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1 Introduction

This tutorial motivates the use of Recursive Methods in Linear Least Squares
problems, specifically Recursive Least Squares (RLS) and its applications.
Section 2 describes linear systems in general and the purpose of their study.
Section 3 describes the different interpretations of Linear Equations and Least
Squares Solutions. Section 4 motivates the use of recursive methods for least
squares problems and Sections 5 and 6 describe an important application of
Recursive Least Squares and similar algorithms.

2 Linear Systems

Linear methods are of interest in practice because they are very efficient
in terms of computation. They also provide insight into the development
of many non-linear algorithms. Linear models are the simplest non-trivial
approximations to a complicated non-linear system. Linear models can be
broadly classified into two types, which are outlined in the next two sub-
sections.

2.1 Continuous Time Linear Dynamical Systems

A Continuous Time Linear Dynamical System is modeled as

ẋ(t) = A(t)x(t) +B(t)u(t), y(t) = C(t)x(t) +D(t)u(t),

where ẋ = dx
dt

and x is the state of the system, u is the input to the system,
y is the output of the system, and A, B, C, and D are matrices which define
the system.

2.2 Discrete Time Linear Dynamical Systems

A Discrete Time Linear Dynamical System is modeled as

x(t+ 1) = A(t)x(t) +B(t)u(t), y(t) = C(t)x(t) +D(t)u(t),

where x, u, y, A, B, C and D are as defined in Section 2.1.
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3 Least Squares

Consider a system of linear equations given by

y = Ax,

where x ∈ Rn, A ∈ Rmxn and y ∈ Rm1. This system of equations can be
interpreted in different ways. For example, y is a measurement or observation
and x is an unknown to be determined, or x is an input to a linear system and
y is the output. In general, y is observed and we need to determine x which is
likely to have caused that observation. The system is called over-determined
if m > n. In this case, the existence of a solution is not guaranteed, and
we seek to find an approximate solution such that the mean squared error
||y − Ax||22 is minimized. This is called the least squares approximate solution,
denoted by x̂ls, and can be found by applying the orthogonality principle [3].
Let ai, for i = 1, . . . , n denote the columns of A. Then, the standard inner
product 〈Ax̂ls − y | ai〉 = 0, ∀ i. This can be written as ATAx̂ls − ATy = 0,
which gives the least squares approximate solution2

x̂ls = (ATA)−1ATy. (1)

The matrix (ATA)−1AT is a left inverse of A and is denoted by A†. In
general, it is computed using matrix factorization methods such as the QR
decomposition [3], and the least squares approximate solution is given by
x̂ls = R−1QTy.

4 Recursive Methods

We motivate the use of recursive methods using a simple application of linear
least squares (data fitting) and a specific example of that application.

4.1 Data Fitting

Given a set of basis functions f1, . . . , fn : S → R, and a set of measurements
(ui, yi), i = 1, . . . ,m where ui ∈ S, we need to find coefficients x1, . . . , xn ∈ R,

1We use real numbers to focus on the least squares problem. The methods and algo-
rithms presented here can be easily extended to the complex numbers.

2This can be easily generalized to a weighted least squares problem, using the weighted
inner product defined by 〈u | v〉W = vT Wu, which gives the least squares approximate
solution x̂ls = (AT WA)−1AT Wy.
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such that the total square fitting error

E =
∑

j

(
yj −

∑
i

xifi(uj)

)2

(2)

is minimized. This can be written in matrix notation as a least squares
formulation,

minimize E = ||y − Ax||22 ,

where y =
[
y1 y2 . . . ym

]T
, x =

[
x1 x2 . . . xn

]T
and

A =


f1(u1) f2(u1) . . . fn(u1)
f1(u2) f2(u2) . . . fn(u2)

...
...

. . .
...

f1(um) f2(um) . . . fn(um)

 .
The columns of A, denoted by ai, i = 1, . . . , n are called regressors. There
are two interesting cases when we need to update the least squares approxi-
mation, and are outlined in the next two sub-sections.

