the p and q that maximize E*, and Eg* must satisfy 

T P:Lcl+‘)ap 2 F o(:+’ ; all Ic 03% 

with equality if pk # 0, where G$ = xk pkP::(‘+p), and 

with equality if qi # 0, where p1 = ~iqiQ:<(l+D’). 
Multiplying (68) and (69) together, we get 

z (Pi&ii) l’(‘+p)(M%)p 2 z (4J’” 

with equality if ?ki = pkqi Z 0. 

(70) 

We observe that (70) is the same as (41) applied to 
the parallel channel combination. Thus this choice of r 
maximizes E,,(p, r), and the theorem is proven. 

Theorem 5 has an interesting geometrical interpreta- 
tion. Let E(p) and R(p) be the exponent and rate for the 
parallel combination, as parametrically related by (34) 
and (35) with the optimum choice of r for each p. Let 
E*(p), R*(p), E**(p), R**(p) be the equivalent quantities 
for the individual channels. From (64) 

E(P) = E*(P) + E**(P) (71) 

R(P) = R*(P) + R**(P) (7% 

Thus the parallel combination is formed by vector addi- 
tion of points of the aame slope from the individual 
E(p), R(p) curvea, 

Theorem 5 clearly applies to any number of channels 
in parallel. If we consider a block code of length N as a 
single use of N identical parallel channels, then Theorem 
5 justifies our choice of independent identically distri- 
buted symbols in the ensemble of codes. 

V. IMPROVEMENT OF BOUND FOR Low RATES 
At low rates, the exponent E(R) derived in Section III 

does not yield a tight bound on error probability. The 
exponent is so large at low rates that previously negli- 
gible effects such as assigning the same code word to two 
messages suddenly become important. In this section, 
we avoid this problem by expurgating those code words 
for which the error probability is high. Equation (7) 
gives a bound on error probability for a particular code 
when the mth word is transmitted. With p = 1, this is 
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This can be rewritten in the form 

(74) 

(75) 

= jj $ df+“(bi Ix,,> Wbi I~,~,) (76) 

Equations (75) and (76) are equivalent through the usual 
arithmetic rule for the product of a sum, where (b,, 9 . . , b,) 
is the channel output alphabet. We define -In q(x,, x,,) as 
the discrepancy between x, and x,,; this forms a useful 
generalization of Hamming distance on binary symmetric 
channels to general memoryless channels. 

Since P,, in (72) is a function of a particular code, 
it is a random variable over an ensemble of codes. In this 
section we upperbound Pr (Pem 2 B), where B is a 
number to be chosen later, and then expurgate code 
words for which P,, 2 B. Using a bar to represent an 
average over the ensemble of codes, we obtain 

Pr(Pdm 2 B) = +,(code) 

&(code) = I 1 if P,, > B 

‘I 0 otherwise 

(77) 

(78) 

We upperbound +,,, by 

q(x &f)s 
Code) 5 c *r-- O<sll (79) 

9?Z’f?77 

Equation (79) is obvious for I$, = 0. If 4, = 1 and s = 1, 
(79) follows from (78) and (74). Decreasing s increases 
all the terms in (79) that are less than 1, and if any term 
is greater than 1, (79) is valid anyway. Substituting (79) 
in (77), we have 

Pr(Pem 2 m I B-” ,Fm UeL, Td)” (80) 

Let the letters of the code words in the ensemble of 
codes be chosen independently by using the probabilities 
Pl, *.. 7 pK so that Pr (x~) = nfzl Pr(x,,), where 
Pr (xmn> = pk for %% = pk. Then using (76), we have 

q(xm, x,,)’ = C Pr(xm)Pr(x,S> 
Xln.Xnr 

(81) 

032) 

Since (82) is independent of m and m’, we can substitute 
it in (80) to get 

Pr(Pem 2 B) 

_< (M - 1)K” [k$ igPkPi(j$ dPE$“]” 

foranys, 0 <s 5 1 (83) 

