MATLAB Examples: Linear Block Codes

Henry D. Pfister
ECE Department
Texas A&M University

October 6th, 2006 (rev. 0)
November 6th, 2013 (rev. 1)

1 The Galois Field \mathbb{F}_p for Prime p

Currently this document just gives snippets of example code which should help you get started. If you need help, keep the “help” and “lookfor” commands in mind.

1.1 A Few Commands

>> help eye

EYE Identity matrix.
EYE(N) is the N-by-N identity matrix.

EYE(M,N) or EYE([M,N]) is an M-by-N matrix with 1’s on the diagonal and zeros elsewhere.

EYE(SIZE(A)) is the same size as A.

EYE with no arguments is the scalar 1.

EYE(M,N,CLASSNAME) or EYE([M,N],CLASSNAME) is an M-by-N matrix with 1’s of class CLASSNAME on the diagonal and zeros elsewhere.

Example:

x = eye(2,3,’int8’);

See also SPEYE, ONES, ZEROS, RAND, RANDN.

>> help mod

MOD Modulus after division.
MOD(x,y) is x - n.*y where n = floor(x./y) if y ~= 0. If y is not an integer and the quotient x./y is within roundoff error of an integer, then n is that integer. The inputs x and y must be real arrays of the same size, or real scalars.

The statement "x and y are congruent mod m" means mod(x,m) == mod(y,m).

By convention:

MOD(x,0) is x.
MOD(x,x) is 0.

MOD(x,y), for x~y and y~0, has the same sign as y.

Note: REM(x,y), for x~y and y~0, has the same sign as x.
MOD(x,y) and REM(x,y) are equal if x and y have the same sign, but differ by y if x and y have different signs.
Overloaded functions or methods (ones with the same name in other directories)
help sym/mod.m

>> help de2bi
DE2BI Convert decimal numbers to binary numbers.
B = DE2BI(D) converts a nonnegative integer decimal vector D to a binary
matrix B. Each row of the binary matrix B corresponds to one element of D.
The default orientation of the of the binary output is Right-MSB; the first
element in B represents the lowest bit.

In addition to the vector input, three optional parameters can be given:
B = DE2BI(...,N) uses N to define how many digits (columns) are output.
B = DE2BI(...,N,P) uses P to define which base to convert the decimal
elements to.
B = DE2BI(...,FLAG) uses FLAG to determine the output orientation. FLAG
has two possible values, 'right-msb' and 'left-msb'. Giving a 'right-msb'
FLAG does not change the function's default behavior. Giving a 'left-msb'
FLAG flips the output orientation to display the MSB to the left.

Examples:
D = [12; 5];
B = de2bi(D) B = de2bi(D,5)
B =
0 0 1 1
1 0 1 0
T = de2bi(D,[],3) B = de2bi(D,5,'left-msb')
T =
0 1 1
2 1 0

See also BI2DE.

>> help dec2base
DEC2BASE Convert decimal integer to base B string.
DEC2BASE(D,B) returns the representation of D as a string in
base B. D must be a non-negative integer array smaller than 2^52
and B must be an integer between 2 and 36.

DEC2BASE(D,B,N) produces a representation with at least N digits.

Examples
dec2base(23,3) returns '212'
dec2base(23,3,5) returns '00212'

See also BASE2DEC, DEC2HEX, DEC2BIN.

>> help nchoosek
NCHOOSEK Binomial coefficient or all combinations.
NCHOOSEK(N,K) where N and K are non-negative integers returns N!/K!(N-K)!.

See also REM.

Overloaded functions or methods (ones with the same name in other directories)
help sym/mod.m
This is the number of combinations of \(N \) things taken \(K \) at a time. When a coefficient is greater than \(10^{15} \), a warning will be produced indicating possible inexact results. In such cases, the result is good to 15 digits.

\(\text{NCHOOSEK}(V,K) \) where \(V \) is a vector of length \(N \), produces a matrix with \(N!/K!(N-K)! \) rows and \(K \) columns. Each row of the result has \(K \) of the elements in the vector \(V \). This syntax is only practical for situations where \(N \) is less than about 15.

Class support for inputs \(N,K,V \):
- float: double, single

See also \text{PERMS}.

