
Chapter 11

Multiple Continuous Random

Variables

Being versed at dealing with multiple random variables is an essential part of

statistics, engineering and science. This is equally true for models based on

discrete and continuous random variables. In this chapter, we focus on the

latter and expand our exposition of continuous random variables to random

vectors. Again, our initial survey of this topic revolves around conditional

distributions and pairs of random variables. More complex scenarios will be

considered in the later parts of the chapter.

11.1 Joint Cumulative Distributions

Let X and Y be two random variables associated with a same experiment.

The joint cumulative distribution function of X and Y is defined by

FX,Y (x, y) = Pr(X ≤ x, Y ≤ y) x, y ∈ R.

Keeping in mind that X and Y are real-valued functions acting on a same

sample space, we can also write

FX,Y (x, y) = Pr ({ω ∈ Ω|X(ω) ≤ x, Y (ω) ≤ y}) .
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From this characterization, we can identify a few properties of the joint CDF;

lim
y↑∞

FX,Y (x, y) = lim
y↑∞

Pr ({ω ∈ Ω|X(ω) ≤ x, Y (ω) ≤ y})

= Pr ({ω ∈ Ω|X(ω) ≤ x, Y (ω) ∈ R})
= Pr ({ω ∈ Ω|X(ω) ≤ x}) = FX(x).

Similarly, we have limx↑∞ FX,Y (x, y) = FY (y). Taking limits in the other

direction, we get

lim
x↓−∞

FX,Y (x, y) = lim
y↓−∞

FX,Y (x, y) = 0.

When the function FX,Y (·, ·) is totally differentiable, it is possible to define

the joint probability density function of X and Y ,

fX,Y (x, y) =
∂2FX,Y

∂x∂y
(x, y) =

∂2FX,Y

∂y∂x
(x, y) x, y ∈ R. (11.1)

Hereafter, we refer to a pair of random variables as continuous if the corre-

sponding joint PDF exists and is defined unambiguously through (11.1). When

this is the case, standard calculus asserts that the following equation holds,

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (ξ, ζ)dζdξ.

From its definition, we note that fX,Y (·, ·) is a nonnegative function which

integrates to one,
∫∫

R2

fX,Y (ξ, ζ)dζdξ = 1.

Furthermore, for any admissible set S ⊂ R2, the probability that (X, Y ) ∈ S

can be evaluated through the integral formula

Pr((X, Y ) ∈ S) =

∫∫

R2

1S(ξ, ζ)fX,Y (ξ, ζ)dζdξ

=

∫∫

S

fX,Y (ξ, ζ)dζdξ.

(11.2)

In particular, if S is the cartesian product of two intervals,

S =
{

(x, y) ∈ R2
∣

∣a ≤ x ≤ b, c ≤ y ≤ d
}

,
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then the probability that (X, Y ) ∈ S reduces to the typical integral form

Pr((X, Y ) ∈ S) = Pr(a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ b

a

∫ d

c

fX,Y (ξ, ζ)dζdξ.

Example 94. Suppose that the random pair (X, Y ) is uniformly distributed

over the unit circle. We can express the joint PDF fX,Y (·, ·) as

fX,Y (x, y) =







1
π

x2 + y2 ≤ 1

0 otherwise.

We wish to find the probability that the point (X, Y ) lies inside a circle of

radius 1/2.

Let S = {(x, y) ∈ R2|x2 + y2 ≤ 0.5}. The probability that (X, Y ) belongs

to S is given by

Pr((X, Y ) ∈ S) =

∫∫

R2

1S(ξ, ζ)

π
dξdζ =

1

4
.

Thus, the probability that (X, Y ) is contained within a circle of radius half is

one fourth.

Example 95. Let X and Y be two independent zero-mean Gaussian random

variables, each with variance σ2. For (x, y) ∈ R2, their joint PDF is given by

fX,Y (x, y) =
1

2πσ2
e−

x2+y2

2σ2 .

We wish to find the probability that (X, Y ) falls within a circle of radius r

centered at the origin.

