
Linear Programming Decoding

Lecture Notes for: Graphical Models and Inference
Henry D. Pfister

Ocobter 7th, 2014 (rev. 1)

1 Introduction
Linear Programming Decoding was introduced by Feldman, Wainwright, and Karger in [1]. A very
similar approach based on graph covers was derived independently by Vontobel and Koetter [2]. The
relationship between factor graphs and message passing also leads to iterative algorithms that solve these
linear programs efficiently [3, 4, 5]. There is also a long history of using linear-programming relaxations
to approximate the solutions of combinatorial problems. An introductory overview can be found in

http://theory.stanford.edu/~trevisan/books/cs261.pdf

2 Best Assignment Problem
Let X be a finite alphabet and f : Xn → R be a function. The best assignment problem consists of
finding an assignment, xn1 , in the set of best assignments

B = arg max
xn
1∈Xn

f(x1, . . . , xn).

In general, one has to check all |X |n possibilities. If f factors though, then there is an approximation
that is sometimes exact.

Let (V ∪ F,E) be a bipartite graph where the vertices in V = {1, 2, . . . , n} are associated with
variable nodes, the vertices in F are associated with factor nodes, and the edges E ⊆ V × F defines
which variables are involved in which factors. Abusing notation, we let V (a) denote the set of variable
nodes adjacent to the factor node a ∈ F and F (i) denote the set of factor nodes adjacent to variable
node i ∈ V . Based on this factor graph we assume that f factors into the product

f(x1, x2, . . . , xn) =
∏
a∈F

fa(xV (a)).

Example 2.1. Consider the binary linear code with parity-check matrix

H =

1 1 0
1 1 1
0 1 1

 .
Since this matrix has full rank over F2, the code contains only the all-zero vector.

Example 2.2. Consider the MAX-SAT version of the the boolean satisfiability problem where the goal
is to maximize the number of satisfied clauses. In this case, there are n literals (x1, . . . , xn) ∈ {0, 1}n
and a factor for each clause. If clause a ∈ F is satisfied, then the factor fa(xV (a)) = 2 and otherwise
it equals 1. Thus, if xn1 satisfies S clauses, then f(x1, . . . , xn) = 2S . Of couse, a the boolean system is
satisfiable iff the value of MAX-SAT equals 2n.

1

http://theory.stanford.edu/~trevisan/books/cs261.pdf

2.1 Integer Linear Program
Now, we will transform the best assignment problem into an integer linear program (ILP). First , we
observe that

B = arg max
xn
1∈Xn

ln f(x1, . . . , xn)

= arg max
xn
1∈Xn

ln
∏
a∈F

fa(xV (a))

= arg max
xn
1∈Xn

∑
a∈F

ln fa(xV (a)).

To make this objective function linear, we can change variables from xn1 to a set of variable indicator func-
tions that encode the value of xn1 . First, consider the set of variable indicator functions q , {qi(·)}i∈[n]
where qi : X → {0, 1} satisfies

∑
z∈X qi(z) = 1. One can map from xn1 to {qi(·)}i∈[n] by choosing

qi(z) =

{
1 if z = xi

0 if z 6= xi.

Since there are only |X | valid qi(·) functions, this mapping is one-to-one and invertible. This allows one
to rewrite the ath term in the objective function as

ln fa(xV (a)) =
∑

z∈X |V (a)|

 ∏
i∈V (a)

qi(zi)

 ln fa(z)

but these terms are not a linear functions of q.
To get linearity, we introduce the set of factor indicator functions q̂ , {q̂a(·)}a∈F where q̂a : X |V (a)| →

{0, 1} satisfies
∑

z∈X |V (a)| q̂a(z) = 1. One can map from xn1 to {q̂a(·)}a∈F by choosing

q̂a(z) =
∏

i∈V (a)

qi(zi) =

{
1 if z = xV (a)

0 if z 6= xV (a).

This allows one to rewrite the ath term in the objective function as

ln fa(xV (a)) =
∑

z∈X |V (a)|

q̂a(z) ln fa(z),

which a linear function of q̂. The mapping from xn1 to q̂ is not surjective, however, because each q̂a(·)
function automatically satisfies the consistency condition

∑
zV (a)∈X |V (a)|

δzi,z q̂a(zV (a)) =

{
1 if z = xi

0 if z 6= xi.

