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1.1 Introduction

Graphical Models and message-passing inference sit at a crossroads of several intellectual traditions
that, for much of the twentieth century, developed in parallel. One thread comes from probability
and statistics: the idea that uncertainty should be represented quantitatively, and that evidence
should be combined systematically to update beliefs. A second thread comes from statistical
physics: large interacting systems led physicists to express distributions as products of local inter-
actions (energies) and to seek approximations that become exact on tree-like structures. A third
thread comes from communications and signal processing: decoding and estimation problems need
effective low-complexity inference algorithms. Many of these would later be recognized as special
cases of sum—product and max—product message passing.

The modern unification arrived when researchers realized that the essential object is not a specific
application (coding, filtering, vision, or AI), but the factorization of a global function (typically
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a probability distribution or likelihood) into local terms. Once the factorization is made explicit,
the computational story follows: on trees, exact marginals and MAP decisions can be computed
by local messages; on graphs with cycles, the same updates become powerful heuristics and, in
many cases, principled approximations with variational interpretations (e.g., Bethe free energy and
related constructions). This viewpoint also clarifies why different communities invented closely
related algorithms under different names: forward-backward, Viterbi, Kalman filtering, iterative
decoding, and belief propagation are all instances of the same underlying “compute global quantities
from local structure” paradigm.

In the last decade, the factor-graph perspective has become even more central because modern ma-
chine learning increasingly blends model-based structure with learned components. Deep unfolding
treats an iterative inference method as a computation graph and learns parameters that preserve
the algorithm’s inductive bias while improving speed and robustness. Graph neural networks and
Transformers can be read as learned message passing on graphs (sometimes sparse and structured,
sometimes dense and data-dependent) making “messages on graphs” a shared language spanning
probabilistic inference, optimization, and representation learning. With this historical lens, the
milestones below are not a linear story but a braided one: repeated rediscoveries of the same core
idea, followed by periodic syntheses that turned separate techniques into a common framework.

1.2 Milestones at a glance

A. Early probabilistic thinking and “combining evidence”
e 1763-1812: Bayesian inference becomes a quantitative program (Bayes/Laplace tradition;
precursor to all later probabilistic modeling).

e 1902: Gibbs formalizes ensembles and the Gibbs distribution (prototype for factorized
probabilistic models).

e 1906: Markov introduces dependent sequences (Markov chains), central to HMMs and
state-space inference.

e 1913: Wigmore develops evidence charts (tree-like decomposition of claims/evidence; early
“graph of proof”).

e 1967-1976: Dempster—Shafer theory (belief functions; alternative calculus of evidence and
combination rules).

e 1948/1927: Shannon (classical) and von Neumann (quantum) entropies anchor information
measures used throughout inference/learning.

B. Statistical physics roots of graphical inference

e 1925: Ising model (canonical lattice interaction model; later MRF archetype).

e 1935: Bethe approximation / Bethe lattice ideas (tree-like approximations; ancestor of
BP/Bethe free energy).

e 1951: Kikuchi/cluster variational methods (systematic loop corrections to Bethe).

e 1953: Metropolis Monte Carlo (stochastic computation with Gibbs distributions).

e 1970: Hastings generalizes Metropolis (Metropolis—-Hastings MCMC).

e 1971-1984: Hammersley—Clifford and Geman—Geman connect MRFs, Gibbs measures, and

practical image restoration.

C. Graphical models in statistics and AI (MRFs, Bayes nets, junction trees)
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e 1971+: MRF < Gibbs equivalence and conditional independence graphs (formal backbone
for undirected models).

e 1988: Pearl popularizes belief networks + “belief propagation” for trees/polytrees.
e 1988: Lauritzen—Spiegelhalter junction tree (exact inference by clique tree / triangulation).

e 1989-1990: HUGIN system and local computation architectures operationalize junction-
tree style inference.

e 2006-2009: Textbook-era consolidation (PRML; PGM) standardizes notation, inference
recipes, and learning.

D. Signal processing + coding precursors (dynamic programming on graphs)

e 1960: Kalman filter (recursive Bayesian inference in linear-Gaussian state-space models).
e 1962: Gallager introduces LDPC and iterative decoding ideas (early form of BP in coding).
e 1967: Viterbi algorithm (max-product on trellises for convolutional codes).

e 1974: BCJR / forward—backward on a trellis gives marginal posterior probabilities.

e 1981: Tanner graphs (explicit bipartite graph representation of codes).

