ECE 590.10: Graphical Models and Inference
Lecture: Marginalization and Factor Graphs

Henry D. Pfister

Department of Electrical and Computer Engineering
Duke University
Outline

1. Marginalization
2. Factorization
3. Factor Graphs
4. Probability
The Importance of Marginalization (1)

- Consider a random vector \((X_1, X_2, \ldots, X_6) \in \mathcal{X}^6\) where
 - the vector is indirectly observed via the random variable \(Y\)
 - the posterior probability given \(Y = y\) satisfies:

\[
P(X_1 = x_1, X_2 = x_2, \ldots, X_6 = x_6 | Y = y) \propto f(x_1, x_2, x_3, x_4, x_5, x_6)
\]
The Importance of Marginalization (2)

- Marginalizing down to X_1 gives the a posteriori probability (APP)

$$P(X_1 = x_1 | Y = y) \propto \sum_{(x_2, \ldots, x_6) \in \mathcal{X}^5} f(x_1, x_2, x_3, x_4, x_5, x_6)$$

- The maximum a posteriori (MAP) decision for X_1 is given by

$$\hat{x}_1 = \arg \max_{x_1 \in \mathcal{X}} \sum_{(x_2, \ldots, x_6) \in \mathcal{X}^5} f(x_1, x_2, x_3, x_4, x_5, x_6)$$

- For many problems, computing the marginalization sum is a significant challenge
The Importance of Factorization (1)

• Simply summing requires $|X|^5$ operations for each $x_1 \in X$:

$$g_1(x_1) \triangleq \sum_{x_2 \in X^5} f(x_1, x_2, x_3, x_4, x_5, x_6)$$

• Thus, we need $|X|^6$ operations

• If f factors as follows, then marginalization can be simplified:

$$f(x_1, x_2, x_3, x_4, x_5, x_6) = f_1(x_1, x_2, x_3)f_2(x_1, x_4, x_6)f_3(x_4)f_4(x_4, x_5)$$
The Importance of Factorization (2)

For example, we can write $g_1(x_1)$ as:

$$g_1(x_1) = \sum_{x_2^6} f_1(x_1, x_2, x_3) f_2(x_1, x_4, x_6) f_3(x_4) f_4(x_4, x_5)$$
The Importance of Factorization (2)

For example, we can write $g_1(x_1)$ as:

\[
= \sum_{x_2^6} f_1(x_1, x_2, x_3) f_2(x_1, x_4, x_6) f_3(x_4) f_4(x_4, x_5) \\
= \sum_{x_2^5} f_1(x_1, x_2, x_3) f_3(x_4) f_4(x_4, x_5) \left[\sum_{x_6} f_2(x_1, x_4, x_6) \right]
\]

This implementation requires roughly $2^{|X|} + 5^{|X|}$ operations.
For example, we can write $g_1(x_1)$ as:

\[
= \sum_{x_2^6} f_1(x_1, x_2, x_3) f_2(x_1, x_4, x_6) f_3(x_4) f_4(x_4, x_5)
\]

\[
= \sum_{x_2^5} f_1(x_1, x_2, x_3) f_3(x_4) f_4(x_4, x_5) \left[\sum_{x_6} f_2(x_1, x_4, x_6) \right]
\]

\[
= \sum_{x_2^4} f_1(x_1, x_2, x_3) f_3(x_4) \left[\sum_{x_5} f_4(x_4, x_5) \right] \left[\sum_{x_6} f_2(x_1, x_4, x_6) \right]
\]

This implementation requires roughly $2|X|^3 + 5|X|^2$ operations.
The Importance of Factorization (2)

For example, we can write $g_1(x_1)$ as:

$$
= \sum_{x_2^6} f_1(x_1, x_2, x_3) f_2(x_1, x_4, x_6) f_3(x_4) f_4(x_4, x_5)
$$

$$
= \sum_{x_2^5} f_1(x_1, x_2, x_3) f_3(x_4) f_4(x_4, x_5) \left[\sum_{x_6} f_2(x_1, x_4, x_6) \right]
$$

$$
= \sum_{x_2^4} f_1(x_1, x_2, x_3) f_3(x_4) \left[\sum_{x_5} f_4(x_4, x_5) \right] \left[\sum_{x_6} f_2(x_1, x_4, x_6) \right]
$$

$$
= \sum_{x_2^3} f_1(x_1, x_2, x_3) \left[\sum_{x_4} f_3(x_4) \right] \left[\sum_{x_5} f_4(x_4, x_5) \right] \left[\sum_{x_6} f_2(x_1, x_4, x_6) \right]
$$
The Importance of Factorization (2)