Therefore, we define the set of consistent indicator functions,

M∗ ,
{
{qi(·)}i∈V , {q̂a(·)}a∈F

∣∣∣∣ qi : X → {0, 1}, q̂a : X |V (a)| → {0, 1},∑
z∈X

qi(z) = 1,
∑

z∈X |V (a)|

q̂a(z) = 1,
∑

zV (a)∈X |V (a)|

δzi,z q̂a(zV (a)) = qi(z), i ∈ V, a ∈ F
}
,

and note that any element ofM∗ can be represented (e.g., on a computer) by n+
∑

a∈F X |V (a)| binary
variables. The previously defined mappings from Xn to q and q̂ also show that there is a one-to-one
correpondence between Xn andM∗. Thus, we find that there is also a one-to-one corespondence between
the set of best assignments,

B = arg max
xn
1∈Xn

∑
a∈F

ln fa(xV (a)),

2

and the set of (q, q̂) indicator functions of best assignments,

B′ = arg max
(q,q̂)∈M∗

∑
a∈F

∑
z∈X |V (a)|

q̂a(z) ln fa(z).

The second formulation is an ILP because the the objective function is linear in q̂ and the feasible set
is a subset of integers generated by linear constraints. This ILP has n+

∑
a∈F X |V (a)| binary variables

and n+ |E| linear equality constraints.

Example 2.3. Consider the binary linear code from Example 2.1 where the factor node a ∈ F = {1, 2, 3}
is identified with row a of the matrix. In this case, points inM∗ consist of the functions

q1(z1), q2(z2), q3(z3), q̂1(z1, z2), q̂2(z1, z2, z3), q̂3(z2, z3)

and the only point inM∗ is defined by qj(0) = 1 for j ∈ {1, 2, 3} and q̂a(0) = 1 for a ∈ {1, 2, 3}.

2.2 Linear Program and the Marginal Polytope
Any linear integer program can be relaxed into a linear program (LP) by relaxing the integer constraint.
LetM denote the marginal polytope defined by

M ,

{
{qi(·)}i∈V], {q̂a(·)}a∈F

∣∣∣∣ qi : X → [0, 1], q̂a : X |V (a)| → {[0, 1],∑
z∈X

qi(z) = 1,
∑

z∈X |V (a)|

q̂a(z) = 1,
∑

zV (a)∈X |V (a)|

δzi,z q̂a(zV (a)) = qi(z), i ∈ V, a ∈ F
}
.

One can think of q̂a(·) as a hypothetical joint distribution for the subset of variables attached to factor
a. In this case, qi(·) represents the marginal distribution of xi and, for each a ∈ V (i), the consistency
constraint, ∑

zV (a)∈X |V (a)|

δzi,z q̂a(zV (a)) = qi(z),

requires that these marginals agree.
The LP relaxation of the best assignment problem consists of finding a vector in the set

BLP = arg max
(q,q̂)∈M

∑
a∈F

∑
z∈X |V (a)|

q̂a(z) ln fa(z).

This optimization can be written as an LP with n+
∑

a∈F X |V (a)| variables on [0, 1] and n+ |E| linear
equality constraints. Since M∗ =

{
(q, q̂) ∈M| qi(z) ∈ {0, 1}, q̂a(z) ∈ {0, 1}, i ∈ V, a ∈ F

}
is the set of

integer-valued functions inside ofM, any LP solution with integer coordinates must also be in B. Thus,
we say that the LP relaxation provides optimality certificate. If one has an LP optimum with integer
values, then it is a best assignment.

2.3 Reduced Marginal Polytope
It is worth noting that the marginal polytope only depends on the factor graph structure and not the
factors themselves. If some of the factors can take the value zero, then one can reduce the polytope
without affecting the LP. In particular, if fa(z) = 0 and q̂a(z) > 0 for some a ∈ F and z ∈ X |V (a)|, then
the objective function is equal to minus infinity. Therefore, we can assume wolog that q̂a(z) = 0 in this
case. This allows us to define the reduced marginal polytope

M′ ,
{
(q, q̂) ∈M|∀(a, z) ∈ F ×X |V (a)|, q̂a(z) = 0 if fa(z) = 0

}
and say that

BLP = arg max
(q,q̂)∈M′

∑
a∈F

∑
z∈X |V (a)|

q̂a(z) ln fa(z)

as long as f(x1, . . . , xn) > 0 for some xn1 ∈ Xn. This equality holds because the objective function equals
−∞ for all (q, q̂) ∈M\M′.