E. LDPC/turbo era: modern BP “rediscovered” and industrialized

e 1993: Turbo codes show near-capacity iterative decoding works in practice.
e 1996: MacKay—Neal reignite LDPC with sparse-graph decoding and modern experiments.
e 1996: Wiberg thesis gives unified view of decoding on graphs (sum-product/min-sum).

e 1998: McEliece-MacKay—Cheng explicitly connect turbo decoding to Pearl’s BP.
F. Unification: factor graphs and the generalized distributive law

e 2000: Aji-McEliece Generalized Distributive Law unifies many algorithms as one template.

e 2001: Kschischang—Frey—Loeliger tutorial formalizes factor graphs + sum-product as a
universal algorithm.

e 2001: Forney “codes on graphs” normal realizations (system theory / duality viewpoint).
e 2004: Loeliger Signal Processing Magazine article brings factor graphs into mainstream
engineering language.

G. Loopy BP, variational views, and approximate inference toolkits

e 1977: EM algorithm (alternating inference/learning; later reframed as message pass-
ing/variational).

1999: Variational methods for graphical models (mean-field / structured approximations).

2001: Expectation propagation (moment-matching message passing beyond mean-field).

2001+: BP fixed points as stationary points of Bethe free energy (physics—inference bridge).

2005: Variational message passing (VMP) provides an automatic coordinate-ascent /message
framework.

H. Approximate message passing (AMP) and state evolution

e 2002/2003: Kabashima’s low-complexity BP-style multiuser detection for dense CDMA is
precursor to later AMP algorithms [23, 24].
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e 2009: AMP-style algorithms for compressed sensing (fast BP-inspired iterations for dense
linear models).

e 2010/2011: State evolution becomes rigorous (dense-graph analog of density evolution).

e 2010+: GAMP extends AMP to nonlinear output channels and generalized priors.
I. Modern ML connections: neural message passing, GNNs, and learned inference

e 2009: Early GNN formalism frames learning as fixed-point message passing on graphs.

e 2010: LISTA (Learned ISTA) — Gregor & LeCun introduce deep unfolding for sparse
coding by unrolling ISTA into a fixed-depth trainable network [16].

e 2015+: Encoder—decoder architectures (e.g., U-Net) popularize multi-scale computational
graphs (conceptual cousin of multi-resolution inference).

e 2016+: Graph convolution / message-passing neural networks (GNNs) mainstream in deep
learning.

e 2016+: “Learned BP” and unrolled inference improve decoding and inference pipelines.

e 2017: Transformer architecture becomes the dominant sequence model. Can be interpreted
as learned message passing on a fully connected token graph [10].

e 2021: “Algorithm unrolling” survey (Monga-Li—Eldar) consolidates unfolding across signal
processing and inverse problems [37].

e 2025: “Transformers are Graph Neural Networks” formalizes view of Transformers as
message-passing GNNs on complete graphs with positional encodings for structure [22].

1.3 Milestones with brief annotations and references

1.3.1 A. Early probabilistic thinking and “combining evidence”

1763—1812: Bayesian inference as a quantitative program. While Bayesian reasoning pre-
dates graphical models, the core idea—updating beliefs by likelihood and prior—is the semantic
content that later gets compiled into factor graphs and message passing. A convenient modern
anchor is Pearl’s synthesis in [39] (see also its historical discussion). [39]

https://www.google.com/books/edition/Probabilistic_Reasoning_in_Intelligent_S/AvNID7LyMusC

1902: Gibbs distributions and ensembles. Gibbs formalized probability distributions over
configurations with energy decompositions; this is the conceptual template for factorized models
and local interactions. [141] https://www.gutenberg.org/files/50992/50992-pdf . pdf

1906: Markov chains (dependence with tractable structure). Markov’s dependent se-
quences provide the mathematical foundation for HMMs/state-space models, where inference be-
comes dynamic programming/message passing along a chain. [33] https://www.maths.usyd.edu.
au/u/eseneta/senetamcfinal . pdf