Now choose B so that the right-hand side of (83) is 
equal to 3. Then 

Pr(P.,,, 2 B) 5 l/2 

B = [2(&l - l)]“” (84) 

If we expurgate all code words in the ensemble for 
which P,, 2 B, where 13 is given by (84), the average 
number of code words remaining in a code is at least 
M/2, since the probability of expurgation is at moat 3. 
Thus there exists a code with M’ > M/2 code words 
with the error probability for each code word bounded by 

P,,, < B < (4M’)“” [g PkPi( c IfFzTi )“]“‘” (85) 

Note that removing a code word from a code cannot 
increase the error probability associated with any other 
code word. If we let 111’ = eNR and define p = l/s, (85) 
can be written 

P,, < exp - N - PR + E,(P, P) - P y 1 
for any p 2 1 (86) 

E,(P, P) = - P In kF pkpt( T z/m)“’ (87) 

We can summarize the preceding results in the follow- 
ing theorem. 

Theorem 6 

Consider a discrete memoryless channel with input 
alphabet a,, . . . , aK, output alphabet b,, . . . , b,, and 
transition probabilities P,, = Pr (bi / ak). Then for any 
block length N and any number of code words M’ = eNR, 
there exists a code such that, for all m, 1 < m 5 M’, the 
probability of decoding error when the mth code word 
is transmitted is bounded by (86) and (87), where 
p = (PI, . . . , pK) in (87) is an arbitrary probability vector. 

The expurgation technique leading to Theorem 6 is 
somewhat similar to an earlier expurgation technique 
applied by Elias [6] to the binary symmetric channel 
and by Shannon [9] to the additive Gaussian noise channel. 
The final bound here is somewhat tighter than those 
bounds and, in fact, the difference between the exponent 
derived here and the earlier exponents is equal to the 
rate, R. 

The interpretation of Theorem 6 is almost identical to 
that of Theorem 1. The exponent rate curve given by (86) 
is the upper envelope of a set of straight lines; the line 
corresponding to each value of p 2 1 has slope -p and 
intercept E,(p, p) on the E axis. The following theorem, 
which is proved in the Appendix, gives the properties of 
E=(P, P). 
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Theorem 7 

Let Pik be the transition probabilities of a discrete 
memoryless channel and let p = (PI, . * . , pK) be a 
probability vector on the channel inputs. Assume that 

# 0 

Then for p > 0, E,(p, p) as given by (87) is strictly 
increasing with p. Also, E,(l, p) = E,(l, p), where E, 
is given by (20). Finally, E,(p, p) is strictly convex up- 
ward with p unless the channel is noiseless in the sense 
that for each pair of inputs, ak and ai, for which pk # 0 
and pi # 0, we have either PjkPj( = 0 for all j or Pik = Pii 
for all j. 

This theorem can be used in exactly the same way as 
Theorem 2 to obtain a parametric form for the exponent, 
rate curve at low rates. Let 

E(R, p) = max - PR +-WP,P) - P++ 1 63) 
P 

Then, for R in the range 

we have the parametric equations in p 

R I ‘“N” _ “zi7”d P) 

E(R, p) = - P aE$pp’ ” + -UP, p)j 

If E,(p, p) is a strictly convex function of p, then (90) 
represents a convex downward curve with a continuous 
slope given by -p. 

The smallest rate for which (90) is applicable is 

=- In c pkpdki (91) 
k,i 

where 

6ki = 

If there are two inputs in use, lc and i, for which there 
are no common outputs (i.e., for which xi PikP,i = 0), 
then the right-hand side of (91) is strictly positive. If 
R + In 4/N is less than this quantity, then E(R, p) is 
infinite. This can be seen most easily by regarding the 
E(R, p), R curve as the upper envelope of straight lines 
of slope -p; the right-hand side of (91) is the limit of 
the R intercepts of these lines as the slope approaches 
- a,. Shannon [lo] has de&red the zero error capacity 

W,P) 
l--l 

R 

(b) 

Co R G 

Cc) 

Fig. 7. Typical exponent, rate curves obtained by using low-rate 
improvement. (a) Ordinary channel. (b) Noiseless channel. 
(c) Channel with zero error capacity. 

of a channel as the greatest rate at which transmission 
is possible with no errors; the right-hand side of (91) 
thus gives a lower bound to zero error capacity. Fig. 7 
shows the exponent, rate curves given by Theorem 6 for 
some typical channels‘. 

