
Chapter 10

Expectations and Bounds

The concept of expectation, which was originally introduced in the context

of discrete random variables, can be generalized to other types of random

variables. For instance, the expectation of a continuous random variable is

defined in terms of its probability density function (PDF). We know from our

previous discussion that expectations provide an effective way to summarize

the information contained in the distribution of a random variable. As we

will see shortly, expectations are also very valuable in establishing bounds on

probabilities.

10.1 Expectations Revisited

The definition of an expectation associated with a continuous random variable

is very similar to its discrete counterpart; the weighted sum is simply replaced

by a weighted integral. For a continuous random variable X with PDF fX(·),
the expectation of g(X) is defined by

E[g(X)] =

∫

R

g(ξ)fX(ξ)dξ.

In particular, the mean of X is equal to

E[X ] =

∫

R

ξfX(ξ)dξ

and its variance becomes

Var(X) = E
[

(X − E[X ])2
]

=

∫

R

(ξ − E[X ])2fX(ξ)dξ.
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As before, the variance of random variable X can also be computed using

Var(X) = E [X2]− (E[X ])2.

Example 84. We wish to calculate the mean and variance of a Gaussian

random variable with parameters m and σ2. By definition, the PDF of this

random variable can be written as

fX(ξ) =
1√
2πσ

e−
(ξ−m)2

2σ2 ξ ∈ R.

The mean of X can be obtained through direct integration, with a change of

variables,

E[X ] =
1√
2πσ

∫ ∞

−∞
ξe−

(ξ−m)2

2σ2 dξ

=
σ√
2π

∫ ∞

−∞

(

ζ +
m

σ

)

e−
ζ2

2 dζ

=
σ√
2π

∫ ∞

−∞
ζe−

ζ2

2 dζ +
σ√
2π

∫ ∞

−∞

m

σ
e−

ζ2

2 dζ = m.

In finding a solution, we have leveraged the facts that ζe−
ζ2

2 is an absolutely in-

tegrable, odd function. We also took advantage of the normalization condition

which ensures that a Gaussian PDF integrates to one. To derive the variance,

we again use the normalization condition. For a Gaussian PDF, this property

implies that
∫ ∞

−∞
e−

(ξ−m)2

2σ2 dξ =
√
2πσ.

Differentiating both sides of this equation with respect to σ, we get

∫ ∞

−∞

(ξ −m)2

σ3
e−

(ξ−m)2

2σ2 dξ =
√
2π.

Rearranging the terms yields

∫ ∞

−∞

(ξ −m)2√
2πσ

e−
(ξ−m)2

2σ2 dξ = σ2.

Hence, Var(X) = E [(X −m)2] = σ2. Of course, the variance can also be

obtained by more conventional methods.

Example 85. Suppose that R is a Rayleigh random variable with parameter

σ2. We wish to compute its mean and variance.
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Recall that R is a nonnegative random variable with PDF

fR(r) =
r

σ2
e−

r2

2σ2 r ≥ 0.

Using this distribution, we get

E[R] =

∫ ∞

0

ξfR(ξ)dξ =

∫ ∞

0

ξ2

σ2
e−

ξ2

2σ2 dξ

= −ξe−
ξ2

2σ2

∣

∣

∣

∣

∞

0

+

∫ ∞

0

e−
ξ2

2σ2 dξ

=
√
2πσ

∫ ∞

0

1√
2πσ

e−
ζ2

2σ2 dζ =

√
2πσ

2
.

Integration by parts is key in solving this expectation. Also, notice the judicious

use of the fact that the integral of a standard normal random variable over

[0,∞) must be equal to 1/2. We compute the second moment of R below,

E
[

R2
]

=

∫ ∞

0

ξ2fR(ξ)dξ =

∫ ∞

0

ξ3

σ2
e−

ξ2

2σ2 dξ

= −ξ2e−
ξ2

2σ2

∣

∣

∣

∣

∞

0

+

∫ ∞

0

2ξe−
ξ2

2σ2 dξ

= −2σ2e−
ξ2

2σ2

∣

∣

∣

∣

∞

0

= 2σ2.

The variance of R is therefore equal to

Var[R] =
(4− π)

2
σ2.