4.1.1 Growing sets of Regressors

If we need to refine our estimate of y, by adding another function fn+1 to the
basis, the new least squares approximate solution can be found very efficiently
using a recursive algorithm. In this case, the updated approximation can be
computed by adding one more step to the QR decomposition of A. Let qi

and ri denote the ith column of Q and R respectively. Then,

qn+1 =
an+1 −

∑n
i=1 〈qi | an+1〉

||an+1 −
∑n

i=1 〈qi | an+1〉||
rn+1 =

[
〈q1 | an+1〉 〈q2 | an+1〉 . . .

]T
,

(3)

where, 〈· | ·〉 denotes the standard inner product. The matrices Q and R
are updated using qn+1 and rn+1 respectively. The updated least squares
approximate solution is then given by R−1QT . This is illustrated using the
example in Section 4.2.

4.1.2 Growing sets of Measurements

If we need to refine the least squares estimate due to a new observation
(um+1, ym+1), RLS provides an efficient way to update the least squares ap-
proximate solution. It is useful to consider the least squares solution in terms
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of the rows of A. Denote the ith row of A by ãi. Then xls = (ATA)−1ATy =(∑
i ãiã

T
i

)−1 ·(
∑

i yiãi). This would result in a very efficient method for com-
puting the updated least-squares approximate solution, using the Sherman-
Morrison formula [2]. The updated least square estimate is given by(

n∑
i=1

ãiã
T
i + ãn+1ã

T
n+1

)−1

·

(
n∑

i=1

yiãi + yn+1ãn+1

)
The first term is computed efficiently using the Sherman-Morrison formula
as shown in 4. (

A+ uvT
)−1

= A−1 − A−1uvTA−1

1 + vTA−1u
, (4)

for an invertible matrix A and any vectors u and v of the appropriate di-
mensions. This is illustrated using the example in Section 4.2.

4.2 Example

Generate a least squares fit for the data points (0, 0), (1, 1), (4, 2), (6, 3) and
(9, 4), using a polynomial of degree 2. Then,

• update the solution to fit the data with a polynomial of degree 3.

• update the solution if there is a new data point (16, 5).

Here, f1(x) = 1, f2(x) = x, f3(x) = x2, y =
[

0 1 4 6 9
]T

, and

A =


1 0 0
1 1 1
1 2 4
1 3 9
1 4 16


The QR factorization of A is given by

Q =


−0.44721 −0.63246 0.53452
−0.44721 −0.31623 −0.26726
−0.44721 0.00000 −0.53452
−0.44721 0.31623 −0.26726
−0.44721 0.63246 0.53452

 , R =

 −2.2361 −4.4721 −13.416
0.0000 3.1623 12.649
0.0000 0.0000 3.7417



The least squares approximate solution to y = Ax is given by xls = R−1QTy =[
−0.17143 1.4429 0.21429

]T
and the least squares fit is given by y =
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−0.17143 + 1.4429x+ 0.21429x2. For a polynomial of degree 3, the solution
can be easily updated by finding the modified Q and R, given by 3. Note that
only one new column has to be computed, to update Q and R. The updated

solution is given by xls =
[
−0.071429 0.72619 0.71429 −0.083333

]T
and the polynomial fit is given by y = −0.071429 + 0.72619x+ 0.71429x2−
0.083333x3. The solution to the original problem could have been computed
by

xls =

(∑
i

ãiã
T
i

)−1

·

(∑
i

yiãi

)

=

 5 10 30
10 30 100
30 100 354

−1  20
63
215


=

 0.88571 −0.77143 0.14286
−0.77143 1.2429 −0.28571
0.14286 −0.28571 0.071429

 20
63
215

 .
This solution can be easily updated to

xls =

 5 10 30
10 30 100
30 100 354

+

 1
5
25

 [ 1 5 25
]−1 20

63
215

+ 16

 1
5
25

 ,

which can be computed efficiently using the Sherman-Morrison formula.

