Capacity of a Burst-Noise Channel

By E. N. GILBERT
(Manuseript received March 15, 1960)

A model of a burst-noise binary channel uses a Markov chain with two
states G and B. In state G, transmission is error-free. In state B, the chan-
nel has only probability h of transmitting a digit correctly. For suitably
small values of the probabilities, p, P of the B — G and G — B transitions,
the model simulates burst-noise channels. Probability formulas relate the
paramelers p, P, h to easily measured statistics and provide run distribu-
tions for comparison with experimental measurements. The capacity C of
the model channel exceeds the capacity C(sym. bin.) of a memoryless sym-
metric binary channel with the same error probability. However, the differ-
ence 1s slight for some values of h,p,P; then, time-division encoding schemes
may be fairly efficient.

1. INTRODUCTION

In information theory the symmetric binary channel is the classical
model of a noisy binary channel. This channel generates a sequence of
binary noise digits z,, which it adds (modulo 2) to input digits x,
to produce output digits , = . + 2, . The symmetric binary channel
is memoryless; a sequence of independent trials produces the noise digits
2z, . Each trial has the same probability P(1) of producing an error and
probability 1 — P(1) = P(0) of no error. The capacity C(sym. bin.)
of this channel is well known (see Shannon'):

C(sym. bin.) = 1 4+ P(0) log. P(0) + P(1) log. P(1).

Channels with memory occur in practice. If radio static or switching
transients produce the noise, the errors group into isolated bursts (sev-
eral errors close together). Independent trials fail to simulate such a
burst-noise. Section IT of this paper presents a model of a burst-noise
channel that is simple enough to permit calculation of the channel ca-
pacity €' (see Sections IIT and VI). Sections IV and V give run distribu-
tions, the covariance function and other probability formulas as aids to
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testing the mode!’s applicability and to picking model parameters which
match measured statistical data.

Of all binary channels with a given error probability P(1), the sym-
metric binary channel has least capacity. Indeed, if an encoding for
signaling over the symmetric binary channel at a rate R is known, then
N sources can use this encoding in time-division multiplex at rates R/N,
each over a burst-noise channel. Here, N must be large enough so that
noise digits N apart are nearly independent. Time division protects
against other noise patterns besides bursts; still less redundant schemes
are possible. The possible increase in signaling rate ¢ — C(sym. bin.)
will be seen to be often surprisingly small (see Fig. 4).

II. THE MODEL

A Markov chain with two states can be used to generate bursts. The
two states will be called G (for good) and B (for bad or for burst). In
state G the noise digit is always z, = 0. In state B a coin is tossed to
decide whether z, will be 0 or 1.

The coin-tossing feature is included because actual bursts contain
good digits interspersed with the errors. In the formulas that follow a
biased coin is allowed (probability h of making no error in state B).
All computations given here take A = 0.50, which seems a reasonable
value,

After producing the noise digit z, , the Markov chain makes a transi-
tion to prepare for z,4, . To simulate burst noise, the states B and G
must tend to persist; i.e., the transition probabilities P = Prob(G — B)
and p = Prob(B — G) will be small and the probabilities @ = 1 — P,
¢ = 1 — p of remaining in G and B will be large. Fig. 1 is a transition
diagram for the Markov chain.

Runs of G will alternate with runs of B. The run lengths have geo-
metrie distributions with mean 1/P for the G-runs and mean 1/p for

P

P

Fig. 1 — Transition diagram for the Markov chain.
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the B-runs. The geometric distribution of G-runs seems reasonable. If
the various clicks, pops and crashes, which might cause errors on a real
channel, are not related to one another, then the times between such
events will have the geometric distribution (see Feller,” Section XII1.9).
Only mathematical simplicity justifies the geometric distribution of
B-runs; one might construet more accurate models. Section 1II men-
tions one way of elaborating this one; however, complicated models may
be useless without adequate statistical data to determine all the model
parameters. Section V will illustrate some of the difficulties in determin-
ing just the three parameters P, p and h,

The following 500 digits form a typical sample of burst-noise with
parameters P = 0.03, p = 0.25, h = 0.3, produced hy using random
numbers:

0%110'"10**110101110"110*10*10*110™10%
110°10010*1011010%110*10™10*11011101101110°,

The exponents are run lengths; i.e., 0™ denotes a run of 62 consecutive
zeros. As expected, long runs of good digits separate the bursts.