For example, we can write $g_1(x_1)$ as:

$$= \sum_{x_2} f_1(x_1, x_2, x_3) f_2(x_1, x_4, x_6) f_3(x_4) f_4(x_4, x_5)$$

$$= \sum_{x_2} f_1(x_1, x_2, x_3) f_3(x_4) f_4(x_4, x_5) \left[\sum_{x_6} f_2(x_1, x_4, x_6) \right]$$

$$= \sum_{x_2} f_1(x_1, x_2, x_3) f_3(x_4) \left[\sum_{x_5} f_4(x_4, x_5) \right] \left[\sum_{x_6} f_2(x_1, x_4, x_6) \right]$$

$$= \sum_{x_2} f_1(x_1, x_2, x_3) \left[\sum_{x_4} f_3(x_4) \left[\sum_{x_5} f_4(x_4, x_5) \right] \left[\sum_{x_6} f_2(x_1, x_4, x_6) \right] \right]$$

$$= \sum_{x_2} \left[\sum_{x_3} f_1(x_1, x_2, x_3) \right] \left[\sum_{x_4} f_3(x_4) \left[\sum_{x_5} f_4(x_4, x_5) \right] \left[\sum_{x_6} f_2(x_1, x_4, x_6) \right] \right]$$

This implementation requires roughly $2|\mathcal{X}|^3 + 5|\mathcal{X}|^2$ operations.
The Factor Graph and Variable-Leaf Removal

Graphical Marginalization:

- Factor graph G shows variables involved in each factor
- If the factor graph is a tree, then marginalization by variable-leaf removal is efficient
- After marginalization of a variable leaf, the variable is removed and its effect is absorbed into the parent factor node.
- This costs $|\mathcal{X}|^d$, where d is the degree of updated factor node

$$g_1(x_1) = \sum_{x_2^5} f_1(x_1, x_2, x_3) f_3(x_4) f_4(x_4, x_5) \left[\sum_{x_6} f_2(x_1, x_4, x_6) \right]$$
The Factor Graph and Variable-Leaf Removal

Graphical Marginalization:

- Factor graph G shows variables involved in each factor.
- If the factor graph is a tree, then marginalization by variable-leaf removal is efficient.
- After marginalization of a variable leaf, the variable is removed and its effect is absorbed into the parent factor node.
- This costs $|X|^d$, where d is the degree of updated factor node.

$$g_1(x_1) = \sum_{x_2} f_1(x_1, x_2, x_3) f_3(x_4) \left[\sum_{x_5} f_4(x_4, x_5) \right] f_2'(x_1, x_4)$$
Graphical Marginalization:

- Factor graph G shows variables involved in each factor
- If the factor graph is a tree, then marginalization by variable-leaf removal is efficient
- After marginalization of a variable leaf, the variable is removed and its effect is absorbed into the parent factor node.
- This costs $|X|^d$, where d is the degree of updated factor node.

$$g_1(x_1) = \sum_{x_2} f_1(x_1, x_2, x_3) \left[\sum_{x_4} f_3(x_4) f'_4(x_4) f'_2(x_1, x_4) \right]$$
Graphical Marginalization:

- Factor graph G shows variables involved in each factor.
- If the factor graph is a tree, then marginalization by variable-leaf removal is efficient.
- After marginalization of a variable leaf, the variable is removed and its effect is absorbed into the parent factor node.
- This costs $|\mathcal{X}|^d$, where d is the degree of updated factor node.

\[
g_1(x_1) = \sum_{x_2} \left[\sum_{x_3} f_1(x_1, x_2, x_3) \right] f_2''(x_1)
\]
The Factor Graph and Variable-Leaf Removal

Graphical Marginalization:

- Factor graph G shows variables involved in each factor.
- If the factor graph is a tree, then marginalization by variable-leaf removal is efficient.
- After marginalization of a variable leaf, the variable is removed and its effect is absorbed into the parent factor node.
- This costs $|X|^d$, where d is the degree of updated factor node.