1913: Wigmore evidence charts (early “graphs of proof”). Legal scholar J. H. Wigmore
developed diagrammatic methods to structure arguments/evidence, anticipating later graph-based
representations of reasoning (though not probabilistic in the modern sense). [50] https://archive.
org/details/principlesof judiOOwigm


https://www.google.com/books/edition/Probabilistic_Reasoning_in_Intelligent_S/AvNID7LyMusC
https://www.gutenberg.org/files/50992/50992-pdf.pdf
https://www.maths.usyd.edu.au/u/eseneta/senetamcfinal.pdf
https://www.maths.usyd.edu.au/u/eseneta/senetamcfinal.pdf
https://archive.org/details/principlesofjudi00wigm
https://archive.org/details/principlesofjudi00wigm
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1967-1976: Dempster—Shafer theory (combination of evidence). Dempster introduces
upper/lower probabilities induced by multivalued mappings, and Shafer develops belief functions
and combination rules; this line influenced Al uncertainty frameworks adjacent to Bayesian nets.
[9, 43] https://wuw.glennshafer.com/books/amte.html

1927/1948: von Neumann and Shannon entropies. von Neumann’s quantum entropy and
Shannon’s classical entropy formalize information measures that later reappear in variational in-
ference, free energies, and learning objectives. [18, 44] http://eudml.org/doc/59231 https:
//people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf

1.3.2 B. Statistical physics roots of graphical inference

1925: Ising model (local interactions on a graph). The Ising model is a canonical pairwise
Markov random field on a lattice; it motivated both approximation methods (Bethe/Kikuchi) and
MCMC sampling methods used in inference. [19] https://en.wikipedia.org/wiki/Ising_model

1935: Bethe approximation (tree-like free energy). Bethe’s work on superlattices and the
Bethe lattice approximation are historical roots of BP: tree approximations yield tractable local
recursions that later map onto sum-product updates. [0] https://www.stat.phys.kyushu-u.ac.
jp/B4/Papers/1935-Bethe.pdf

1951: Kikuchi/cluster variational methods. Kikuchi generalizes Bethe by using larger clus-
ters to correct for loops—a precursor to modern region-graph/generalized BP ideas. [20] https:
//link.aps.org/doi/10.1103/PhysRev.81.988

1953: Metropolis Monte Carlo. Metropolis et al. introduce the accept /reject sampling method
for Gibbs measures, making probabilistic computation feasible when exact summation is impossible.
[35] https://bayes.wustl.edu/Manual/EquationOfState.pdf

1970: Hastings generalization (Metropolis—Hastings). Hastings broadens Metropolis to
general proposal kernels, turning MCMC into a general-purpose inference engine for high-dimensional
models. [18] https://academic.oup.com/biomet/article-abstract/57/1/97/284580

1971-1984: MRF <+ Gibbs + practical vision inference. The Hammersley—Clifford theo-
rem underpins the equivalence between undirected graphical models and Gibbs distributions (un-
der positivity), and Geman—Geman popularize Gibbs/MRF methods in Bayesian image restoration.
[17, 13] https://www.dam.brown.edu/people/geman/Homepage/Image%20processing, %20image’
20analysis, %20Markov%20random),20fields, %20and%20MCMC/stochastic)20relaxation. pdf

1.3.3 C. Graphical models in statistics and AI (MRFs, Bayes nets, junction
trees)

1971+4: Conditional independence graphs and undirected models. The formal notion
that graph separation encodes conditional independence (for suitable distributions) motivates MRF
modeling and sets the stage for exact/approximate inference algorithms. [17] https://en.wikipedia.
org/wiki/Hammersley%E2%80%93Clifford_theorem


