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1 Introduction

Many problems in the mathematical sciences can be simplified by a well-chosen change of variables and
the marginalization problem for factor graphs is no different. In these notes, we outline the transforma-
tion process first for a single factor and then for the whole factor graph. The approach taken is based
on analyzing the equations involved. A more intuitive graphical approach is taken in [1].

2 Transforming a Single Factor

2.1 Basic Idea

Let X ={0,1,...,q — 1} be a finite alphabet and consider the function f : X™ — R. Now, suppose that
we want to compute the sum
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for the vector u = (p1, ..., itn) Where each element is a function p; : X — R. Using an invertible ¢ x ¢
matrix A, the same quantity can be written as
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If we define fi = (fi1, ..., i) by i;(2;) £, cx A;}iuj(x), then we can rewrite this as
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where f (21,22, ...,2y) is the transformed factor. To see this in the context of marginalization, we define
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and observe that
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Notice that gi(z},) is the belief-propagation (BP) message from f to zj for the original factor when the
input messages are u;(z;). Likewise, §i(Z},) gives the BP message for f to xy, for the transformed factor
when the input messages are fi;(2;) = > c» A;i, w;(x). Thus, this transformation constitutes a change
of basis for the BP messages.

2.2 Connection to Duality

This technique is quite useful X’ is a finite field and f(z1,..., ;) is the indicator function of a subspace
S C X", In this case, the matrix A is typically chosen to be the Fourier transform assoc1ated with the
additive group of X. With this choice, f is called the dual factor of f and f (Z1,22,...,4n) becomes a
scaled indicator function for the dual space S=.

Consider the finite field with |X| = ¢ = p™ elements for prime p. It is well-known that the additive

group of X is isomorphic to the set {0,1,....,p — 1}™ of vectors with elementwise modulo-p addition.
Thus, we assume wolog that X = {0,1,....,p — 1}™ and define the Fourier transform
A, s = L m2mited)/p
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where (z, &) . is the standard inner product between these two length-m vectors. Using this convention,
Z Aac,ch@_jC/ = 690,36’-
Fex
To see the duality between indicator functions, we let the subspace S = {uG |lue X k} be defined by a

k xn generator matrix G over X and we extend the inner product to X" with (z, &) . = Z?Zl (T5,2) -
Then, we can write
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The first case holds because, if (uG,Z) . = 0 for all u, then the exponential is 1 for all v and the sum
has ¢* terms. For the second case, we observe that, if there is some u such that (uG, Z) yn # 0, then
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for all @ € X. Thus, each set has the same size (e.g., ¢* 1)
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and we get

Since the dual code is defined to be the set of all vectors whose inner product with all codewords is 0,
we see that f(Z1,2a,...,4,) is ¢"~"/2 times the indicator function for the dual code C*.

2.3 Applications

The results in the previous section have two immediate applications. First, they allow one to write
Symbol-APP decoding problem for a linear code in terms of the Symbol-APP decoding problem for the
dual code. This reduces the complexity of brute-force decoding from ¢* to ¢"~*. Second, this result
provides a proof of the famous MacWilliams identity relating the weight enumerator of a linear code to
the weight enumerator of its dual code.

2.3.1 Decoding

For the first application, let X7* be a random vector whose distribution is defined by Pr(X} = 27) «
f(xy,...,x,) and let Y{" be an observation of X7 through a discrete memoryless channel with transition
probabilities W (y|z) = Pr(Y = y|X = z). Then, the choice p;(z;) = W (Yj|z;) implies that

Pr (X = 2, | Y]") o< pu(@},) ge (2),).

Transforming f with the Fourier transform implies that
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Thus, the marginalization of f with the messages
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allows one to compute the marginalization of f for the messages 1;(x;). Putting these equations together
gives
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This approach was introduced for linear codes in 1976 by Hartmann and Rudolph [2].

As you will see in the next example, if f(z1,...,x,) is the indicator function of a linear code, then
f(z1,...,x,) is proportional to the indicator function of the dual code. Thus, if we let f(xy,...,2,) =
I(x1 ® -+ ® x,) be the even-parity factor, then f(z1,...,2,) < I(x1 = --+- = z,,) because the repeat

code is dual to the even-parity code. In this case, the previous equation simplifies to
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For the binary case, this implies that
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2.3.2 The MacWilliams Identity

For the second application, let the weight enumerator of a linear code be A(z) = Y5 _, Apz" where
Ay, is the number of codewords with h non-zero positions. Similarly, the weight enumerator of the dual
code be A*(z) = > _, Ay 2" where Aj is the number of codewords in the dual code with h non-zero
positions. For the binary case, MacWilliams identity A(z) = (14 z)"2F7" A+ (1£2) follows from letting
f be the indicator function of code and writing
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For the third step, we use the fact that p;(z;) = 2% has the Fourier transform
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which can be written compactly as fi;(%;) = (14 2) (L1 —2)/(1 + 2))*. This identity was introduced
by MacWilliams in [3].

3 Transforming the Whole Factor Graph

One can apply similar techniques to the whole factor graph. In that case, it is useful to consider the
special case of normal factor graphs. For details, see [4, 1].
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