If the channel is noiseless in the sense of Theorem 7, 
then it is not hard to see that E(R, p), as given by (88), 
is infinite for R + (In 4)/N < I(p). It is no great achieve- 
ment to show that zero error probability is possible on 
noiseless channels below capacity, but it is satisfying to 
see that this result comes naturally out of the general 
formulation. 

Very little can be said about the maximization of 
E,(p, p) over the input probability vector p. It is possible 
for a number of local maxima to exist, and no general 
maximization techniques are known. 

These low-rate results can be applied to parallel chan- 
nels by the same procedure as used in Section IV. If the 
input probability vector p for the parallel channels 
chooses letters from the two channels independently, 
then E,(p, p) for the parallel combination is the sum of 
the E,(p, p) functions for the individual channels. Un- 
fortunately, E,(p, p) is not always maximized by using 
the channels independently. An example of this, which 
is due to Shannon [lo], is found by putting the channel in 
Fig. 8 in parallel with itself. The zero error capacity 
bound, lim p-rm E,(p, p)/p, for the single channel is In 2 
achieved by using inputs 1 and 4 with equal probability 
in (91). For the parallel channels, (91) yields In 5, achieved 
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Fig. 8. Transition probabilities for a channel wit,h zero error 
capacity. 

by using the five pairs of inputs, (1, l), (2, 3), (3, 5), 
(4, 2), (5, 4), with equal probability. 

Theorem 6 yields a rather interesting result when 
applied to the binary symmetric channel. Letting p be the 
channel crossover probability and letting p = ($, i), we 
rewrite (87) 

E,(P, p) = - P 111 {a + 3 [4g(l - qN”2pI (92) 
Using (92) in the parametric equations, (go), and going 
through some algebraic manipulation, we get 

R+y=l,,:!-H(a) 

where the parameter 6 is related to p by 6/(1 - 6) = 
[4q(l - dl”““, and H(6) = -8 In 6 - (1 - 6) In (1 - 6). 
Equations (93) and (94) are valid for 6 >_ d4q(1 - 4) / 
(1 + 44q(l - P>). 

For large N, 6 in (93) approaches D,,i”/N, where Dmin 
is the Gilbert bound [II] on minimum distance for a 
binary code of rate R. The exponent given by (94) turns 
out to be the same as the exponent for probability of 
confusion between two code words at the Gilbert distance 
from each other. This result has also been established 
for parity-check codes [ 121. 

VI. CONTINUOUS CHANNELS AND INPUT CONSTRAINTS 

A time-discrete amplitude-continuous channel is a 
channel whose input and output alphabets are the set of 
real numbers. It is usually necessary or convenient to 
impose a constraint on the code words of such channels 
to reflect the physical power limitations of the trans- 
mitter. Thus, before discussing continuous channels, we 
discuss the effects of constraints on discrete channels and 
then generalize the results to continuous channels. 

It is possible to include constraints in Theorem 1 by 
choosing the code ensemble in such a way that the average 
code word will satisfy the constraint. There are two 
difficulties with such a procedure. One is the mathe- 
matical technicality that not all of the words satisfy 
the constraint. The other, more important, difficulty is 
that those code words that satisfy the constraint with 
a considerable amount to spare sometimes have such a 
high error probability that the upper bound given by 
Theorem 1 is not exponentially the tightest bound that 
can be derived. 

In this section, we modify Theorem 1 to get the best 
exponential bound for discrete channels with input 
constraints. Then we extend the bound to the continuous 
channel, and, finally, we use the additive Gaussian noise 
channel as an example. 