https://www.glennshafer.com/books/amte.html
http://eudml.org/doc/59231
https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf
https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf
https://en.wikipedia.org/wiki/Ising_model
https://www.stat.phys.kyushu-u.ac.jp/B4/Papers/1935-Bethe.pdf
https://www.stat.phys.kyushu-u.ac.jp/B4/Papers/1935-Bethe.pdf
https://link.aps.org/doi/10.1103/PhysRev.81.988
https://link.aps.org/doi/10.1103/PhysRev.81.988
https://bayes.wustl.edu/Manual/EquationOfState.pdf
https://academic.oup.com/biomet/article-abstract/57/1/97/284580
https://www.dam.brown.edu/people/geman/Homepage/Image%20processing,%20image%20analysis,%20Markov%20random%20fields,%20and%20MCMC/stochastic%20relaxation.pdf
https://www.dam.brown.edu/people/geman/Homepage/Image%20processing,%20image%20analysis,%20Markov%20random%20fields,%20and%20MCMC/stochastic%20relaxation.pdf
https://en.wikipedia.org/wiki/Hammersley%E2%80%93Clifford_theorem
https://en.wikipedia.org/wiki/Hammersley%E2%80%93Clifford_theorem
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1988: Pearl’s belief networks + “belief propagation”. Pearl’s book consolidates directed
graphical models and the message-passing algorithm for trees/polytrees that later becomes the
canonical starting point for BP. [39]

https://www.google.com/books/edition/Probabilistic_Reasoning_in_Intelligent_S/AvNID7LyMusC

1988: Junction tree / clique tree exact inference. Lauritzen—Spiegelhalter show how tri-
angulation and clique trees enable exact marginalization in general graphs (at exponential cost in
treewidth), connecting graph structure to computational complexity. [30] https://en.wikipedia.
org/wiki/Junction_tree_algorithm

1989-1990: HUGIN and local computation architectures. The HUGIN line of work makes
junction-tree propagation concrete in software architectures and emphasizes “local computation” as
the guiding engineering principle. [2, 20] https://www.ijcai.org/Proceedings/89-2/Papers/
037.pdf https://www.stats.ox.ac.uk/~steffen/papers/jensenetal90.pdf

2006—2009: Consolidation into ML curricula. Modern texts unify Bayesian nets, MRF's, ap-

proximate inference, and learning (EM /variational/ MCMC), becoming the shared language for ML

and signal processing communities. [7, 28] https://books.google.com/books/about/Pattern_
Recognition_and_Machine_Learning.html?id=kTNoQgAACAAJ https://mitpress.mit.edu/9780262013192/
probabilistic-graphical-models/

1.3.4 D. Signal processing + coding precursors (dynamic programming on graphs)

1960: Kalman filtering as recursive Bayesian inference. The Kalman filter is an early
flagship instance of structured probabilistic inference: it passes sufficient statistics forward in time
for linear-Gaussian state-space models. [25] https://en.wikipedia.org/wiki/Kalman_filter

1967: Viterbi algorithm (max-product on a trellis). Viterbi decoding is dynamic pro-
gramming for MAP sequence estimation; in modern terms it is max-product message passing on a
chain-structured factor graph. [17] https://en.wikipedia.org/wiki/Viterbi_algorithm
1974: BCJR / forward—backward (sum-product on a trellis). BCJR computes posterior
symbol probabilities via forward/backward recursions; this is sum-product on a chain and a di-
rect ancestor of factor-graph inference in communications. [3] https://en.wikipedia.org/wiki/
BCJR_algorithm

1962: Gallager LDPC and iterative decoding ideas. Gallager introduces LDPC codes and
decoding methods that (in retrospect) foreshadow BP-style iterative message passing on sparse
graphs. [12] https://en.wikipedia.org/wiki/Low-density_parity-check_code

1981: Tanner graphs. Tanner’s bipartite graph representation makes code constraints ex-
plicit and provides the natural substrate for iterative local-message decoding. [15] https://en.
wikipedia.org/wiki/Tanner_graph

1.3.5 E. LDPC/turbo era: modern BP “rediscovered” and industrialized

1993: Turbo codes. Turbo codes demonstrate that iterated local computations can approach
Shannon limits in practice, catalyzing broad interest in iterative decoding/inference. [5] https:
//en.wikipedia.org/wiki/Turbo_code