The 500-digit sample illustrates the impossibility of reconstructing
the sequence of states from the sequence of digits. In portions of some
of the long runs of zeros, the Markov chain was in state B; this went
unnoticed because the coin tosses produced only zeros. The sample
also contains one burst 110°1 in which a short sojourn into state G pro-
duced three of the four zeros.

The fraction of time spent in state B is P(B) = P/(p + I’). Since
errors oceur only in state B, and then just with probability 1 — &, the
error probability is

P
p+ P

P(1) = (1 — P (B) = (1 —h) (r

1II. THE CAPACITY

Let H denote the entropy of the sequence of noise digits - - -,z; 25 ,- -+ .
Tor all inputs  to the burst-noise channel, the conditional entropy,
H.{(y), of the output y knowing the input x is the same:

H.(y) = H.
A simple argument then shows that the eapacity € of the burst-noise

channel is ¢ = 1 — H (a monogram source with probabilities 0.5 for
0 and 0.5 for 1 attains the rate ().
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Shannon' (Section 7) gives a simple way of computing an entropy
H from state probabilities [(G), P(B) here] and transition probabil-
ities. MeMillan® (Section 2.0) notes that this result tacitly assumes that
the state sequence is reconstructible from the digit sequence. Since a
reconstruction is impossible here, H has a more complicated formula.

A definition of H is

H=1lim ., Pz, - -zv)h(z, - 2n), (2)
Nsw zi=0,1
with
h(z1, - 25) = — Z Py |z, 2x) loga P(zng | 21, - j28). (3)
N 41=0

If z; = 1, the corresponding state is certainly B and
P(ziga, 245 [ 21,0 2i1,1) = P(2ia 0 2ieg | 1) (4)
follows for all 7 = 1. Then,
Plewp |21y 2ic 2o, - ,2w) = Plavp | 1Lz, 0 v j2w)
follows and also
hzy, - zic1, 200, 2w) = B(L,ziga,0 - )2n).

Thus, just the number of consecutive zeros at the end of the block
(21, - - zy) determine h(z ,- - -,2x) completely. Each of the 2"A’s in the
sum (2) is one of the N 4+ 1 numbers

h(1),h(10),- - -,h(10%),- - - R (10" ") h(OV)

{(again exponents denote run lengths). After using this simplification in
(2), summing and letting N — o, the result is

H = iﬂp(mf‘)h(mx). (5)

The terms of (5) involve probabilities of runs of zeros. Section IV
will give a formula for the conditional probability, «(K), of a run of
K or more zeros following a one, that is, u(K) = P(0* | 1). The con-
vention #(0) = 1 will be adopted. Then, in (5),

P(10%) = P(1)u(K)

[(1) gives P(1)]. Also, (3), together with P(0|10%) = w(K 4+ 1)/u(K),
provides an expression for A(10%):
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w(K +1) 1 w(K + 1)

h(10%) = — wWK) 8 w(K)

(6)
B [1 u(K + 1)} o ’:1 _u(K + 1)]
w(K) g2 WK |
Using (6), the terms of (5) rearrange into
=14+ P(1) ;}v(K) log, v(K), (7)

where v(K) = w(K) — u(K + 1). Section IV contains formulas for
v(K). Although (7) seems simpler than (5) and (6), it converges slowly.
In Section V the computation method uses a modification of (5) and
(6).

Note that »(K) = P(0¥1|1). Another derivation of (7) proceeds
by showing that the noise sequence consists of successive blocks of
digits of the form 1,01,001,- - -,0%1,- - -, chosen independently, and with
probability »(K) for the block 0°1. Then — > »(K) log: v(K) is the
information per block and P(1) is the average number of blocks per
digit.

Tquations (5), (6) and (7) apply to certain other channels. These
formulas followed just from (4), which holds whenever the lengths of
suceessive runs of zero are independent. Whenever such independence
can be assumed, a more elaborate model might use »(0),0(1)2(2), -,
directly as parameters. Then P(1) in (7) is

P(1) = ij K+ Do(K)|™

K=0
As a check, the symmetric binary channel has »(K) = P[P (O]F
and (7) sums to C'(sym. bin.).
IV. PROBABILITIES
Recurrent events theory (Feller,” Section XIIT) provides some prob-
abilities needed in Sections V and VI.
4.1 Recurrence Times for State B

Let fx denote the conditional probability, in state B, that the first
return to B will happen at step K:

= P(G"'B|B).
Then fi = ¢, fo = pP and fx = pQ P for K = 2. It is convenient to
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make these probabilities the coefficients of a generating function F({)
of recurrence time probabilities:

” _ K _ 'thJ
F(t) = 2 0el" = gl + {5 (8)

For example, the probability fx'™ that the mth return to B happens
at step K has the generating function

fo(m)tlf — [F(t)]m (9)
K=1
The probability of no return to B in k steps is pQ“". Then the prob-

ability s( K,m) of exactly m returns to B in K steps (but not necessarily
a return on step K) is

K—m
S(I{,m) — fK(m) + KZI fK_k(m)in'—ll

The corresponding generating function is

= . E _ Pl ; m
2 s(Km)t* = (1 + 1o Qt) [F(£)]". (10)

4.2, Recurrence Times for Ones

Starting from a one (and hence from B), the next one must oceur at
a return to B, but not necessarily the first return. The probability that
the next one occurs at the mth return to B and at step K is

hm—l(l _ h)fﬁ(m)-

Then, recurrence time probabilities for ones are

i'(]( - 1) = P(0K7!1 ' 1) _ Z hm—l(l _ h)f’({rn).

m=1
Equation (9) now provides the generating function V(¢) = > o(K)t™:

(1 — hF(1)

I — hF(1) - an

vt =
Likewise, the probability «(K) that no one appears in the next K
steps is

w(K) = 2 s(Km)h",

m
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which has generating function

R R ) .
YOS = o = wrwr 2
By (8),
14— Q .

where D(t) = 1 — (Q + hq)t — h(p — Q).
Factor the quadratie D(t):

D{t) = (1 — JO)(1 — Lt),
where 2J = Q + hq + vV (Q + hq)? + 4h(p — Q) and L is the same

expression with negative square root. Now, (13) becomes

, _1+(1)"Q)t‘-( J o L)
U =~ J — L 1—Jt 1-=L)"

The coefficient of t* in the power series for U(t) is

(J4+p—QJ = (L+p—QL"
J — L :

wlK) = (14)

To find a recurrence formula for w(K), write (13) as D(OU(L) = 1 +
(p — @)t and equate coefficients of ¢*:

w(K)y = (Q + hq)u(K — 1) + hip — Q)u(K — 2) (15)
for K = 2,3,--- . Initial values are
wu(0) =1, u(l) = p + hg.

Tor ealeulating, (15) is more convenient than (14).
Similar steps lead from (11) to

oK) = 2N+ p = QU = L+ p = QLT (16)

IFor K = 23, -+, »(K) also satisfies (15), but with initial values

p(0) = (1 — h)g, (1) = (1 — h)(pP + he').

4.3. Covariance

The covariance funection of this binary noise is just a joint probability
r(K) = Prob(zy = 1, zx = 1), A formula for the generating funetion
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R(t) = D r(K) is
R(t) = P() {L+ V(@) + V() + -}

P(1)
1 —tV(t)
_ P(1)D(t)

(1=l + (p — Q)

The term P(1)[{V(¢)]™ in the sum generates the probabilities of finding
2o = 2x = 1, with exactly m — 1 of the digits z; ,- - -,zx— equal to 1.

An explicit formula for r(K) follows by expanding R(f) in a power
series:

r(0) = P(1),

K 17
T(K):P(I)QI:I-FP(Q%P)}, K=12,--. (17)

V. PARAMETER MATCHING

The three parameters p, I°, h are not directly observable, so methods
of deducing them from statistical measurements must now be considered.
We will express p, P, h as functions of three other easily estimated noise
parameters. One suitable set of three parameters (involving only trigram
statistics) is

_ P(111)
 P(101) 4+ P(111)°

Here, ¢ is the conditional probability of finding the place between two
ones filled by a one, and it has the expression

a=P(1), b=P(1]1), ¢

(1 — k)¢
¢+ pP
Solving for p, P, h in terms of a, b, ¢,
1—p=g= _ac__iﬁ
p=1 2ac — b(a + ¢)’
h=1-1C, (18)
q
=__ %
P 1—h—a’

If A = 0.5 is assumed, then ¢ = 2b and no ¢ measurement is needed.
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For illustration, the 500-digit sample in Section II contains thirty-
eight 1’s, fifteen 11’s, seven 101’s, and three 111’s. Estimates of a, b, ¢
are a = 38/500, b = 15/38, ¢ = 3/10. With these estimates, (18) gives
ridiculous parameters (p is negative). The trouble is that 500 digits
provide too small a sample. In particular, the estimate ¢ = 3/10, based
on only 10 observations, is far from the correct value ¢ = 0.49. If h =
0.50 is assumed, the estimates become p = 0.21, P = 0.036 (compare
with true values p = 0.25, P = 0.03).