5 The Recursive Least Squares Filter

Consider the scenario of transmitting a signal u[t] over a noisy fading channel.
Assume that u[t] = 0, for t < 1 (the pre-windowing approach [3]). We can
model the received signal x at time t by

x[t] =
m−1∑
k=0

ci[k]u[t− k] + n[t],

where ci[k] are the channel parameters and m is the memory of the channel.
The transmitted signal is estimated by the use of an adaptive filter h. In
other words, we are filtering a received signal x[t], using a filter with impulse
response h[t], of length m, to produce an output that matches u[t]. Denote
the output of the filter by y[t]. Then,

y[t] =
m−1∑
i=0

ht[i]x[t− i],
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and the error at each time instant t is given by

e[t] = y[t]− u[t].

The problem is to minimize the weighted least squares error function

E =
t∑

i=1

λt−i |e[i]|2 . (5)

The parameter λ, called the forgetting factor [1], is chosen according to the
specific application. The squared error is the induced norm of the weighted
inner product defined by

〈u | v〉Λt
= vT Λtu,

where Λt = diag (λ0, λ1, . . . , λt−1). Define y[t] =
[
y[t] y[t− 1] . . . y[0]

]T
,

u[t] =
[
u[t] u[t− 1] . . . u[0]

]T
and h[t] =

[
ht[0] ht[1] . . . ht[m− 1]

]T
.

The filtered output can be written as

y[t] = Ath[t] ≈ u[t],

where

At =



x[1] 0 0 . . . 0
x[2] x[1] 0 . . . 0
x[3] x[2] x[1] . . . 0

...
...

...
. . .

...
x[m] x[m− 1] x[m− 2] . . . x[1]

...
...

...
. . .

...
x[t] x[t− 1] x[t− 2] . . . x[t−m+ 1]


The weighted least squares solution is given by h[t] =

(
AT

t ΛtAt

)−1
AT

t Λtu[t].

Define q[i] =
[
x[i] x[i− 1] . . . x[i−m+ 1]

]T
,

p[t] = AT
t Λtu[t] =

t∑
i=1

λt−iq[i]Tu[i], and

Rx[t] =
t∑

i=1

q[i]Λtq[i]T .

(6)

Then, h[t] = Rx[t]p[t]. We now derive a recursive method to compute Rx[t]
and p[t] from Rx[t− 1] and p[t− 1]. From 6, it follows that

p[t] = λp[t− 1] + q[t]u[t]

Rx[t] = λRx[t− 1] + q[t]q[t]T
(7)
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Define P [t] = Rx[t]−1. From 7 and the Sherman-Morrison formula , we can
compute

Rx[t]−1 = P [t] = λ−1P [t− 1]− k[t]qT [t]λ−1P [t− 1],

where

k[t] =
P [t− 1]q[t]

λ+ qT [t]P [t− 1]qT [t]
(8)

is known as the Kalman Gain vector. Rearranging the terms of 8, we get
k[t] = P [t]q[t]. From this, we obtain

h[t] = h[t− 1] + k[t]
(
u[t]− qT [t]h[t− 1]

)
The quantity ε[t] = u[t] − qT [t]h[t − 1] represents the filter error when the
output of the filter at time t is used with the filter coefficients from time
t − 1. As the filter has not been updated using the data at time t, this
error is sometimes called the a-priori estimation error. To get the algorithm
started, it is common to set P [0] = δ−1I, for some small positive δ and
h[0] = 0.

6 Other Algorithms

A similar recursive filter is the Least Mean Squares (LMS) filter [3]. It
is computationally much faster when compared to the RLS filter, but the
convergence of the LMS filter is much slower than that of the RLS filter. An
extension to the RLS filter is the Kalman filter [3].
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