Typically, σ2 is employed to denote the variance of a random variable. It may

be confusing at first to have a random variable R described in terms of parame-

ter σ2 whose variance is equal to (4−π)σ2/2. This situation is an artifact of the

following relation. A Rayleigh random variable R can be generated through the

expression R =
√
X2 + Y 2, where X and Y are independent zero-mean Gaus-

sian variables with variance σ2. Thus, the parameter σ2 in fR(·) is a tribute

to this popular construction, not a representation of its actual variance.

For nonnegative random variable X , an alternative way to compute E[X ]

is described in Proposition 7.
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Proposition 7. Suppose that X is a nonnegative random variable with finite

mean, then

E[X ] =

∫ ∞

0

Pr(X > x)dx.

Proof. We offer a proof for the special case where X is a continuous random

variable, although the result remains true in general,

∫ ∞

0

Pr(X > x)dx =

∫ ∞

0

∫ ∞

x

fX(ξ)dξdx

=

∫ ∞

0

∫ ξ

0

fX(ξ)dxdξ

=

∫ ∞

0

ξfX(ξ)dξ = E[X ].

Interchanging the order of integration is justified because X is assumed to

have finite mean.

Example 86. A player throws darts at a circular target hung on a wall. The

dartboard has unit radius, and the position of every dart is distributed uni-

formly over the target. We wish to compute the expected distance from each

dart to the center of the dartboard.

Let R denote the distance from a dart to the center of the target. For

0 ≤ r ≤ 1, the probability that R exceeds r is given by

Pr(R > r) = 1− Pr(R ≤ r) = 1− πr2

π
= 1− r2.

Then, by Proposition 7, the expected value of R is equal to

E[R] =

∫ 1

0

(

1− r2
)

dr =

(

r − r3

3

)
∣

∣

∣

∣

1

0

= 1− 1

3
=

2

3
.

Notice how we were able to compute the answer without deriving an explicit

expression for fR(·).

10.2 Moment Generating Functions

The moment generating function of a random variable X is defined by

MX(s) = E
[

esX
]

.
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For continuous random variables, the moment generating function becomes

MX(s) =

∫ ∞

−∞
fX(ξ)e

sξdξ.

The experienced reader will quickly recognize the definition of MX(s) as a

variant of the Laplace Transform, a widely used linear operator. The moment

generating function gets its name from the following property. Suppose that

MX(s) exists within an open interval around s = 0, then the nth moment of

X is given by

dn

dsn
MX(s)

∣

∣

∣

s=0
=

dn

dsn
E
[

esX
]

∣

∣

∣

s=0
= E

[

dn

dsn
esX
]
∣

∣

∣

∣

s=0

= E
[

XnesX
]

∣

∣

∣

s=0
= E[Xn].

In words, if we differentiate MX(s) a total of n times and then evaluate the

resulting function at zero, we obtain the nth moment of X . In particular, we

have dMX

ds
(0) = E[X ] and d2MX

ds2
(0) = E[X2].

Example 87 (Exponential Random Variable). Let X be an exponential ran-

dom variable with parameter λ. The moment-generating function of X is given

by

MX(s) =

∫ ∞

0

λe−λξesξdξ =

∫ ∞

0

λe−(λ−s)ξdξ =
λ

λ− s
.

The mean of X is

E[X ] =
dMX

ds
(0) =

λ

(λ− s)2

∣

∣

∣

∣

s=0

=
1

λ
;

more generally, the nth moment of X can be computed as

E[Xn] =
dnMX

dsn
(0) =

n!λ

(λ− s)n+1

∣

∣

∣

∣

s=0

=
n!

λn
.

Incidentally, we can deduce from these results that the variance of X is 1/λ2.

The definition of the moment generating function applies to discrete ran-

dom variables as well. In fact, for integer-valued random variables, the moment

generating function and the ordinary generating function are related through

the equation

MX(s) =
∑

k∈X(Ω)

eskpX(k) = GX(e
s).
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Example 88 (Discrete Uniform Random Variable). Suppose U is a discrete

uniform random variable taking value in U(Ω) = {1, 2, . . . , n}. Then, pU(k) =
1/n for 1 ≤ k ≤ n and

MU(s) =

n
∑

k=1

1

n
esk =

1

n

n
∑

k=1

esk =
es(ens − 1)

n(es − 1)
.