We can compute this probability using integral formula (11.2) applied to

this particular problem. Let R =
√
X2 + Y 2 and assume r > 0, then

Pr(R ≤ r) =

∫∫

R≤r

fX,Y (x, y)dxdy =

∫∫

R≤r

1

2πσ2
e−

x2+y2

2σ2 (x, y)dxdy

=

∫ r

0

∫ 2π

0

1

2πσ2
e−

r2

2σ2 rdθdr = 1− e−
r2

2σ2 .

The probability that (X, Y ) is contained within a circle of radius r is 1−e−
r2

2σ2 .

Recognizing that R is a continuous random variable, we can write its PDF as

fR(r) =
r

σ2
e−

r2

2σ2 r ≥ 0.

From this equation, we gather That R possesses a Rayleigh distribution with

parameter σ2.
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11.2 Conditional Probability Distributions

Given non-vanishing event A, we can write the conditional CDF of random

variable X as

FX|A(x) = Pr(X ≤ x|A) = Pr({X ≤ x} ∩ A)

Pr(A)
x ∈ R.

Note that event A can be defined in terms of variables X and Y . For instance,

we may use A = {Y ≥ X} as our condition. Under suitable conditions, it is

equally straightforward to specify the conditional PDF of X given A,

fX|A(x) =
dFX|A
dx

(x) x ∈ R.

Example 96. Let X and Y be continuous random variables with joint PDF

fX,Y (x, y) = λ2e−λ(x+y) x, y ≥ 0.

We wish to compute the conditional PDF of X given A = {X ≤ Y }. To solve

this problem, we first compute the probability of the event {X ≤ x} ∩A,

Pr({X ≤ x} ∩A) =

∫ x

0

∫ ξ

0

fX,Y (ξ, ζ)dζdξ =

∫ x

0

∫ ξ

0

λ2e−λ(ξ+ζ)dζdξ

=

∫ x

0

λe−λξ
(

1− e−λξ
)

dξ =

(

1− e−λx
)2

2
.

By symmetry, we gather that Pr(A) = 1/2 and, as such,

fX|A(x) = 2λe−λx
(

1− e−λx
)

x ≥ 0.

One case of special interest is the situation where event A is defined in

terms of the random variable X itself. In particular, consider the PDF of X

conditioned on the fact that X belongs to an interval I. Then, A = {X ∈ I}
and the conditional CDF of X becomes

FX|A(x) = Pr(X ≤ x|X ∈ I)

=
Pr ({X ≤ x} ∩ {X ∈ I})

Pr(X ∈ I)

=
Pr (X ∈ (−∞, x] ∩ I)

Pr(X ∈ I)
.



11.2. CONDITIONAL PROBABILITY DISTRIBUTIONS 147

Differentiating with respect to x, we obtain the conditional PDF of X ,

fX|A(x) =
fX(x)

Pr(X ∈ I)

for any x ∈ I. In words, the conditional PDF of X becomes a scaled version

of fX(·) whenever x ∈ I, and it is equal to zero otherwise. Essentially, this is

equivalent to re-normalizing the PDF of X over interval I, accounting for the

partial information given by X ∈ I.

11.2.1 Conditioning on Values

Suppose that X and Y form a pair of random variables with joint PDF

fX,Y (·, ·). With great care, it is possible and desirable to define the condi-

tional PDF of X , conditioned on Y = y. Special attention must be given to

this situation because the event {Y = y} has probability zero whenever Y is a

continuous random variable. Still, when X and Y are jointly continuous and

for any y ∈ R such that fY (y) > 0, we can defined the conditional PDF of X

given Y = y as

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
. (11.3)

Intuitively, this definition is motivated by the following property. For small

∆x and ∆y, we can write

Pr(x ≤ X ≤ x+∆x|y ≤ Y ≤ y +∆y)

=
Pr(x ≤ X ≤ x+∆x, y ≤ Y ≤ y +∆y)

Pr(y ≤ Y ≤ y +∆y)

≈ fX,Y (x, y)∆x∆y

fY (y)∆y
=

fX,Y (x, y)

fY (y)
∆x.

Thus, loosely speaking, fX|Y (x|y)∆x represents the probability that X lies

close to x, given that Y is near y.

