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1 Introduction
Many problems in the mathematical sciences can be simplified by a well-chosen change of variables and
the marginalization problem for factor graphs is no different. In these notes, we outline the transforma-
tion process first for a single factor and then for the whole factor graph. The approach taken is based
on analyzing the equations involved. A more intuitive graphical approach is taken in [1].

2 Transforming a Single Factor

2.1 Basic Idea
Let X = {0, 1, . . . , q − 1} be a finite alphabet and consider the function f : Xn → R. Now, suppose that
we want to compute the sum

Z(µ) ,
∑

xn1∈Xn
f(x1, x2, . . . , xn)

n∏
j=1

µj(xj)

for the vector µ = (µ1, . . . , µn) where each element is a function µj : X → R. Using an invertible q × q
matrix A, the same quantity can be written as

Z(µ) =
∑

xn1∈Xn
f(x1, x2, . . . , xn)

n∏
j=1

∑
x̂∈X

Axj ,x̂
∑
x∈X

A−1x̂,xµj(x).

If we define µ̂ = (µ̂1, . . . , µ̂n) by µ̂j(x̂j) ,
∑
x∈X A

−1
x̂,xµj(x), then we can rewrite this as

Z(µ) =
∑

xn1∈Xn
f(x1, x2, . . . , xn)

n∏
j=1

∑
x̂j∈X

Axj ,x̂j µ̂j(x̂j)

=
∑

x̂n1∈Xn

 ∑
xn1∈Xn

f(x1, x2, . . . , xn)

n∏
j=1

Axj ,x̂j


︸ ︷︷ ︸

,f̂(x̂1,x̂2,...,x̂n)

n∏
j=1

µ̂j(x̂j)

=
∑

x̂n1∈Xn
f̂(x̂1, x̂2, . . . , x̂n)

n∏
j=1

µ̂j(x̂j) , Ẑ(µ̂),

where f̂(x̂1, x̂2, . . . , x̂n) is the transformed factor. To see this in the context of marginalization, we define

µ

∣∣∣∣
µk(xk)=χ(xk,x′k)

(x) , (µ1(x1), . . . , µk−1(xk−1), χ(xk, x
′
k), µk+1(xk+1), . . . , µn(xn))
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and observe that

gk(x
′
k) ,

∑
xn1∈Xn

δx′k,xkf(x1, x2, . . . , xn)

n∏
j=1,j 6=k

µj(xj)

= Z

(
µ

∣∣∣∣
µk(xk)=δxk,x′k

)
= Ẑ

(
µ̂

∣∣∣∣
µ̂k(x̂k)=A

−1

x̂k,x
′
k

)

=
∑

x̂n1∈Xn
A−1x̂k,x′k

f̂(x̂1, x̂2, . . . , x̂n)

n∏
j=1,j 6=k

µ̂j(x̂j)

=
∑
x̂′k∈X

A−1x̂′k,x′k

∑
x̂n1∈Xn

δx̂′k,x̂k f̂(x̂1, x̂2, . . . , x̂n)

n∏
j=1,j 6=k

µ̂j(x̂j).︸ ︷︷ ︸
,ĝk(x̂′k)

Notice that gk(x′k) is the belief-propagation (BP) message from f to xk for the original factor when the
input messages are µj(xj). Likewise, ĝk(x̂′k) gives the BP message for f̂ to xk for the transformed factor
when the input messages are µ̂j(x̂j) =

∑
x∈X A

−1
x̂,xµj(x). Thus, this transformation constitutes a change

of basis for the BP messages.

2.2 Connection to Duality
This technique is quite useful X is a finite field and f(x1, . . . , xn) is the indicator function of a subspace
S ⊆ Xn. In this case, the matrix A is typically chosen to be the Fourier transform associated with the
additive group of X . With this choice, f̂ is called the dual factor of f and f̂(x̂1, x̂2, . . . , x̂n) becomes a
scaled indicator function for the dual space S⊥.

Consider the finite field with |X | = q = pm elements for prime p. It is well-known that the additive
group of X is isomorphic to the set {0, 1, . . . . , p − 1}m of vectors with elementwise modulo-p addition.
Thus, we assume wolog that X = {0, 1, . . . . , p− 1}m and define the Fourier transform

Ax,x̂ =
1
√
q
e−2πi〈x,x̂〉/p,

where 〈x, x̂〉X is the standard inner product between these two length-m vectors. Using this convention,∑
x̂∈X

Ax,x̂A
−1
x̂,x′ = δx,x′ .

To see the duality between indicator functions, we let the subspace S =
{
uG |u ∈ X k

}
be defined by a

k×n generator matrix G over X and we extend the inner product to Xn with 〈x, x̂〉Xn ,
∑n
j=1 〈xj , x̂j〉X .

Then, we can write

f̂(x̂1, x̂2, . . . , x̂n) =
∑

xn1∈Xn
f(x1, x2, . . . , xn)

n∏
j=1

Axj ,x̂j

=
∑

xn1∈Xn
f(x1, x2, . . . , xn)

n∏
j=1

1
√
q
e−2πi〈xj ,x̂j〉X /p

= q−n/2
∑

un1∈Xk
e−

2πi
p

∑n
j=1〈xj ,x̂j〉X

= q−n/2
∑

un1∈Xk
e−

2πi
p 〈uG,x̂〉Xn

=

{
q−n/2qk if 〈uG, x̂〉Xn = 0 for all u ∈ X k

0 otherwise.