3

Example 2.4. Consider the binary linear code from Example 2.1. The factors f1, f2, f3 take the value
0 whenever their arguments contain an odd number of ones. Thus, the marginal polytope is reduced by
the equality constraints

0 =q̂1(0, 1) = q̂1(1, 0)

0 =q̂2(1, 0, 0) = q̂2(0, 1, 0) = q̂2(0, 0, 1) = q̂2(1, 1, 1)

0 =q̂3(0, 1) = q̂3(1, 0).

3 Zero-One Factors

3.1 Projected Reduced Marginal Polytope
Now, suppose that the function f(x1, . . . , xn) is an indicator function for valid assignments and that Xn

1

is uniform over all valid assignments. Furthermore, let Y n
1 be a noisy observation of Xn

1 where Pr(Yi =
yi|Xi = xi) =W (yi|xi). Let the set of variable marginals be V , {qi : X → [0, 1] | qj(z) = 1, j ∈ V } and
π : M → V be the projection defined by (q, q̂) 7→ q for (q, q̂) ∈ M. Then, the best assignment linear
program reduces to

BLP (y
n
1) = π

(
arg max

(q,q̂)∈M′

n∑
i=1

∑
z∈X

qi(z) lnW (yi|z)

)

= argmax
q∈M

n∑
i=1

∑
z∈X

qi(z) lnW (yi|z),

where the polytope M = π(M′) is the projection of M′ onto V. A vertex q ∈ M is called a pseudo-
codeword if qj(z) /∈ {0, 1} for any j ∈ V and z ∈ X . The LP relaxation is tight if the maximum of the
objective fuction does not occur at a pseudo-codeword.

The polytope M has a natural geometric interpretation in this case. Each factor constraint, fa,
defines a set of locally valid configurations La =

{
zV (a) ∈ X |V (a)| | fa(zV (a)) = 1

}
and, for any a ∈ F

and i ∈ V (a), the variable-node marginal function is given by

qi(z) =
∑

zV (a)∈La

q̂a(zV (a))δzi,z.

One can interpret this equation as first embedding each of the locally valid configurations into an
|X ||V (a)|-dimensional space as unit vectors, then taking the convex hull of these vectors, and finally
projecting down onto the ith coordinate marginal. Thus, the constraint imposed on the LP by the factor
node fa is that the qi(z) functions lie in the convex hull of the locally valid configurations.

Example 3.1. Consider the binary linear code from Example 2.1. Consider the point (q, q̂) ∈M defined
by

q̂a(z1, z2) =

2/3 if z1 = z2 = 1

1/3 if z1 = z2 = 0

0 otherwise,

q̂b(z1, z2, z3) =

{
1/3 if (z1, z2, z3) ∈ {110, 101, 011}
0 otherwise,

and

q̂c(z2, z3) =

2/3 if z2 = z3 = 1

1/3 if z2 = z3 = 0

0 otherwise.

The variable node marginals are defined by q1(1) = q2(1) = q3(1) = 2/3 and one can verify that this is
pseudo-codeword.

4

3.2 Binary Variables
For binary variables (i.e., X = {0, 1}), the normalization constraint implies that qi(1) = 1 − qi(0) and
the LP can be formulated in terms of the vector u = (u1, u2, . . . , un) defined by ui = qi(1). Thus, we
can write

BLP (y
n
1) = argmax

q∈M

n∑
i=1

∑
z∈X

qi(z) lnW (yi|z)

= argmax
q∈M

n∑
i=1

(qi(0) lnW (yi|0) + qi(1) lnW (yi|1))

= argmax
u∈Q

n∑
i=1

((1− ui) lnW (yi|0) + ui lnW (yi|1))

= argmax
u∈Q

n∑
i=1

ui ln
W (yi|1)
W (yi|0)

= argmin
u∈Q

n∑
i=1

ui ln
W (yi|0)
W (yi|1)

,

where Q =

{
un1 ∈ [0, 1]n

∣∣∣∣ q ∈M, ui = qi(1), i ∈ [n]

}
. The geometric interpretation of the polytope

simplifies because the alphabet {0, 1} has a natural embedding into [0, 1]. With this embedding, the
constraint regions associated with each factor are defined by

Qa , conv
({

un1 ∈ [0, 1]n
∣∣∣∣uV (a) ∈ La

})
and a vector un1 ∈ {0, 1}n satisfies all of the constraints iff it lies in the intersection

Q = ∩a∈FQa =

{
un1 ∈ [0, 1]n

∣∣∣∣uV (a) ∈ conv(La)

}
.

