ECE 590.17 Lecture 1:

History of Factor Graphs, Inference, and Machine Learning

Duke University, Spring 2026
Instructor: Henry Pfister
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@ Probability and Information: Bayesian
updates, entropy, conditional independence.

e Statistical physics: local interactions

(Gibbs), tree/cluster approximations
(Bethe/Kikuchi), free energy views.

e Signal processing & coding: dynamic

prog on trellises; iterative decoding
(LDPC/turbo), = message passing.
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o Probability and Information: Bayesian e Al / graphical models: Bayes nets,
updates, entropy, conditional independence. belief propagation, junction trees (exact

. . . . on trees; approximate on loo raphs).
e Statistical physics: local interactions PP py graphs)

(Gibbs), tree/cluster approximations e Modern ML: learned message passing
(Bethe/Kikuchi), free energy views. (GNNs/Transformers), deep unfolding

lled inference/optimization).
@ Signal processing & coding: dynamic (unro Jop )

prog on trellises; iterative decoding @ Unifying idea: Represent global function

(LDPC/turbo), = message passing. by factorization and pass local messages. | /8



@ One idea, many reinventions:
combine local evidence to reason
about a global hypothesis.

@ Three parent disciplines:

o Probability & information:
uncertainty, likelihood, entropy,
conditional independence.

o Statistical physics: local
interactions, tree/cluster
approximations, free energy views.

e Coding / signal processing:
decoding & filtering as fast dynamic
programming on graphs.

@ Modern synthesis: PGIVis 4 factor
graphs 4 learned message passing.

Unifying lens: make the factorization explicit
= compute by local messages.
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From Exact Inference to Learned Message Passing

e Part I: Trees (exact)

sum-product / max-product as dynamic

programming; what structure buys you.
e Part Il: Loops (approximate) 2 ;
loopy BP as a heuristic + variational /
free-energy interpretations. Also, MCMC lices Loops Learned

gives sampling alternatives.

e Part Ill: Learned (hybrid)

AMP + state evolution; deep unfolding
(train the iterations); GNNs/Transformers as
learned message passing.

Goal: recognize the same computation template across
inference, optimization, and modern ML.
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Early milestones (pre-1982)

Physics & probability

1902 Gibbs: distributions from local
energies (proto-factorization).

1906 Markov: dependence with local
structure (chains — HMMs).

1925 Ising: canonical lattice interaction
model (pairwise MRF archetype).

1935 Bethe: tree-like approximations —
later Bethe free energy/BP links.

1953/1970 Metropolis—Hastings: MCMC
sampling as computation (inference).
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@ 1906 Markov: dependence with local
structure (chains — HMMs).

@ 1925 Ising: canonical lattice interaction
model (pairwise MRF archetype).

@ 1935 Bethe: tree-like approximations —
later Bethe free energy/BP links.

e 1953/1970 Metropolis—Hastings: MCMC
sampling as computation (inference).
Information measures

@ 1927 von Neumann entropy, 1948
Shannon entropy: common currency for
inference/learning/coding.

Signal processing & coding

1960 Kalman filter: recursive Bayesian
inference on chains (linear-Gaussian).

1967 Viterbi: max-product DP on trellis.

1974 BCJR: sum-product
(forward—backward) on a trellis.

1962 Gallager LDPC: sparse constraints
+ iterative decoding ideas.

1981 Tanner graphs: explicit bipartite
constraint graph representation.
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Early milestones (pre-1982)

Physics & probability Signal processing & coding
@ 1902 Gibbs: distributions from local e 1960 Kalman filter: recursive Bayesian
energies (proto-factorization). inference on chains (linear-Gaussian).
@ 1906 Markov: dependence with local @ 1967 Viterbi: max-product DP on trellis.

structure (chains — HMMs). o 1974 BCJR: sum-product

@ 1925 Ising: canonical lattice interaction (forward—backward) on a trellis.

model (pairwise MRF archetype). e 1962 Gallager LDPC: sparse constraints

@ 1935 Bethe: tree-like approximations — + iterative decoding ideas.

later Bethe free energy/BP links. @ 1981 Tanner graphs: explicit bipartite

e 1953/1970 Metropolis—Hastings: MCMC constraint graph representation.
sampling as computation (inference).

Information measures Theme: many “special-purpose” algorithms
e 1927 von Neumann entropy, 1948 were already message passing on graphs.
Shannon entropy: common currency for
inference/learning/coding. 5/8



Unification: 1983-2001 (graphical models, Al, coding)

Al / probabilistic graphical models

@ 1988 Pearl: belief propagation as local
computation (exact on trees/polytrees).