Let fl = f(a,), ... , fK = f(aK) be a real-valued (positive 
and negative) function of the input letters, aI, . . . , aK. 
We wish to consider codes for which each code word, 
x = (Xl, .. . ) zN), is constrained to satisfy 

If the input letters are voltage levels and if f(aJ = 
2 4 - X0, then (95) is a power constraint, constraining 

each code word to an average power of S, per letter. 
Let p = (pl, . . . , pK) be a probability vector whose 
components satisfy 

kc Pkfk 5 0 

We now define an ensemble of codes in which the prob- 
ability of a code word P(x) is the conditional probability 
of picking the letters according to p, given that the 
constraint --6 5 czZ1 f(z,) 5 0, where 6 is a number 
to be chosen later, is satisfied. Mathematically, 

\’ 

P(x) = u-‘dM rJ P(GL) (97) 

i 1 if - 6 5 C f(z,) 5 0 
4x) = 

n 
1 0 (98) otherwise 

Kw 

where ~(2~) = pk for 2, = ak. We can think of q as a 
normalizing factor that makes P(x) sum to 1. 

We now substitute (99) in (II), remembering that (11) 
is valid for any ensemble of codes. 

P,, I (M - up c c Q-ldx) 
[ Y x 

. ,o p(x,) P7(s,x)~~““‘]“p 0 I p _< 1 (100) 

Before simplifying (loo), we upperbound $(x). 

444 I exp r 5 f&J + [ 6 for r 2 0 (101) n=1 1 
Equation (101) is obviously valid for 4(x) = 0; for 
C+(X) = 1, we have xz=, f(x,,) + 6 2. 0, and (101) is 
still valid. The right-hand side of (101) is mathematically 
more tractable than the left, but still avoids large con- 
tributions to P,, from sequences for which c,, f(x,) is 
too small. 

Substituting (101) in (100) and going through the 
same set of steps that were used from (11) to (20), we 
have proved the following theorem. 
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Theorem 8 Ck p, = 1 and Cic pkfk = 0 are necessary and sufficient 

Under the same conditions as Theorem 1, there exists conditions on the r and p that maximize Eo(p, p, r) when 

a code in which each code word satisfies the constraint the unconstrained maximum does not satisfy c pkfk 5 0. 

Et=, f(x,) 5 0 and the probability of decoding error is When p and r are maximized in this way, and (102) is 

bounded by maximized over p, it can then be shown that for R 2 Rcrit 
(102) has the true exponential behavior with N of the 

P, L B exp - NLWP, P, Y) - PRI (102) best code of block length N satisfying the given constraint. 

EO(p, p, r) = - In 5 
[ 

2 pkP:{(l+P)e’fk 1 l+P The quantity B in (102) and (103) is difficult to bound, 
(103) ,=I k=l but it can be estimated quite easily for large N from the 

78 1+p 

B= $- 0 

central-limit theorem. Let X = X:=1 En, where the E, 

(104) 
are independent and & = flc with probability p,. Then 
Q = Pr [--6 5 S 5 01, and it follows from the central- 

where q satisfies (99). Equations (102)-(104) are valid limit theorem7 that, for fixed 6, 

for any p, 0 5 p 5 1, any r 2 0, any 6 > 0, and any p 
satisfying C pkfk I 0. lim dZ q = ___ 

jj-tc.2 
We note that if r = 0, (103) is the same as (20) except 

for the coefficient B. If the p that maximizes E,,(p, p) 
u; = c f uJ 

(109) 

2 
Pk k (110) 

in (20) satisfies the constraint cfD1 p,f, 5 0, we can 
k 

set r = 0 and get the same exponential error behavior Using (109) in (103), we see that e”/q is approximately 
as in the unconstrained case. Under these circumstances, minimized by choosing 6 = l/r, with the result 
if we choose 6 large enough, then q will approach 3 with rb 
increasing N if clc p,f, = 0 and will approach 1 for 

e -zz:iG 
Q 

a,e7 
c Pkfk < 0. 