1.2 Now For Some Coding

```matlab
>> n = 6;
>> k = 3;
>> p = 2;
>> In = eye(n);
>> Ik = eye(k);
>> Ink = eye(n-k);

>> P = [1 1 0;0 1 1;1 0 1]

P =

1 1 0
0 1 1
1 0 1

>> G = [Ik P];
>> H = mod([-P' Ink],p)

H =

1 0 1 1 0 0
1 1 0 0 1 0
0 1 1 0 0 1

>> mod(G*H',p) % Test G and H construction

ans =

0 0 0
0 0 0
0 0 0
```

1.3 Encoding and Listing Codewords

We note that \("u = \text{dec2base}(0:(p^k - 1),p,k)-'0'" \) can be used instead of \("\text{de2bi}" \) for \(p > 2 \).

```matlab
>> u = de2bi(0:(2^k - 1),k) % List all binary input vectors

u =
```

3
\[
\begin{array}{cccccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

\texttt{>> C = mod(u*G,p) \% List all codewords}

\texttt{C =}

\[
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
\end{array}
\]

1.4 Syndromes

\texttt{>> N2 = nchoosek(1:n,2)}

\texttt{ans =}

\[
\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
1 \\
2 \\
2 \\
2 \\
2 \\
3 \\
3 \\
3 \\
4 \\
4 \\
5 \\
6 \\
6 \\
\end{array}
\]

\texttt{>> E2 = zeros(length(N2),n);}
\texttt{>> for i=1:length(N2); E2(i,N2(i,:)) = 1; end \% All weight 2 error patterns}
\texttt{>> E2}

\texttt{E2 =}

\[
\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
\end{array}
\]

4
>> S2 = mod(E2*H',2) % List syndromes of weight 2 patterns

S2 =
 1 0 1
 0 1 1
 0 1 0
 1 0 0
 1 1 1
 1 1 0
 1 1 1
 0 0 1
 0 1 0
 0 0 1
 1 0 0
 1 1 0
 1 0 1
 0 1 1

>> S2int = bi2de(S2); % Assign each syndrome to an integer between 0 and 2^(n-k) - 1

1.5 Simulation

>> M = 5; % Handle M transmissions at once
>> msg = floor(rand(M,1)*2^k) % Generate uniform random message numbers

msg =
 4
 6
 7
 5
 1

>> u = de2bi(msg,k) % Map message number to bit vector

u =
 0 0 1
 0 1 1
 1 1 1
 1 0 1
 1 0 0
>> c = mod(u*G,p); % Encode each message
>> noise = rand(M,n)<0.1 % Generate BSC noise with error prob. 0.1
noise =
 0 0 0 0 1 0
 0 1 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 1 0
 1 0 1 0 0 0

>> recv = mod(c+noise,p);

1.6 Matrix Tricks
The following tricks MATLAB into performing matrix inverses over prime fields. It uses the fact that det(A)A^{-1} is an integer matrix if A is an integer matrix and it uses the fact that a^{p-2} = a^{-1} for all a \in GF(p). Due to the finite precision of IEEE doubles, the first trick may fail if any element of det(A)A^{-1} is greater than 10^{16}. Likewise, the second may fail if (p - 1)^{p-2} > 10^{16}.

>> A = floor(2*rand(5,5)) % Generate random 5 by 5 binary matrix
A =
 1 0 1 0 1
 0 0 1 0 1
 0 1 0 0 1
 0 0 0 1 0
 0 0 0 1 1

>> det(A)
an =
 -1

>> invA = mod(round(inv(A)*det(A)),2) % Modulo 2 inverse trick (det(A) must be odd)
invA =
 1 1 0 0 0
 0 0 1 1 1
 0 1 0 1 1
 0 0 0 1 0
 0 0 0 1 1

>> mod(invA*A,2) % Verify that it works
ans =
 1 0 0 0 0
 0 1 0 0 0
 0 0 1 0 0
 0 0 0 1 0
 0 0 0 0 1

>> A = floor(7*rand(5,5)) % Generate random 5 by 5 matrix over GF(7)
A =

\[
\begin{bmatrix}
5 & 6 & 1 & 2 & 6 \\
1 & 6 & 0 & 1 & 4 \\
6 & 2 & 3 & 6 & 1 \\
0 & 3 & 5 & 4 & 4 \\
3 & 3 & 2 & 1 & 4
\end{bmatrix}
\]