@ 1988 Lauritzen—Spiegelhalter: junction
tree / clique tree for exact inference.

@ 1989-1990 HUGIN + local computation
architectures: inference MP in software.
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Al / probabilistic graphical models Iterative coding revolution
@ 1988 Pearl: belief propagation as local @ 1993 Turbo codes: iterative decoding
computation (exact on trees/polytrees). near Shannon limits.
@ 1988 Lauritzen—Spiegelhalter: junction @ 1996 MacKay—Neal: LDPC renaissance
tree / clique tree for exact inference. with modern BP decoding experiments.
@ 1989-1990 HUGIN + local computation @ 1996 Wiberg: “codes on graphs” decoding
architectures: inference MP in software. viewpoint for sum/max-product on graphs.
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Unification: 1983-2001 (graphical models, Al, coding)

Al / probabilistic graphical models Iterative coding revolution
@ 1988 Pearl: belief propagation as local @ 1993 Turbo codes: iterative decoding
computation (exact on trees/polytrees). near Shannon limits.
@ 1988 Lauritzen—Spiegelhalter: junction @ 1996 MacKay—Neal: LDPC renaissance
tree / clique tree for exact inference. with modern BP decoding experiments.
@ 1989-1990 HUGIN + local computation @ 1996 Wiberg: “codes on graphs” decoding
architectures: inference MP in software. viewpoint for sum/max-product on graphs.

@ 1998 McEliece—MacKay—Cheng: turbo

Unification: factor graphs & distributive law
decoding as Pearl-style BP.

@ 2000 Aji—McEliece (GDL): one template
(semirings) for many graph algorithms.

@ 2001 Kschischang—Frey—Loeliger: Takeaway: “BP" becomes a general algorithm,
factor graphs + sum-product as a not just an Al or ECC decoding trick.
universal inference algorithm.

@ 2001 Forney: normal realizations / codes
on graphs (system-theoretic duality). 6/8



Modern: 2001-2025 (approximate inference, high-dimension, learning)

Loopy BP optimizes variational free-energy
@ 2001 Yedidia—Freeman—Weiss: BP fixed
points <> stationary points Bethe free energy.

e 2001 EP (Minka) and 2005 VMP
(Winn—-Bishop): broader approximate
message passing toolkits.

@ 2004 Loeliger: factor graphs become
standard engineering language.
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Modern: 2001-2025 (approximate inference, high-dimension, learning)

Loopy BP optimizes variational free-energy Modern ML: learned message passing

@ 2001 Yedidia—Freeman—Weiss: BP fixed o Deep unfolding / unrolling: 2010
points <> stationary points Bethe free energy. ~ LISTA (Gregor-LeCun) and many

e 2001 EP (Minka) and 2005 VMP descendants (train the iterations).
(Winn—-Bishop): broader approximate o Learned BP decoders: keep the Tanner
message passing toolkits. graph, learn weights/damping/schedules.

@ 2004 Loeliger: factor graphs become @ GNNs: learned message passing on
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Modern: 2001-2025 (approximate inference, high-dimension, learning)

Loopy BP optimizes variational free-energy Modern ML: learned message passing

@ 2001 Yedidia—Freeman—Weiss: BP fixed o Deep unfolding / unrolling: 2010
points <> stationary points Bethe free energy. ~ LISTA (Gregor-LeCun) and many

e 2001 EP (Minka) and 2005 VMP descendants (train the iterations).
(Winn—-Bishop): broader approximate o Learned BP decoders: keep the Tanner
message passing toolkits. graph, learn weights/damping/schedules.

@ 2004 Loeliger: factor graphs become @ GNNs: learned message passing on
standard engineering language. sparse graphs (graph conv / MPNNs).

@ Transformers: self-attention as learned

message passing on a dense token graph
@ 2009 Donoho—Maleki—Montanari: AMP (data-dependent edges).
for compressed sensing.

Dense-graph message passing: AMP line

e 2011 Bayati—Montanari: state evolution

; L . Current synthesis: model-based structure +
(rigorous prediction of AMP dynamics).

trainable params = fast stable “neural BP.”
@ 2010+ Rangan: GAMP for generalized
channels/priors. 7/8



The 2D Ising Model in Action (32 x 32, J=1, T =2.3)
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