(111) 

The more interesting application of Theorem 8 is to 
cases in which the p that maximizes E,,(p, p) in (20) does 

Here, z means that the ratio of the two sides approaches 
I 

not satisfy the constraint c p,f, 5 0; it turns out in this 
as N -+ ~0. If the En are lattice distributions7 then 6 

case that Eo(p, p, r) is maximized by choosing r > 0. 
must be a multiple of the span, and (111) is not valid, 
although B is still proportional to N(1+p)‘2. 

The engineering approach to the maximization of 
E,,(p, p, r) over p, r is to conclude that, since the uncon- Input Constraints at Low Rates 
strained maximum is by hypothesis outside the constraint 
region, the constrained maximum is at the constraint 

At low rates, the bound given by (102) and (103) can 
b 

boundary, Ck ~kfk = 0. We can then find a stationary 
e improved upon in the same way as Theorem 6 im- 

point to the quantity inside the logarithm in (104) by using 
proved upon Theorem 1. In order to do this, we simply 

Lagrange multipliers for the constraints xk p, = 1, 
choose Pr (x,) and Pr (x,,) in (81) to be given by (97). 

xk p,f, = 0. This procedure gives us 
Applying the bound in (101) to (97), and substituting 
in (81), we can simplify the expression to get 

with equality if p, # 0. 

The inequality in (105) is to account for maxima where 
some of the p, = 0, as in Theorem 4. We also require a 
stationary point with respect to r, which gives us 

(1 + p) C a: F pkfkP:i(l+P)er’i = 0 (107) 
1 

If we multiply (105) by pk and sum over Ic, we find 
that X = - (1 + p) cj a:+‘. If we multiply (105) by 

w4 

Using (112) in place of (82) and carrying through the 
same argument used in going from (82) to (87), we get 
the following theorem. 

Theorem 9 

Under the same conditions as in Theorem 6, there 
exists a code for which each code word satisfies both 
En f(z,) I 0 and 

pkfk, sum over k, and compare with (107), we find that 7 If the &have a nonlattice distribution, (109) follows after a little 
y = 0. Combining these results, we obtain algebra from Theorem 2, page 210,. of Gnedenko and Kolmogorov 

[13]. If the En have a lattice distribution, (109) follows from the 

(108) 
theorem on page 233, Gnedenko and Kolmogorov [13]. (A lattice 
distribution is a distribution in which the allowable values of E,, 
can be written in the form dk = h.j(/c) + a, where a and h are 

with equality if pk # 0. 
independent of k and j(k) is an integer for each k. The largest h 
satisfying this equation is the span of the distribution.) For non- 

It can be shown, although the proof is more involved lattice distributions,, & must have a third absolute moment; this 

than that of Theorem 4, that (108) and the constraints 
is trivial for finite Input alphabets and sufficiently general for the 
continuous inputs that we wish to consider. 
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P,, < exp - N h’,(p, p, r, ) - 
Equations (115)-(119) are valid if the Riemann inte- p trals exist for any r > 0, 6 > 0, and p(z) satisfying 

E,(p, p, r) = - p ln C pkpte’(‘t+‘i) 
S”m ~(x)f(x)~ dx 5 0. If .f $~)f~l z 0 and 
$1;:) If(x)1 dx < 03, then e /4 7r upe [see 

k.l 
(114) In the absence of any input constraint, (115)-(119) 

for any p 2 1, r 2 0, 6 > 0, and p satisfying xk p,f, 5 0. still can be applied by setting r = 0, and q = 1. 
For xk p,f, = 0, e’“/q is given by (109)-(111). 

Additive Gaussian Noise 
Continuous Channels 

Consider a channel in which the input and output 
alphabets are the set of real numbers. Let P(y / x) be 
the probability density of receiving y when x is trans- 
mitted. Let p(x) be an arbitrary probability density on 
the channel inputs, and let f(x) be an arbitrary real 
function of the channel inputs; assume that each code 
word is constrained to satisfy cft=, f(xJ 5 0, and assume 
that JZm p(x)f(x) dx = 0. 