Using this definition, it is possible to compute the probabilities of events

associated with X conditioned on a specific value of random variable Y ,

Pr(X ∈ S|Y = y) =

∫

S

fX|Y (x|y)dx.

A word of caution is in order. The technical difficulty that surfaces when

conditioning on {Y = y} stems from the fact that Pr(Y = y) = 0. Remember
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that, in general, the notion of conditional probability is only defined for non-

vanishing conditions. Although we were able to circumvent this issue, care

must be taken when dealing with the conditional PDF of the form (11.3), as

it only provides valuable insight when the random variables (X, Y ) are jointly

continuous.

Example 97. Consider the experiment where an outcome (ω1, ω2) is selected

at random from the unit circle. Let X = ω1 and Y = ω2. We wish to compute

the conditional PDF of X given that Y = 0.5.

First, we compute the marginal PDF of Y evaluated at Y = 0.5,

fY (0.5) =

∫

R

fX,Y (x, 0.5)dx =

∫

√
3

2

√
3

2

1

π
dx =

√
3

π
.

We then apply definition (11.3) to obtain the desired conditional PDF of X,

fX|Y (x|0.5) =
fX,Y (x, 0.5)

fY (0.5)
=

π√
3
fX,Y (x, 0.5)

=







1√
3

|x| ≤
√
3
2

0 otherwise.

11.2.2 Conditional Expectation

The conditional expectation of a function g(Y ) is simply the integral of g(Y )

weighted by the proper conditional PDF,

E[g(Y )|X = x] =

∫

R

g(y)fY |X(y|x)dy

E[g(Y )|S] =
∫

R

g(y)fY |S(y)dy.

Note again that the function

h(x) = E[Y |X = x]

defines a random variable since the conditional expectation of Y may vary as a

function of X . After all, a conditional expectation is itself a random variable.

Example 98. An analog communication system transmits a random signal

over a noisy channel. The transmit signal X and the additive noise N are both
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standard Gaussian random variables, and they are independent. The signal

received at the destination is equal to

Y = X +N.

We wish to estimate the value of X conditioned on Y = y.

For this problem, the joint PDF of X and Y is

fX,Y (x, y) =
1

2π
exp

(

−2x2 − 2xy + y2

2

)

and the conditional distribution of X given Y becomes

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=

1
2π

exp
(

−2x2−2xy+y2

2

)

1
2
√
π
exp

(

−y2

4

)

=
1√
π
exp

(

−4x2 − 4xy + y2

4

)

.

By inspection, we recognize that this conditional PDF is a Gaussian distribu-

tion with parameters m = y/2 and σ2 = 1/2. A widespread algorithm employed

to perform the desired task is called the minimum mean square error (MMSE)

estimator. In the present case, the MMSE estimator reduces to the conditional

expectation of X given Y = y, which is

E[X|Y = y] =

∫

R

xfX,Y (x|y)dx =
y

2
.

11.2.3 Derived Distributions

Suppose X1 and X2 are jointly continuous random variables. Furthermore, let

Y1 = g1(X1, X2) and Y2 = g2(X1, X2), where g1(·, ·) and g2(·, ·) are real-valued
functions. Under certain conditions, the pair of random variables (Y1, Y2) will

also be continuous. Deriving the joint PDF of (Y1, Y2) can get convoluted, a

task we forgo. It requires the skillful application of vector calculus. Neverthe-

less, we examine the case where a simple expression for fY1,Y2(·, ·) exists.
Consider the scenario where the functions g1(·, ·) and g2(·, ·) are totally

differentiable, with Jacobian determinant

J(x1, x2) = det

[

∂g1
∂x1

(x1, x2)
∂g1
∂x2

(x1, x2)
∂g2
∂x1

(x1, x2)
∂g2
∂x2

(x1, x2)

]

=
∂g1
∂x1

(x1, x2)
∂g2
∂x2

(x1, x2)−
∂g1
∂x2

(x1, x2)
∂g2
∂x1

(x1, x2) 6= 0.
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Also, assume that the system of equations

g1(x1, x2) = y1

g2(x1, x2) = y2

has a unique solution. We express this solution using x1 = h1(y1, y2) and

x2 = h2(y1, y2). Then, the random variables (Y1, Y2) are jointly continuous

with joint PDF

fY1,Y2(y1, y2) =
fX1,X2(x1, x2)

|J(x1, x2)|
(11.4)

where x1 = h1(y1, y2) and x2 = h2(y1, y2). Note the close resemblance between

this equation and the derived distribution of (9.4). Looking back at Chapter 9

offers an idea of what proving this result entails. It also hints at how this

equation can be modified to accommodate non-unique mappings.