https://www.google.com/books/edition/Probabilistic_Reasoning_in_Intelligent_S/AvNID7LyMusC
https://en.wikipedia.org/wiki/Junction_tree_algorithm
https://en.wikipedia.org/wiki/Junction_tree_algorithm
https://www.ijcai.org/Proceedings/89-2/Papers/037.pdf
https://www.ijcai.org/Proceedings/89-2/Papers/037.pdf
https://www.stats.ox.ac.uk/~steffen/papers/jensenetal90.pdf
https://books.google.com/books/about/Pattern_Recognition_and_Machine_Learning.html?id=kTNoQgAACAAJ
https://books.google.com/books/about/Pattern_Recognition_and_Machine_Learning.html?id=kTNoQgAACAAJ
https://mitpress.mit.edu/9780262013192/probabilistic-graphical-models/
https://mitpress.mit.edu/9780262013192/probabilistic-graphical-models/
https://en.wikipedia.org/wiki/Kalman_filter
https://en.wikipedia.org/wiki/Viterbi_algorithm
https://en.wikipedia.org/wiki/BCJR_algorithm
https://en.wikipedia.org/wiki/BCJR_algorithm
https://en.wikipedia.org/wiki/Low-density_parity-check_code
https://en.wikipedia.org/wiki/Tanner_graph
https://en.wikipedia.org/wiki/Tanner_graph
https://en.wikipedia.org/wiki/Turbo_code
https://en.wikipedia.org/wiki/Turbo_code
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1996: Modern LDPC revival (MacKay—Neal). MacKay and Neal’s work helps reintroduce
LDPC codes to the community with modern experimental validation and the sparse-graph view-
point aligned with BP. [32] https://www.inference.org.uk/mackay/

1996: Wiberg’s “decoding on graphs” unification. Wiberg frames decoding/inference al-
gorithms on general graphs (sum-product/min-sum) and clarifies when and why message passing
is exact (trees) vs. approximate (loops). [19] https://people.kth.se/~bjornwiberg/

1998: Turbo decoding as BP (explicit bridge to AI). McEliece-MacKay—Cheng make the
connection explicit: turbo decoding can be understood as Pearl-style belief propagation on a graph
with cycles. [34] https://en.wikipedia.org/wiki/Belief_propagation

1.3.6 F. Unification: factor graphs and the generalized distributive law

2000: Generalized distributive law (GDL). Aji-McEliece show that many algorithms (FFT,
Viterbi/BCJR, decoding, etc.) arise from one algebraic pattern: distribute products over sums (or
more general semirings) via local message passing. [I] https://authors.library.caltech.edu/
records/swipm-bwj40/files/AJIieeetit00.pdf

2001: Factor graphs 4+ sum-product tutorial. Kschischang—Frey—Loeliger provide the canon-
ical factor-graph formulation and the modern “sum-product algorithm” presentation that made
BP a general inference primitive. [29] https://vision.unipv.it/IA2/Factor%20graphs’20andy,
20the%20sum-product’%20algorithm. pdf

2001: Codes on graphs / normal realizations (Forney). Forney emphasizes normal real-
izations and duality, strengthening the links between coding theory, graph-based realizations, and
inference/partition functions. [11] https://ieeexplore.ieee.org/document/910573

2004: Factor graphs as mainstream engineering language. Loeliger’s Signal Processing
Magazine article popularizes Forney-style factor graphs and positions them as a unified language for
estimation/decoding algorithms. [31] https://people.kth.se/~tjtkoski/factorgraphs.pdf

1.3.7 G. Loopy BP, variational views, and approximate inference toolkits

1977: EM as alternating inference/learning. EM is a cornerstone for latent-variable learn-
ing; it later gets reinterpreted through variational objectives and message passing (E-step as infer-
ence, M-step as parameter update). [3] https://en.wikipedia.org/wiki/Expectation’E2%80%
93maximization_algorithm

1999: Variational methods for graphical models. Jordan et al. systematize variational
approximations (mean-field, structured) that trade exactness for tractable optimization and often
yield message updates reminiscent of BP. [21] https://en.wikipedia.org/wiki/Variational_
Bayesian_methods

2001: Expectation propagation (EP). EP generalizes message passing via moment matching;
it became a major alternative to BP/mean-field for approximate Bayesian inference. [3(] https:
//en.wikipedia.org/wiki/Expectation_propagation