>> det(A)/7 % Check determinant not divisible by 7
ans =
66.4286

>> invA = round(mod(mod(round(inv(A)*det(A)),7)*mod(det(A),7)^5,7))
invA =

\[
\begin{bmatrix}
6 & 0 & 4 & 3 & 1 \\
5 & 6 & 0 & 5 & 6 \\
5 & 5 & 3 & 1 & 5 \\
1 & 2 & 1 & 0 & 5 \\
3 & 3 & 4 & 4 & 0
\end{bmatrix}
\]

>> mod(invA*A,7) % Test inverse
ans =

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

2 Extension Fields \mathbb{F}_{2^m}

2.1 A Few Commands

Matlab has built in routines that work for extension fields of characteristic 2. These commands can be listed by typing “help gfhelp”.

GF Create a Galois field array.

\[
X_{GF} = GF(X,M)
\]

creates a Galois field array from X in the field $\mathbb{GF}(2^M)$, for $1 \leq M \leq 16$. The elements of X must be integers between 0 and 2^M-1. X_{GF} behaves like a MATLAB array, and you can use standard indexing and arithmetic operations (+, *, .*, .^, \, etc.) on it.

For a complete list of operations you can perform on X_{GF}, type “GFHELP”.

\[
X_{GF} = GF(X,M,PRIM_POLY)
\]

creates a Galois field array from X and uses the primitive polynomial PRIM_POLY to define the field. PRIM_POLY must be a primitive polynomial in decimal representation. For example, the polynomial D^3+D^2+1 is represented by the number 13, because 1 1 0 1 is the binary
form of 13.

\[X_{GF} = GF(X) \] uses a default value of \(M = 1 \).

Example:

```
A = gf(randint(4,4,8,873),3); % 4x4 matrix in GF(2^3)
B = gf(1:4,3)'; % A 4x1 vector
C = A*B
```

\(C = GF(2^3) \) array. Primitive polynomial = 1+D+D^3 (11 decimal)

Array elements =

3
3
6
7

See also GFHELP, GFTABLE.

2.2 Simple Linear Block Code

```
>> n = 5;
>> k = 3;
>> m = 2;
>> In = gf(eye(n),m);
>> Ik = gf(eye(k),m);
>> Ink = gf(eye(n-k),m);

P = gf([1 1;1 2;1 3],m) % (5,3) Hamming code over GF(4)
```

\(P = GF(2^2) \) array. Primitive polynomial = D^2+D+1 (7 decimal)

Array elements =

1 1
1 2
1 3

```
>> G = [Ik P];
>> H = [P' Ink];
```

\(H = GF(2^2) \) array. Primitive polynomial = D^2+D+1 (7 decimal)

Array elements =

1 1 1 1 0
1 2 3 0 1

```
>> G*H' % Test G and H construction
```

\(ans = GF(2^2) \) array. Primitive polynomial = D^2+D+1 (7 decimal)

Array elements =

0 0
2.3 Computing Minimal Polynomials

% Big field FQ, small field Fq
m = 8;
Q = 2^m;
a = gf(2,m);
gf1 = a^0;
q = 2^4;
b = round((Q-1)/(q-1));

% Compute polynomial product of all conjugate roots
m = [gf1 -c];
d = c^q;
while (d ~= c)
 m = conv(m,[gf1 -d]);
d = d^q
end

% Write coefficients in power representation for subfield m
log(m)/b
m = GF(2^8) array. Primitive polynomial = D^8+D^4+D^3+D^2+1 (285 decimal) Array elements =
ans =
0 2 3

2.4 Reed-Solomon Codes via FFTs

% Reed-Solomon code over GF(256)
m = 8;
q = 2^m;
n = q-1;
r = 6;
k = n-r;

% Encode message using FFT
u = gf([floor(rand(1,k)*q) zeros(1,n-k)],m);
x = fft(u);

% Construct random error pattern of weight "ne"
ne = 4;
e = gf(zeros(1,n),m);
loc = randperm(n);
mag = gf(floor(rand(1,ne)*\(q-1)\)+1,m);
e(loc(1:ne)) = mag;

% Add errors and compute syndrome via IFFT
y = x+e;
syn = ifft(y);
syn = syn((k+1):n);