The moment generating function provides an alternate and somewhat intricate

way to compute the mean of U ,

E[U ] =
dMU

ds
(0) = lim

s→0

ne(n+2)s − (n+ 1)e(n+1)s + es

n (es − 1)2

= lim
s→0

n(n + 2)e(n+1)s − (n+ 1)2ens + 1

2n (es − 1)

= lim
s→0

n(n + 1)(n+ 2)ne(n+1)s − n(n + 1)2ens

2nes
=

n+ 1

2
.

Notice the double application of l’Hôpital’s rule to evaluate the derivative of

MU(s) at zero. This may be deemed a more contrived method to derive the

expected value of a discrete uniform random variables, but it does not rely on

prior knowledge of special sums. Through similar steps, one can derive the

second moment of U , which is equal to

E
[

U2
]

=
(n+ 1)(2n+ 1)

6
.

From these two results, we can show that the variance of U is (n2 − 1)/12.

The simple form of the moment generating function of a standard normal

random variable points to its importance in many situations. The exponential

function is analytic and possesses many representations.

Example 89 (Gaussian Random Variable). Let X be a standard normal ran-

dom variable whose PDF is given by

fX(ξ) =
1√
2π

e−
ξ2

2 .

The moment generating function of X is equal to

MX(s) = E
[

esX
]

=

∫ ∞

−∞

1√
2π

e−
ξ2

2 esξdξ

=

∫ ∞

−∞

1√
2π

e−
ξ2+2sξ

2 dξ = e
s2

2

∫ ∞

−∞

1√
2π

e−
ξ2−2sξ+s2

2 dξ

= e
s2

2

∫ ∞

−∞

1√
2π

e−
(ξ−s)2

2 dξ = e
s2

2 .
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The last equality follows from the normalization condition and the fact that

the integrand is a Gaussian PDF.

Let MX(s) be the moment generating function associated with a random

variable X , and consider the random variable Y = aX + b where a and b are

constant. The moment generating function of Y can be obtained as follows,

MY (s) = E
[

esX
]

= E
[

es(aX+b)
]

= esbE
[

esaX
]

= esbMX(as).

Thus, if Y is an affine function of X then MY (s) = esbMX(as).

Example 90. We can use this property to identify the moment generating

function of a Gaussian random variable with parameters m and σ2. Recall

that an affine function of a Gaussian random variable is also Gaussian. Let

Y = σX +m, then the moment generating function of Y becomes

MY (s) = E
[

esY
]

= E
[

es(σX+m)
]

= esmE
[

esσX
]

= esm+ s2σ2

2 .

From this moment generating function, we get

E[Y ] =
dMY

ds
(0) =

[

(

m+ sσ2
)

esm+ s2σ2

2

]
∣

∣

∣

s=0
= m

E
[

Y 2
]

=
d2MY

ds2
(0) =

[

σ2esm+ s2σ2

2 +
(

m+ sσ2
)2

esm+ s2σ2

2

]
∣

∣

∣

s=0

= σ2 +m2.

The mean of Y is m and its variance is equal to σ2, as anticipated.

10.3 Important Inequalities

There are many situations for which computing the exact value of a prob-

ability is impossible or impractical. In such cases, it may be acceptable to

provide bounds on the value of an elusive probability. The expectation is

most important in finding pertinent bounds.

As we will see, many upper bounds rely on the concept of dominating

functions. Suppose that g(x) and h(x) are two nonnegative function such that

g(x) ≤ h(x) for all x ∈ R. Then, for any continuous random variable X , the
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following inequality holds

E[g(X)] =

∫ ∞

−∞
g(x)fX(x)dx

≤
∫ ∞

−∞
h(x)fX(x)dx = E[h(X)].

This is illustrated in Figure 10.1. In words, the weighted integral of g(·) is

dominated by the weighted integral of h(·), where fX(·) acts as the weighting

function. This notion is instrumental in understanding bounding techniques.

R

R

h(x)

g(x)

Figure 10.1: If g(x) and h(x) are two nonnegative functions such that g(x) ≤
h(x) for all x ∈ R, then E[g(X)] is less than or equal to E[h(X)].