https://www.inference.org.uk/mackay/
https://people.kth.se/~bjornwiberg/
https://en.wikipedia.org/wiki/Belief_propagation
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https://authors.library.caltech.edu/records/sw1pm-bwj40/files/AJIieeetit00.pdf
https://vision.unipv.it/IA2/Factor%20graphs%20and%20the%20sum-product%20algorithm.pdf
https://vision.unipv.it/IA2/Factor%20graphs%20and%20the%20sum-product%20algorithm.pdf
https://ieeexplore.ieee.org/document/910573
https://people.kth.se/~tjtkoski/factorgraphs.pdf
https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm
https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm
https://en.wikipedia.org/wiki/Variational_Bayesian_methods
https://en.wikipedia.org/wiki/Variational_Bayesian_methods
https://en.wikipedia.org/wiki/Expectation_propagation
https://en.wikipedia.org/wiki/Expectation_propagation
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2001+: BP fixed points and Bethe free energy. Yedidia—Freeman—Weiss connect BP fixed
points to stationary points of a Bethe free energy, making the statistical-physics lineage explicit
and enabling a variational interpretation of loopy BP. [52] https://www.merl.com/publications/
docs/TR2001-22.pdf

2005: Variational message passing (VMP). VMP formalizes a family of coordinate-ascent
variational updates as local messages in conjugate-exponential models, supporting automated in-
ference engines. [51] https://en.wikipedia.org/wiki/Variational_message_passing

1.3.8 H. High-dimensional inference: AMP and state evolution

2002+: Dense-graph BP in CDMA as an AMP precursor (Kabashima). Kabashima
formulated synchronous CDMA multiuser detection as inference on a dense (complete bipartite)
graph and showed that belief propagation can be made practical by applying central-limit and
self-averaging approximations to the dense messages, yielding an efficient iterative detector and
a dynamical analysis linked to statistical mechanics [23, 24]. This is part of the prehistory of
approximate message passing for dense linear systems.

2009: AMP for compressed sensing (dense-graph BP limit). Donoho-Maleki-Montanari
propose BP-inspired iterative thresholding with an “Onsager” correction, yielding accurate, scalable
inference for random linear models. [10] https://www.pnas.org/doi/10.1073/pnas.0909892106

2010/2011: Rigorous state evolution (dense analog of density evolution). Bayati—
Montanari give a rigorous analysis showing AMP’s iterates are tracked by a scalar recursion
(state evolution), explaining its predictive performance and connecting to spin-glass methods. [1]
https://arxiv.org/abs/1001.3448

2010+4: GAMP extends AMP to generalized channels. Rangan generalizes AMP to non-
linear /quantized output channels and broader priors, framing it as approximate loopy BP with
tractable state evolution in large random systems. [10] https://arxiv.org/abs/1010.5141

1.3.9 I. Modern ML connections: neural BP, GNNs, learned inference

2009: GNNs as learned fixed-point message passing. Early GNN formulations treat learn-
ing on graphs as iterated information diffusion (messages) to a fixed point, conceptually mirror-
ing BP but with learned update rules. [12] https://dl.acm.org/doi/abs/10.1109/tnn.2008.
2005605

2010: LISTA and the deep unfolding paradigm. Gregor and LeCun introduced LISTA
(Learned ISTA) as a trainable, fixed-depth network obtained by unrolling the ISTA iterations for
sparse coding and learning the linear transforms/thresholds to match the optimal solution in far
fewer steps [16]. This kicked off a broad “deep unfolding” (a.k.a. algorithm unrolling) literature in
which classical iterative inference/optimization algorithms become structured neural architectures
with learnable parameters.

2015+: Encoder—decoder architectures (e.g., U-Net) and multi-scale computation
graphs. Although not probabilistic message passing per se, U-Net popularizes structured multi-
resolution computation graphs; this connects naturally to multi-scale inference ideas and hierarchi-
cal factorization in practice. [11] https://arxiv.org/abs/1505.04597


https://www.merl.com/publications/docs/TR2001-22.pdf
https://www.merl.com/publications/docs/TR2001-22.pdf
https://en.wikipedia.org/wiki/Variational_message_passing
https://www.pnas.org/doi/10.1073/pnas.0909892106
https://arxiv.org/abs/1001.3448
https://arxiv.org/abs/1010.5141
https://dl.acm.org/doi/abs/10.1109/tnn.2008.2005605
https://dl.acm.org/doi/abs/10.1109/tnn.2008.2005605
https://arxiv.org/abs/1505.04597
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2016/2017: Graph convolutions and message passing neural networks. Kipf-Welling
and Gilmer et al. mainstream the idea that many successful graph models are “message passing”
systems with learned aggregation and update maps. [27, 15] https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1704.01212