Let the input space be divided into K intervals and 
the output space be divided in J intervals. For each k, 
let ak be a point in the 16th input interval, and let p, be 
the integral of p(x) over that interval. Let Pi, be the 
integral of P(y 1 ak) over the jth output interval. Then 
Theorems 8 and 9 can be applied to this quantized channel. 
By letting K and J approach infinity in such a way 
that the interval around each point approaches 0, the 
sums over k and j in Theorems 8 and 9 become Riemann 
integrals, and the bounds are still valid if the integrals 
exist.’ Thus we have proved the following theorem. 

Theorem 10 

Let P(y 1 x) be the transition probability density of 
an amplitude-continuous channel and assume that each 
code word is constrained to satisfy cfSl f(x,) I 0. 
Then for any block length N, any number of code words, 
$1 = ewR, and any probability distribution on the use of 
the code words, there exists a code for which 

P, I B em [ - NLUP, P, r) - PRII (115) m m 
s cs 1 l+P &(P, P, r) = - ln l/(l+P)erf(Z)dX dy -co -m 

As an example of the use of (115)-(119), we consider 
a time-discrete, amplitude-continuous, additive Gaus- 
sian noise channel. For such a channel, when x, = 
b&l, *. . , XmN ) is transmitted, the received sequence, 
y, can be represented as (x,~ + zl, * . * , x,N + ZN) when 
the x, are Gaussian random variables, statistically inde- 
pendent of each other and of the input. We can assume 
without loss of generality that the scales of x and y are 
chosen so that each z, has mean 0 and unit variance. 
Thus 

PM4 = __ 
vke 

- (,J-r)2/2 

We assume that each code word is power-constrained to 
satisfy 

wu 

or 

g f(xmn) _< 0; f(x) = x2 - A (122) 

The quantity A in (121) and (122) is the power SNR 
per degree of freedom. One’s intuition at this point would 
suggest choosing p(x) to be Gaussian with variance A, 
and it turns out that this choice of p(x) with an appro- 
priate r yields a stationary point of Eo(p, p, r). Thus 

p(x) = & e-za’2A (123) 

1116) 
78 1+p ( 1 

If we substitute (120), (122), and (123) in (116), the 

B= $ 
foranyp, Oip<l (117) integrations are straightforward, and we get 

Also, for any p > 1, we have for each code word &,(p, p, r) = rA(1 + p) + l/2 In (1 - 2rA) 

E,(P, P, r) = - P In ss 
p(x)p(Xl)elfw+‘rw) 

-m -m 

+ 5 In (1 - %A + A) (124) 

Making the substitution fi = 1 - 2rA in (124) for sim- 
plicity and maximizing (124) over /3, we get 

(/ 

m 

> 

l/P 

_m v’~(ylx)P(~lx’) dy dx dx’ (119) 

8 For the details of this limiting argument, see Gallager [3], 
Section 8. (125) 
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Using (124) to maximize (116) over p, we get Here, as before, for N large 

P, 5 B exp - NE(R) (126) 

where E(R) is given by the parametric equations in p, 
OlP51, If we let 

E(R) = 4 In p + (1 + P)(l - PI 
2 (127) 

R = +ln(B+$---) w3) 

where, for each p, p is given by (125). 
The constant B in (126) is given by (104) and (ill), 

where I?,, from (122)) is d?A. Thus, as N --f m 

(129) 
Equations (127) and (128) are applicable for 0 5 p 5 1, 
or by substituting (125) in (128), for 

f In 5 1 + -2 + { A 4-T I + --4- < R 5 + In (1 + A) (130) 

The left-hand side of (130) is Ro,it and the right-hand 
side is channel capacity. In this region, E(R) is the same 
exponent, rate curve derived by Shannon,’ and this is 
the region in which Shannon’s upper and lower bound 
exponent agree. Shannon’s coefficient, however, is con- 
siderably tighter than the one given here. 