10.3.1 The Markov Inequality

We begin our exposition of classical upper bounds with a result known as the

Markov inequality. Recall that, for admissible set S ⊂ R, we have

Pr(X ∈ S) = E [1S(X)] .

Thus, to obtain a bound on Pr(X ∈ S), it suffices to find a function that

dominates 1S(·) and for which we can compute the expectation.

Suppose that we wish to bound Pr(X ≥ a) where X is a nonnegative

random variable. In this case, we can select S = [a,∞) and function h(x) =

x/a. For any x ≥ 0, we have h(x) ≥ 1S(x), as illustrated in Figure 10.2. It

follows that

Pr(X ≥ a) = E [1S(X)] ≤ E[X ]

a
.
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R

R

h(x) = x
a

g(x) = 1S(x)

a

Figure 10.2: Suppose that we wish to find a bound for Pr(X ≤ a). We

define set S = [a,∞) and function g(x) = 1S(x). Using dominating function

h(x) = x/a, we conclude that Pr(X ≥ a) ≤ a−1E[X ] for any nonnegative

random variable X .

10.3.2 The Chebyshev Inequality

The Chebyshev inequality provides an extension to this methodology to various

dominating functions. This yields a number of bounds that become useful in

a myriad of contexts.

Proposition 8 (Chebyshev Inequality). Suppose h(·) is a nonnegative func-

tion and let S be an admissible set. We denote the infimum of h(·) over S

by

iS = inf
x∈S

h(x).

The Chebyshev inequality asserts that

iS Pr(X ∈ S) ≤ E[h(X)] (10.1)

where X is an arbitrary random variable.

Proof. This is a remarkably powerful result and it can be shown in a few steps.

The definition of iS and the fact that h(·) is nonnegative imply that

iS1S(x) ≤ h(x)1S(x) ≤ h(x)

for any x ∈ R. Moreover, for any such x and distribution fX(·), we can write

iS1S(x)fX(x) ≤ h(x)f(x), which in turn yields

iS Pr(X ∈ S) = E [is1S(X)] =

∫

R

iS1S(ξ)fX(ξ)dξ

≤
∫

R

h(ξ)fX(ξ)dξ = E[h(X)].



138 CHAPTER 10. EXPECTATIONS AND BOUNDS

When iS > 0, this provides the upper bound Pr(X ∈ S) ≤ i−1
S E[h(X)].

Although the proof assumes a continuous random variable, we emphasize

that the Chebyshev inequality applies to both discrete and continuous random

variables alike. The interested reader can rework the proof using the discrete

setting and a generic PMF. We provide special instances of the Chebyshev

inequality below.

Example 91. Consider the nonnegative function h(x) = x2 and let S =

{x|x2 ≥ b2} where b is a positive constant. We wish to find a bound on

the probability that |X| exceeds b. Using the Chebyshev inequality, we have

iS = infx∈S x
2 = b2 and, consequently, we get

b2 Pr(X ∈ S) ≤ E
[

X2
]

.

Constant b being a positive real number, we can rewrite this equation as

Pr(|X| ≥ b) = Pr(X ∈ S) ≤ E [X2]

b2
.

Example 92 (The Cantelli Inequality). Suppose that X is a random variable

with mean m and variance σ2. We wish to show that

Pr(X −m ≥ a) ≤ σ2

a2 + σ2
,

where a ≥ 0.

This equation is slightly more involved and requires a small optimization

in addition to the Chebyshev inequality. Define Y = X − m and note that,

by construction, we have E[Y ] = 0. Consider the probability Pr(Y ≥ a) where

a > 0, and let S = {y|y ≥ a}. Also, define the nonnegative function h(y) =

(y+b)2, where b > 0. Following the steps of the Chebyshev inequality, we write

the infimum of h(y) over S as

iS = inf
y∈S

(y + b)2 = (a+ b)2.