Example 99. An important application of (11.4) pertains to the properties

of Gaussian vectors. Suppose that X1 and X2 are jointly continuous random

variables, and let

X =

[

X1

X2

]

.

Define the mean of X by

m = E[X] =

[

E[X1]

E[X2]

]

.

and its covariance by

Σ = E
[

(X−m) (X−m)T
]

=

[

E [(X1 −m1)
2] E[(X1 −m1)(X2 −m2)]

E[(X2 −m2)(X1 −m1)] E [(X2 −m2)
2]

]

.

Random variables X1 and X2 are said to be jointly Gaussian provided that

their joint PDF is of the form

fX1,X2(x1, x2) =
1

2π|Σ| 12
exp

(

−1

2
(x−m)T Σ−1 (x−m)

)

.

Assume that the random variables Y1 and Y2 are generated through the matrix

equation

Y =

[

Y1

Y2

]

= AX+ b,
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where A is a 2× 2 invertible matrix and b is a constant vector. In this case,

X = A−1 (Y − b) and the corresponding Jacobian determinant is

J(x1, x2) = det

[

a11 a12

a21 a22

]

= |A|.

Applying (11.4), we gather that the joint PDF of (Y1, Y2) is expressed as

fY1,Y2(y1, y2) =
1

2π|Σ| 12 |A|
exp

(

−1

2
(x−m)T Σ−1 (x−m)

)

=
1

2π|AΣA| 12
exp

(

−1

2

(

A−1 (y − b)−m
)T

Σ−1
(

A−1 (y − b)−m
)

)

=
1

2π|AΣA| 12
exp

(

−1

2
(y − b− Am)T (AΣA)−1 (y− b− Am)

)

.

Looking at this equation, we conclude that random variables Y1 and Y2 are

also jointly Gaussian, as their joint PDF possesses the proper form. It should

come as no surprise that the mean of Y is E [Y] = Am+b and its covariance

matrix is equal to

E
[

(Y − E [Y]) (Y − E [Y])T
]

= AΣA.

In other words, a non-trivial affine transformation of a two-dimensional Gaus-

sian vector yields another Gaussian vector. This admirable property general-

izes to higher dimensions. Indeed, if Y = AX+b where A is an n×n invertible

matrix and X is a Gaussian random vector, then Y remains a Gaussian ran-

dom vector. Furthermore, to obtain the derived distribution of the latter vector,

it suffices to compute its mean and covariance, and substitute the resulting pa-

rameters in the general form of the Gaussian PDF. Collectively, the features

of joint Gaussian random vectors underly many contemporary successes of en-

gineering.

11.3 Independence

Two random variables X and Y are mutually independent if their joint CDF

is the product of their respective CDFs,

FX,Y (x, y) = FX(x)FY (y)



152 CHAPTER 11. MULTIPLE CONTINUOUS RANDOM VARIABLES

for x, y ∈ R. For jointly continuous random variables, this definition neces-

sarily implies that the joint PDF fX,Y (·, ·) is the product of their marginal

PDFs,

fX,Y (x, y) =
∂2FX,Y

∂x∂y
(x, y) =

dFX

dx
(x)

dFY

dy
(y) = fX(x)fY (y)

for x, y ∈ R. Furthermore, we gather from (11.3) that the conditional PDF

of Y given X = x is equal to the marginal PDF of Y whenever X and Y are

independent,

fY |X(y|x) =
fX,Y (x, y)

fX(x)
=

fX(x)fY (y)

fX(x)
= fY (y)

provided of course that fX(x) 6= 0. Additionally, if X and Y are indepen-

dent random variables, then the two events {X ∈ S} and {Y ∈ T} are also

independent,

Pr(X ∈ S, Y ∈ T ) =

∫

S

∫

T

fX,Y (x, y)dydx

=

∫

S

fX(x)dx

∫

T

fY (y)dy

= Pr(X ∈ S) Pr(Y ∈ T ).