In order to get the low-rate expurgated bound on 
error probability, we substitute (120), (122), and (123) 
in (119). After a straightforward integration, we get 

E,(p, p, r) = 2rpA + % In (1 - 2rA) 

-I- 5 In (1 - 27-A + 6) (I30 

Letting pZ = 1 - 2rA, we find that E,(p, p, r) is maxi- 
mized by 

/3Z=$[1-$+JY-$] (132) 

Finally, optimizing (118) over p, we find 

P,, < exp - NE(R) 

where E(R) is given by the parametric equations for 
P 2 1, 

E(R) = ~(1 - PJ 

9 The equivalence of (128) and (129) to Shannon’s [9] equations 
(5) and (11) is seen only after a certain amount. of algebra. The 
correspondence between the various parameters is as follows: we 
put Shannon’s quantities on the right and use A, for Shannon’s A: 

A,G( 0,) sins 01 1 
A=A,2 /J= --1;p= 

cos e1 [G( eJ2 sin2 e1 

we can solve (132)-(134) explicitly to get 

E(R) = $ (1 - dI - e-““‘) 

for 

January 

(134) 

(135) 

(136) 

(137) 

The exponent given by (136) is larger than the low-rate 
exponent given by Shannon [9], the difference being 
equal to R’. 

For rates between those specified by (130) and (137), 
we can use either (124) or (131) with p = 1. Either way, 
we get 

P, < B exp - N 

(139) 

Figure 9 shows the E(R) curve given by these equations 
for various SIYR’s. 

I / 

0 0.1 a2 0.3 0.4 0.5 
R/A 

Fig. 9. Exponent, rate curve for additive Gaussian noise. 
A, power SNR. 

APPENDIX 

Both Theorems 2 and 7 require the following lemma 
in their proofs: 

Lemma 

Let a,, . , aL be a set of non-negative numbers and 
let ql, * . . , qL be a set of probabilities. Then 

f(x) = ln (F qza:/‘)z (140) 

is nonincreasing with x > 0 and is strictly decreasing 
unless the a, for which qz # 0 are all equal. Also, f(x) 
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is convex downward for x > 0 and is strictly convex We now apply Holder’s inequality,” which states that 
downward unless all the nonzero a, for which qz # 0 if ai and bj are sets of non-negative numbers, then 
are equal. 

Proof: It is a well-known property of weighted means 
(see Hardy, et al. [14]) that ( c1 qla;)“’ is a nondecreasing 
function of r for r > 0 and is strictly increasing unless the 
a2 for which q2 # 0 are all equal. Let x = l/r; this im- 
plies that f(x) is nonincreasing or strictly decreasing 
with x > 0. Another property of weighted meanslo 
stemming from Holder’s inequality is that if r and t 
are unequal positive numbers, 0 satisfies 0 < 0 < 1, 
and s = 0r + (1 - 0)t, then 

with equality only if all of the nonzero a, for which 
qc # 0 are equal. Let X be defined by 

(142) 
1 l---h -= X+7 s r 

Substituting (142) in (141) and taking the l/s power 
of each side, we get 

(F qiai)l’s 5 (C q,n;)ii’( C q,a:)il-h)” 

Taking the logarithm of both sides of (143) and in- 
terpreting l/r and l/t as two different values of x, we find 
that f(x) is convex downward with strict convexity 
under the stated conditions. 

F(P, P) = c a:‘“; aj = c pkPy+p) (147) I k 

Let p = (pl, . . . , pK) and q = (al, *. . , qK) be arbitrary 
probability vectors, and let 

ai = F pkPy+p), and pj = c qkP$(‘+‘) 
k 

Proof of Theorem 2:” 
For any X, 0 < X < 1, we have 

E~(P, P) = - In 5 5 pkP::(‘+‘) 
j=* ( k=l > 

l+P f(P, XP + (1 - 0) 

From the lemma, ( Ck P~P:~(~+~))~+’ is nonincreasing 
with p. Since I(p) # 0 by assumption, there is at least 
one i for which Pi, changes with lc for pk # 0; for that j, 
(c;pkP ““, :~(l+p))l’p is strictly decreasing, and thus Eo(p, p) 
is strictly increasing with p. From direct calculation we Since CY; and pj must be non-negative, and since x’+~ 

see that E,(O, p) = 0 and consequently it follows that is a convex downward function of x for p 2. 0, x > 0, 

for p > 0 Eo(p, p) > 0 and dEO(p, p)/dp > 0. By direct we can upperbound the right-hand side of (148) 