After finding p, P, and h, the results of Section IV suggest compari-
sons between run measurements and the probabilities w(K) or r(K).
T'ig. 2 shows curves of some run probabilities P(10%) = P(1)u(K) (on
a log scale) versus K. As shown by (14), these curves straighten out for
large K with slopes determined by /.

04
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Fig. 2 — Typical run distributions, with & = 4.
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Data on runs of zero can provide another estimate of p, °, h. The
fraction of runs of length K or more is an estimate of u(K). By (14),
one expects to find constants .J, L, A such that

wW(K) = AJ" + (1 — A)LF. (19)

These constants are easily found by fitting a curve of the form (19) to
the measured run distribution. First, 4 and .J are chosen to give the
correct behavior AJ* for large K. Afterward, L is chosen to improve
the fit for small K. Expressions for p, P, h in terms of 4, J, L are

thi
J— A — L)’
_(=-L)a-=.J
P= 1 —h ’

p = A(I—L)+(1—J}( h)
1 =1
Iig. 3 shows run distributions for two different telephone circuits
transmitting binary data. These were two of the thousands of cireuits
in a recent large-scale program of telephone eireuit measurements (see
Alexander, Gryb and Nast.* ¥ Channel 1146 carried an exchange call; it
used loaded eable and only local exchange switching facilities. Channel
1206 was 2 toll channel longer than 500 miles; it used IK-carrier, a radio
path, and loaded cables at the ends. These channels were chosen as
e\amplea because they were two of the noisiest cases measured, and
thus provided plenty of data. The step functions in Fig. 3 show the
fractions of zero runs of lengths K or more from a sample of about 130
consecutive zero runs for each channel. The smooth curves show the
curves (19) that fit these distributions. In the case of channel 1146,
wW(K) = 0.9946" provided a good fit; then channel 1146 was well ap-
proximated by a symmetric binary channel with p = 0.9946. The results
for channel 1296 look more like Iig. 2 . The straight line asymptote is
the funection A.J* with parameters 4 = 0.184 and J = 0.99743 chosen
to approximate the data for large K. The parameter value L = 0.81
makes the curve (19) fit the data for small K. These values of A, J, L
provide the estimates

h=081, P =0003 p= 003

* The curves appearing in Ref. 4 show only combined data from hundreds of
channels. Since these channels differ greatly among themselves, the curves in
Ref. 4 do not have the form (19).
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Fig. 4 — Capacities €' and C(sym. bin.) as functions of p,P, with h = }.

The 500-digit sample of Section II provides a run distribution with
more statistieal fluctuations than in Fig. 3 because of the smaller sample
size. The curve fitting yields A = 0.385, J = 0.961, L = 032 and h =
0.432, P = 0.047, p = 0.232.

YI.

By (14) and (16), u(K) and #(K) behave like multiples of J* for
large K. In the most interesting cases P is small and J is nearly 1.0
(J = @ always); then (7) converges slowly. However,

w(K +1)
w(K)

CAPACITY COMPUTATIONS

J

for large K and, by (6),
h(10%) - —J loge J — (1 — J) loge (1 — J) = hy.

Here, h(10¥) approaches its limiting value h, rapidly; indeed, L =
Q + hg — J = hq. When h = 0.5, typical values of L are about 0.5 or
less, and the L® term in (14) becomes negligible when K reaches 10 or
15. Thus, the approximation h(10%) = ho is good for all K = K, where
K, is only moderately large. The corresponding terms of the infinite
series (5) sum to

> P(10%)h

K=Kg

WP(1) 3 u(K)

K=K

Kp—1

£ ]

ho[l — P(1)
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The last step used the identity
P(1)[u(0) + u(1) + w(2) + ---] =1,

which follows from (13) with ¢ = 1. Then, the first K, — 1 terms of
(5), together with the correction just derived, suffice to compute C'
accurately.

Fig. 4 shows contours of constant C and C(sym. bin.) versus p,P for
h = 0.5. [C(sym. bin.) was computed with P(1) given by (1)]. If the
average burst length is not large (p not too small), the difference between
the two capacities is slight.

The author is indebted to Miss M. A. Lounsberry for the computa-
tions shown in Figs. 2 and 4.
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