$$g_1(x_1) = \left[\sum_{x_2} f'_1(x_1, x_2) \right] f''_2(x_1)$$
The Factor Graph and Variable-Leaf Removal

Graphical Marginalization:

- Factor graph G shows variables involved in each factor
- If the factor graph is a tree, then marginalization by variable-leaf removal is efficient
- After marginalization of a variable leaf, the variable is removed and its effect is absorbed into the parent factor node.
- This costs $|\mathcal{X}|^d$, where d is the degree of updated factor node

$$g_1(x_1) = f_1''(x_1)f_2''(x_1)$$
Factor Graphs and Probability

- Factor graphs for PMF of random variables X_1, \ldots, X_n
 - Any non-negative $f(x_1, \ldots, x_n)$ can be normalized to be a PMF
 $$\mathbb{P}(X_1^n = x_1^n) = \frac{1}{Z} f(x_1, \ldots, x_n)$$
 - Where $Z = \sum_{x_1^n} f(x_1, \ldots, x_n)$ is called the partition function
 - The complexity of computing Z is similar to marginalization
Bayesian Networks

- Factor graphs are closely related to **Bayesian Networks (BNs)**
 - BN is a directed acyclic graph with nodes $V = \{X_1, \ldots, X_n\}$:
 $$
 P(X^n_1 = x^n_1) = \prod_{i=1}^{n} P(X_i = x_i \mid X_{\pi(i)} = x_{\pi(i)})
 $$
 where $\pi(i)$ is the set of VN with a directed edge to X_i

- For a tree factor graph, one can build a BN with similar structure
 - If the FG has cycles, then a similar BN may not exist
Markov Chain Example

- Factor graph of the Markov chain: $X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4$

$$f(x_1, x_2, x_3, x_4) = f_{12}(x_1, x_2)f_{23}(x_2, x_3)f_{34}(x_3, x_4)$$

- BN of the Markov chain: $X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4$

$$\mathbb{P}(X^n_1 = x^n_1) = \mathbb{P}(X_1 = x_1) \prod_{i=2}^{4} \mathbb{P}(X_i = x_i \mid X_{i-1} = x_{i-1}),$$

\[X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4\]
Conditional Independence for Factor Graphs

- Let $A, B, S \subset [n]$ be disjoint subsets of VN in factor graph G

- If S separates A from B (i.e., there is no path in G from A to B that avoids S), then X_A cond. ind. of X_B given X_S

$$P(x_A, x_B|x_S) = P(x_A|x_S)P(x_B|x_S)$$
Conditional Independence for Factor Graphs

• Let $A, B, S \subset [n]$ be disjoint subsets of VNs in factor graph G

• If S separates A from B (i.e., there is no path in G from A to B that avoids S), then X_A cond. ind. of X_B given X_S

$$P(x_A, x_B|x_S) = P(x_A|x_S)P(x_B|x_S)$$

• Markov chain example: $A = \{x_1, x_2\}$, $B = \{x_4\}$, $S = \{x_3\}$
Conditional Independence for Factor Graphs

- Let $A, B, S \subset [n]$ be disjoint subsets of VNs in factor graph G
 - If S separates A from B (i.e., there is no path in G from A to B that avoids S), then X_A cond. ind. of X_B given X_S

$$P(x_A, x_B|x_S) = P(x_A|x_S)P(x_B|x_S)$$

- Markov chain example: $A = \{x_1, x_2\}$, $B = \{x_4\}$, $S = \{x_3\}$

- Sketch of Proof:
 - Fixing $X_S = x_S$ separates the FG into disjoint components
Conditional Independence for Factor Graphs

- Let $A, B, S \subseteq [n]$ be disjoint subsets of VNs in factor graph G
 - If S separates A from B (i.e., there is no path in G from A to B that avoids S), then X_A cond. ind. of X_B given X_S

 $$P(x_A, x_B|x_S) = P(x_A|x_S)P(x_B|x_S)$$

- Markov chain example: $A = \{x_1, x_2\}$, $B = \{x_4\}$, $S = \{x_3\}$

- Sketch of Proof:
 - Fixing $X_S = x_S$ separates the FG into disjoint components
 - Distributive law shows VNs in disjoint components are ind.
 - X_A and X_B ind. because A and B in different components