2016+: Learned decoding / unrolled inference. Unrolling BP as a differentiable com-
putation graph (and learning parameters/weights) bridges classical inference and deep learning,
improving decoding and inspiring broader “algorithm unrolling” for inverse problems. [38] https:
//arxiv.org/abs/1607.04793

2017: Transformers as learned message passing. The Transformer introduced self-attention
as the core mechanism for sequence modeling in “Attention is all you need”, enabling each token
to aggregate information from all other tokens with learned, data-dependent weights. From the
factor-graph viewpoint, this resembles learned message passing on a on a fully connected token
graph whose edge weights are computed by attention. [1(]

2021: Survey / consolidation of algorithm unrolling. Monga, Li, and Eldar provide a
widely cited tutorial-style survey of algorithm unrolling, emphasizing interpretability, efficiency,
and hybrid model-based/data-driven design principles across signal and image processing [37].

2025: Explicit connections between Transformers and GNNs. Joshi argues that Trans-
formers can be viewed as message passing GNNs operating on fully connected graphs of tokens,
with positional encodings injecting inductive bias about structure/order [22]. This provides a clean
conceptual bridge between graphical-model inference and modern foundation models.

1.4 Why start with history?

Study the past if you would divine the future.” - Confucius

It is neither practical nor wise to try and understand all of the topics mentioned above. One can
only hope to capture a flavor from the immense volume of past work. One theme that seems to
repeat is that the message-passing frameworks associated with graphical models seem to be useful
from a macroscopic perspective. Many of the most powerful machine learning algorithms known
have a macroscopic structure that aligns with our understanding of graphical models. However,
their amazing performance was unlocked only by learning very complicated factors from massive
amounts of data. Early successes in graphical models were mainly for problems where we had
very good theoretical models of the probabilistic interactions (e.g., digital communication is Gaus-
sian noise). Speech recognition achieved moderate success based on hidden Markov models with
Gaussian mixture observations but real success was only achieved by training neural networks to
model output distributions from massive amounts of data. It remains an open question whether
a better understanding of generic models like transformers will allow us to reduce their enormous
complexity.


https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1607.04793
https://arxiv.org/abs/1607.04793
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1.5 Probability Review™

Students who take this class often have a variety of backgrounds, including electrical engineering,
statistics, computer science, math, physics, and other engineering and science disciplines. In order
to be successful in this course it is necessary that you are comfortable working with probability at
the undergraduate level. This includes conditioning, expectation, discrete and continuous randoms
as well as familiarity with multivariate Gaussian distributions, Markov chains, and convergence of
random variables. That said, this course is designed such that you do not need probability at the
graduate level (i.e., measure-theoretic probability).

e Probability space

@)

(e]

@)

sample space {2 of all possible outcomes
event space F of events defined on the sample space (e.g., A, B € F are events)

probability measure P that satisfies three axioms
P[Q) =1, P[A]>0, P[AUB]=P[A]+P[B] forall A,Be F with ANB=10

Formally, a (real) random variable X is a function from € to R which specifies the value
of X when outcome w occurs (e.g., X (w) = 14(w) is the indicator rv of event A)

e Example: There is a 1% chance I have a certain disease. I take a test for this disease which
is 90% accurate. i.e.

IP[ positive | disease] = P[ negative | no disease] = 0.9

Given the test is positive, what is the probability I have the disease?

@)

o

Let A be the event I have the disease and B be the event that the test is positive.
P[A] =0.01, P[B|A]=P[B°| A]=0.9

_ P[B|AP[4] P[B | AJP[A]
PIAT Bl = =55 = BB APIA] + PB | AIP(A]
0.9 x 0.01 9 1

T 09x00l+01x099 118 12

Even though the test is highly accurate, the probability I have the disease given a positive
outcome is relatively small. This is because the prior probability that I have the disease
is very small so the most likely explanation of a positive result is that it’s a false positive.

e Notation

@)

@)

o

Random variables are denoted by uppercase: X,Y, Z
Deterministic (i.e., non-random) values denoted by lower case: z,y, z

Support (or alphabet) of random variable denoted by calligraphic font X', ), Z

e Discrete random variables:

(0]

The probability mass function (pmf) of a discrete random variable is X with support
X is given by
px(x) =PX =z] forallze X