Example 3.2. Consider a zero-one factor fa(x1, . . . , xd) with binary variables that disallows exactly one
local configuration z1, . . . , zd. Then, the convex hull of the valid configurations can be found by starting
with the box constraints 0 ≤ ui ≤ 1 for i = 1, 2 . . . , d and then using a single hyperplane to slice off the
invalid configuration. The hyperplane must contain all the vertices adjacent to z1, . . . , zd that will not
be removed. Thus, the normal vector of the desired hyperplane equals the vector from the center of the
Hamming cube to the undesired vertex, (w1, . . . , wd) = (z1, . . . , zd)− (12 , . . .

1
2). The desired inequality,∑d

i=1 wiui ≤ c, can be seen to project u onto the normal and then test its distance from 0. The constant
c can be computed by making sure that we don’t slice off the desired confguration (1 − z1, z2, . . . , zd)
and this gives

c = w1(1− z1) +
d∑

i=2

wizi

=

(
z1 −

1

2

)
(1− z1) +

d∑
i=2

(
zi −

1

2

)
zi

=
3

2
z1 − z21 −

1

2
+

d∑
i=2

z2i −
1

2

d∑
i=2

zi

=
3

2
z1 − z1 −

1

2
+

d∑
i=2

zi −
1

2

d∑
i=2

zi

= −1

2
+

1

2

d∑
i=1

zi.

The resulting inequality can be rewritten as
∑d

i=1(2zi − 1)ui ≤ −1 +
∑d

i=1zi.

5

3.3 Decoding Binary Linear Codes
For a binary linear code, all factors represent even-parity constraints. So, the first step is to construct
the local codeword polytope for the even-parity code. In the Hamming cube, every vertex of odd weight
is adjacent only to vertices of even weight. Thus, we can use the method of Example 3.2 to slice off
all the odd weight vertices because the cutting planes always pass through even weight vertices1. For a
degree-d parity check, the local codeword polytope is given by{

ud1 ∈ [0, 1]d
∣∣∣∣∑d

i=1(2zi − 1)ui ≤ −1 +
∑d

i=1zi, (z1, . . . , zd) ∈ {0, 1}
d,
∑d

i=1zi is odd
}
.

Example 3.3. Consider the binary linear code from Example 2.1. Since this code contains the all-zero
vector (e.g., it is linear), the vector (0, . . . , 0) is in Q and the value of the LP,

argmin
u∈Q

n∑
i=1

ui ln
W (yi|0)
W (yi|1)

,

is upper bounded by 0. Thus, if the zero codeword is transmitted, then the LP decoder recovers the
correct codeword if there are no points in Q with negative value. Under what condition does the
previously noted pseudo-codeword (23 ,

2
3 ,

2
3) ∈ Q beat the all-zero codeword?

References
[1] J. Feldman, M. J. Wainwright, and D. R. Karger, “Using linear programming to decode binary linear

codes,” IEEE Trans. Inform. Theory, vol. 51, pp. 954–972, March 2005.

[2] P. O. Vontobel and R. Koetter, “Graph-cover decoding and finite-length analysis of message-passing
iterative decoding of LDPC codes,” 2005. submitted to IEEE Trans. on Inform. Theory.

[3] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky, “MAP estimation via agreement on trees:
Message-passing and linear programming,” IEEE Trans. Inform. Theory, vol. 51, pp. 3697–3717,
Nov. 2005.

[4] A. Globerson and T. Jaakkola, “Fixing max-product: Convergent message passing algorithms for
MAP LP-relaxations,” in Advances in Neural Information Processing Systems 20, pp. 553–560, MIT
Press, 2007.

[5] P. O. Vontobel and R. Koetter, “On low-complexity linear-programming decoding of LDPC codes,”
Eur. Trans. Telecom., vol. 18, pp. 509–517, Aug. 2007.

1In general, the inequality used to slice off undesired vertices may depend on the previous slices.

6

	Introduction
	Best Assignment Problem
	Integer Linear Program
	Linear Program and the Marginal Polytope
	Reduced Marginal Polytope

	Zero-One Factors
	Projected Reduced Marginal Polytope
	Binary Variables
	Decoding Binary Linear Codes