The first case holds because, if 〈uG, x̂〉Xn = 0 for all u, then the exponential is 1 for all u and the sum
has qk terms. For the second case, we observe that, if there is some u such that 〈uG, x̂〉Xn 6= 0, then{

un1 ∈ X k | 〈uG, x̂〉Xn = a
}
= a ·

{
un1 ∈ X k | 〈uG, x̂〉Xn = 1

}
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for all a ∈ X . Thus, each set has the same size (e.g., qk−1) and we get∑
un1∈Xk

e−
2πi
p 〈uG,x̂〉Xn =

∑
a∈X

∑
uk1 :〈uG,x̂〉=a

e−
2πi
p 〈uG,x̂〉Xn

=
∑
a∈X

∑
uk1 :〈uG,x̂〉Xn=a

e−
2πi
p a

=
∑
a∈X

qk−1e−
2πi
p a

= 0.

Since the dual code is defined to be the set of all vectors whose inner product with all codewords is 0,
we see that f̂(x̂1, x̂2, . . . , x̂n) is qk−n/2 times the indicator function for the dual code C⊥.

2.3 Applications
The results in the previous section have two immediate applications. First, they allow one to write
Symbol-APP decoding problem for a linear code in terms of the Symbol-APP decoding problem for the
dual code. This reduces the complexity of brute-force decoding from qk to qn−k. Second, this result
provides a proof of the famous MacWilliams identity relating the weight enumerator of a linear code to
the weight enumerator of its dual code.

2.3.1 Decoding

For the first application, let Xn
1 be a random vector whose distribution is defined by Pr(Xn

1 = xn1 ) ∝
f(x1, . . . , xn) and let Y n1 be an observation of Xn

1 through a discrete memoryless channel with transition
probabilities W (y|x) = Pr(Y = y|X = x). Then, the choice µj(xj) =W (Yj |xj) implies that

Pr
(
Xk = x′k

∣∣Y n1 ) ∝ µk(x′k)gk(x′k).
Transforming f with the Fourier transform implies that

gk(x
′
k) =

∑
x̂′k∈X

A−1x̂′k,x′k
ĝk(x̂

′
k) =

∑
x̂′k∈X

1
√
q
e2πi〈x

′
k,x̂
′〉/pĝk(x̂′k).

Thus, the marginalization of f̂ with the messages

µj(x̂j) =
∑
x∈X

1
√
q
e2πi〈x,x̂j〉/pµj(x)

allows one to compute the marginalization of f for the messages µj(xj). Putting these equations together
gives

µk(x
′
k) =

∑
x̂′k∈X

1
√
q
e2πi〈x

′
k,x̂
′〉/p ∑

x̂n1∈Xn
δx̂′k,x̂k f̂(x̂1, x̂2, . . . , x̂n)

n∏
j=1,j 6=k

(∑
x∈X

1
√
q
e2πi〈x,x̂j〉/pµj(x)

)
.

This approach was introduced for linear codes in 1976 by Hartmann and Rudolph [2].
As you will see in the next example, if f(x1, . . . , xn) is the indicator function of a linear code, then

f̂(x1, . . . , xn) is proportional to the indicator function of the dual code. Thus, if we let f(x1, . . . , xn) =
I(x1 ⊕ · · · ⊕ xn) be the even-parity factor, then f̂(x1, . . . , xn) ∝ I(x1 = · · · = xn) because the repeat
code is dual to the even-parity code. In this case, the previous equation simplifies to

µk(x
′
k) =

∑
x̂′k∈X

1
√
q
e2πi〈x

′
k,x̂
′〉/p

n∏
j=1,j 6=k

(∑
x∈X

1
√
q
e2πi〈x,x̂

′
k〉/pµj(x)

)
.

For the binary case, this implies that

µk(x
′
k) ∝

 n∏
j=1,j 6=k

(µj(0) + µj(1)) + (−1)x
′
k

n∏
j=1,j 6=k

(µj(0)− µj(1))

 .
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2.3.2 The MacWilliams Identity

For the second application, let the weight enumerator of a linear code be A(z) =
∑n
h=0Ahz

h where
Ah is the number of codewords with h non-zero positions. Similarly, the weight enumerator of the dual
code be A⊥(z) =

∑n
h=0A

⊥
h z

h where A⊥h is the number of codewords in the dual code with h non-zero
positions. For the binary case, MacWilliams identity A(z) = (1 + z)n2k−nA⊥( 1+z1−z ) follows from letting
f be the indicator function of code and writing

A(z) =

n∑
h=0

Ahz
h

=
∑

xn1∈Xn
f(x1, x2, . . . , xn)

n∏
j=1

zxj

=
∑

x̂n1∈Xn
f̂(x̂1, x̂2, . . . , x̂n)

n∏
j=1

1√
2
(1 + z)

(
1− z
1 + z

)x̂j

=
∑

x̂n1∈Xn
2k−n/2I

(
x̂n1 ∈ C⊥

) n∏
j=1

1√
2
(1 + z)

(
1− z
1 + z

)x̂j

= (1 + z)n2k−n
n∑
h=0

A⊥h

(
1− z
1 + z

)h
= (1 + z)n2k−nA⊥

(
1+z
1−z

)
.

For the third step, we use the fact that µj(xj) = zxj has the Fourier transform

µ̂j(x̂j) =

{
1√
2
(1 + z) if x̂j = 0

1√
2
(1− z) if x̂j = 1,

which can be written compactly as µ̂j(x̂j) = (1 + z) ((1− z)/(1 + z))
x̂j . This identity was introduced

by MacWilliams in [3].

3 Transforming the Whole Factor Graph
One can apply similar techniques to the whole factor graph. In that case, it is useful to consider the
special case of normal factor graphs. For details, see [4, 1].
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