F ajbi 5 (c a:$( c b:“‘-yA (145) 
3 1 

with equality only if the ai and bi are proportional. 
Summing (144) over j, letting ai and bj be the two terms 
on the right, and using (145), we obtain 

Taking the logarithm of (146) establishes that, Eo(p, p) 
is convex upward and thus that 8’Eo/dpZ 5 0. The 
convexity is strict unless both (144) and (145) are satis- 
fied with equality. But condition 1) of Theorem 2 is the 
condition for (144) to be satisfied with equality and 
condition 2) is the condition for aj and bi to be pro- 
portional when condition 1) is satisfied. 

Proof of Theorem 4: We begin by showing that F(p, p) 
is a convex downward function of p for p 2 0. From (40) 
we can rewrite f(p, p) as 

= T [Xc% + (1 - X)P,l”” (148) 

differentiation, it is also seen that dE,/dp lpzO = I(p). 
Next, let pI and pz be unequal positive numbers, let X 
satisfy 0 < X < 1, and let p3 = Xp, + (1 - X)p,. From 
the lemma, 

( 
A(l+P,) 

> ( > 
(1-X) (l+P.) 

< c pkP;y+pl) F pkP::(l+p’) (144) k 

lo Hardy, et al. [14], Theorem 17. 
11 The proof of convexity given here is due primarily to H. L. 

Yudkin. 

F(P, XP + (I - x)q) L: C x01:+” + (I - x)p;+” 
i 

F(P, XP + (1 - Mq) i ~F(P, P) + (I - W(P, d (14% 

Thus F(p, p) is convex downward with p for p 2 0. 
The general problem of finding necessary and sufficient 

conditions for the vector that minimizes a differentiable 
convex downward function over a convex region of vector 
space defined by a set of inequalities has been solved by 
Kuhn and Tucker [17]. For the special case in which the 

I2 Hardy, et al., op. cit. [14], Theorem 17. 
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region is  constrained by pk 2 0 for 1 5 k  5 li; and 
c  k  Pk = 1, their solution reduces to 

P> W P, 
dPk 

> u for all Ic with equality if p, # 0 (150) 
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Linear Interpolation, Ex trapolation, and Predic tion of 
Random Space-Time F ields  with a Limited Domain 

of Measurement 
D. P. PETERSEN, SENIOR MEMBER, IEEE, AND D. MIDDLETON, FELLOW, IEEE 

Abstract-Formulas are derived for linear (least-square) recon- 
struction of multidimensional (e.g., space-time) random fields from 
sample measurements taken over a limited region of observation. 
Data may or may not be contaminated with additive noise, and the 
sampling points may or may not be constrained to lie on a periodic 
lattice. 

The solution of the optimum filter problem in wave-number 
space is  possible under certain restrictive conditions: 1) that the 
sampling locations be periodic and occupy a secfor of the Euclidean 
sampling space, and 2) that the wave-number spectrum be factorable 
into two components, one of which represents a function nonzero 
only within the data space, the other only within the sector imaging 
the data space through the origin. 
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If the values of the continuous field are accessible before sam- 
pling, a prefiltering operation can, in general, reduce the subsequent 
error of reconstruction. However, the determination of the optimum 
filter functions is  exceedingly di&ult, except under very  special 
c ircumstances. 

A one-dimensional second-order Butterworth process is  used to 
illustrate the effects of various postulated constraints on the 
sampling and filtering configuration. 

T IS OFTEN necessary, as an integral aspect of an 
engineering information-processing system, to derive 
data from measurements of random space-time 

fields of physical variables and to incorporate these 
data into decision procedures. As examples, we may c ite 
the observation of meteorological phenomena, the scan- 
ning of radar or radio-astronomical displays, and the 