To simplify notation, it is common to write p(x) where the association with the random
variable X is implied by the argument of the function.
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o The joint pmf of random variables (X,Y) is given by
pxy(z,y) =PX =2z,Y =y] forall (z,y) e X xY

To simplify notation, it is common to write p(z,y) where the association with the pair
(X,Y) is implied by the argument of the function.
o The marginal distributions of X and Y respectively are given by

px(@) = pxy(®.y),  pr(y) = pxy(ey)

yey zeX
e Independence:

o Events A and B are independent if and only if their joint probability equals the product
of their probabilities
P[A N B] = P[A]|P[B]

o Random variables X and Y are independent if and only if the joint probability is equal
to the product of the marginals:

pxy(z,y) = px(x)py(y) forall (x,y) € X x Y

e Example: Let X and Y be independent random variables supportedon X =Y = {1,..., M }.
What is the probability that X equals Y7

M
PIX=Y]=) px(mPX=Y|X=m]

3
Il

-

px (m)P[Y = m)]

3
Il

-

px (m)py (m)

3
I

e Example: Provide an example of three random variables X, Y, Z that are pair-wise indepen-
dent but not independent.

e Independent and identically distributed (i.i.d.): A sequence of random variables X, Xs, ...

is i.i.d. if the variables are independent and share a common marginal distribution p(z), i.e.,

n

PX1, X (X1, -, ) = Hp(l‘z‘)
i1

e Expectation:

o The expected value of a random variable X is given by

E[X] =) zpx(z)

reX

o The expected value of a function f: X — R is given by

E[f(X)] =) f(z)px(x)

reX
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o Warning: the expectation E[f(X)] not a random variable. Instead, it is a functional of
the distribution of X. Sometimes it is written as E,, [f] to make this relationship clear.

o The conditional expectation of X given a particular realization {Y = y} is

EX|Y =yl=> zpxpy(z|y)
rzeX

This is a deterministic (nonrandom) quantity that is a function of y.

o The conditional expectation of X given Y is

EX |Y]= Z UCPX|Y($ |Y)
zeX

This this is a random variable because it is a function of the random variable Y.
Variance: The variance of a random variable X is given by
Var(X) = E[(X — E[X])?] = E[X?] - (E[X])?

and the conditional variance Var(X | Y) is a random variable that, given Y = y, equals the
variance of X ~ px|y (7 |y).

Var(X | Y =y) =E[(X —E[X | Y =y])* |V =]
Example: The law of total variance states that
Var(X) = E[Var(X | Y)] + Var(E[X | Y])

Law of large numbers (LLN): If a sequence of random variables X1, Xo,... is i.i.d. with
finite absolute first moment E[|X|] < oo, then the long-term average converges to the mean:

1 n
n“
=1
with probability one as n — oo.

Central limit theorem (CLT): If a sequence of random variables X1, X», ... is i.i.d. with
mean ;1 = E[X] and finite variance 0? = Var(X;) < co then the fluctuation of the long-term
average about the the mean has a Gaussian distribution

\FZ 1) — N(0,02)

in distribution as n — oo.

Example: Let X1, Xo,..., be a sequence of i.i.d. Bernoulli(p) variables, p € (0,1), and let
S, = X1 + -+ X, be the sum of the first n terms.

o S, has a binomial distribution with parameters n and p, and probability mass function

n —
ps,(s) = (k)ps(l —p)" s, se{0,1,...,n}
and cumulative distribution function

Fon(s) = PlSy < 5] = Y ps,(k), 5 € (~00,00)
k<t
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o By law of large numbers, %Sn — p as n — oo. This implies that the cdf converges to a
step function

1, t
Figa(t)=P[n7'S, <t] =4 - P
n 0, t<p

o By central limit theorem, Z, = (S, — E[S,])/y/n Var(S1) converges in distribution to a
N(0,1) random variable as n — oo. This is equivalent to saying that the cdf converges
to the cdf of a standard Gaussian variable:

Fz, (%) :P[S"_”O‘ ) gz] —>/ L 4 gy

na(l —« oo V2T

o Warning: Convergence is distribution can occur to any distribution and it does not
always imply that the pmf pz, () converges to the pdf of the Gaussian distribution.
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