Then, applying the Chebyshev inequality, we obtain

Pr(Y ≥ a) ≤ E [(Y + b)2]

(a+ b)2
=

σ2 + b2

(a+ b)2
. (10.2)
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This inequality holds for any b > 0. To produce a better upper bound, we mini-

mize the right-hand side of (10.2) over all possible values of b. Differentiating

this expression and setting the derivative equal to zero yields

2b

(a+ b)2
=

2 (σ2 + b2)

(a+ b)3

or, equivalently, b = σ2/a. A second derivative test reveals that this is indeed

a minimum. Collecting these results, we obtain

Pr(Y ≥ a) ≤ σ2 + b2

(a+ b)2
=

σ2

a2 + σ2
.

Substituting Y = X −m leads to the desired result.

In some circumstances, a Chebyshev inequality can be tight.

Example 93. Let a and b be two constants such that 0 < b ≤ a. Consider the

function h(x) = x2 along with the set S = {x|x2 ≥ a2}. Furthermore, let X

be a discrete random variable with PMF

pX(x) =











1− b2

a2
, x = 0

b2

a2
, x = a

0, otherwise.

For this random variable, we have Pr(X ∈ S) = b2/a2. By inspection, we also

gather that the second moment of X is equal to E [X2] = b2. Applying the

Chebyshev inequality, we get iS = infx∈S h(x) = a2 and therefore

Pr(X ∈ S) ≤ i−1
S E [h(X)] =

b2

a2
.

Thus, in this particular example, the inequality is met with equality.

10.3.3 The Chernoff Bound

The Chernoff bound is yet another upper bound that can be constructed from

the Chebyshev inequality. Still, because of its central role in many application

domains, it deserves its own section. Suppose that we want to find a bound on

the probability Pr(X ≥ a). We can apply the Chebyshev inequality using the
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nonnegative function h(x) = esx, where s > 0. For this specific construction,

S = [a,∞) and

iS = inf
x∈S

esx = esa.

It follows that

Pr(X ≥ a) ≤ e−saE[esX ] = e−saMX(s).

Because this inequality holds for any s > 0, we can optimize the upper bound

over all possible values of s, thereby picking the best one,

Pr(X ≥ a) ≤ inf
s>0

e−saMX(s). (10.3)

This inequality is called the Chernoff bound. It is sometimes expressed in

terms of the log-moment generating function Λ(s) = logMX(s). In this latter

case, (10.3) translates into

log Pr(X ≥ a) ≤ − sup
s>0

{sa− Λ(s)} . (10.4)

The right-hand side of (10.4) is called the Legendre transformation of Λ(s).

Figure 10.3 plots es(x−a) for various values of s > 0. It should be noted that all

these functions dominate 1[a,∞)(x), and therefore they each provide a different

bound on Pr(X ≥ a). It is natural to select the function that provides the best

bound. Yet, in general, this optimal es(x−a) may depend on the distribution

of X and the value of a, which explains why (10.3) involves a search over all

possible values of s.

10.3.4 Jensen’s Inequality

Some inequalities can be derived based on the properties of a single function.

The Jensen inequality is one such example. Suppose that function g(·) is

convex and twice differentiable, with

d2g

dx2
(x) ≥ 0

for all x ∈ R. From the fundamental theorem of calculus, we have

g(x) = g(a) +

∫ x

a

dg

dx
(ξ)dξ.
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Figure 10.3: This figure illustrates how exponential functions can be employed

to provide bounds on Pr(X > a). Optimizing over all admissible exponential

functions, es(x−a) where s > 0, leads to the celebrated Chernoff bound.

Futhermore, because the second derivative of g(·) is a non-negative function,

we gather that dg
dx
(·) is a monotone increasing function. As such, for any value

of a, we have

g(x) = g(a) +

∫ x

a

dg

dx
(ξ)dξ

≥ g(a) +

∫ x

a

dg

dx
(a)dξ = g(a) + (x− a)

dg

dx
(a).

For random variable X , we then have

g(X) ≥ g(a) + (X − a)
dg

dx
(a).

Choosing a = E[X ] and taking expectations on both sides, we obtain

E[g(X)] ≥ g(E[X ]) + (E[X ]− E[X ])
dg

dx
(E[X ]) = g(E[X ]).

That is, E[g(X)] ≥ g(E[X ]), provided that these two expectations exist. The

Jensen inequality actually holds for convex functions that are not twice differ-

entiable, but the proof is much harder in the general setting.
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