Example 100. Consider a random experiment where an outcome (ω1, ω2) is

selected at random from the unit square. Let X = ω1, Y = ω2 and U = ω1+ω2.

We wish to show that X and Y are independent, but that X and U are not

independent.

We begin by computing the joint CDF of X and Y . For x, y ∈ [0, 1], we

have

FX,Y (x, y) =

∫ x

0

∫ y

0

dζdξ = xy = FX(x)FY (y).

More generally, if x, y ∈ R2, we get

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
1[0,1]2(ξ, ζ)dζdξ

=

∫ x

−∞
1[0,1](ξ)dξ

∫ y

−∞
1[0,1](ζ)dζ = FX(x)FY (y).

Thus, we gather that X and Y are independent.



11.3. INDEPENDENCE 153

Next, we show that X and U are not independent. Note that FU(1) = 0.5

and FX(0.5) = 0.5. Consider the joint CDF of X and U evaluated at (0.5, 1),

FX,U(0.5, 1) =

∫ 1
2

0

∫ 1−ξ

0

dζdξ =

∫ 1
2

0

(1− ξ)dξ

=
3

8
6= FX(0.5)FU(1).

Clearly, random variables X and U are not independent.

11.3.1 Sums of Continuous Random Variables

As mentioned before, sums of independent random variables are frequently

encountered in engineering. We therefore turn to the question of determining

the distribution of a sum of independent continuous random variables in terms

of the PDFs of its constituents. If X and Y are independent random variables,

the distribution of their sum U = X + Y can be obtained by using the convo-

lution operator. Let fX(·) and fY (·) be the PDFs of X and Y , respectively.

The convolution of fX(·) and fY (·) is the function defined by

(fX ∗ fY )(u) =
∫ ∞

−∞
fX(ξ)fY (u− ξ)dξ

=

∫ ∞

−∞
fX(u− ζ)fY (ζ)dζ.

The PDF of the sum U = X + Y is the convolution of the individual densities

fX(·) and fY (·),
fU(u) = (fX ∗ fY )(u).

To show that this is indeed the case, we first consider the CDF of U ,

FU(u) = Pr(U ≤ u) = Pr(X + Y ≤ u)

=

∫ ∞

−∞

∫ u−ξ

−∞
fX,Y (ξ, ζ)dζdξ

=

∫ ∞

−∞

∫ u−ξ

−∞
fY (ζ)dζfX(ξ)dξ

=

∫ ∞

−∞
FY (u− ξ)fX(ξ)dξ.
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Taking the derivative of FU(u) with respect to u, we obtain

d

du
FU(u) =

d

du

∫ ∞

−∞
FY (u− ξ)fX(ξ)dξ

=

∫ ∞

−∞

d

du
FY (u− ξ)fX(ξ)dξ

=

∫ ∞

−∞
fY (u− ξ)fX(ξ)dξ.

Notice the judicious use of the fundamental theorem of calculus. This shows

that fU(u) = (fX ∗ fY )(u).

Example 101 (Sum of Uniform Random Variables). Suppose that two num-

bers are independently selected from the interval [0, 1], each with a uniform

distribution. We wish to compute the PDF of their sum. Let X and Y be

random variables describing the two choices, and let U = X + Y represent

their sum. The PDFs of X and Y are

fX(ξ) = fY (ξ) =







1 0 ≤ ξ ≤ 1

0 otherwise.

The PDF of their sum is therefore equal to

fU(u) =

∫ ∞

−∞
fX(u− ξ)fY (ξ)dξ.

Since fY (y) = 1 when 0 ≤ y ≤ 1 and zero otherwise, this integral becomes

fU(u) =

∫ 1

0

fX(u− ξ)dξ =

∫ 1

0

1[0,1](u− ξ)dξ.

The integrand above is zero unless 0 ≤ u− ξ ≤ 1 (i.e., unless u− 1 ≤ ξ ≤ u).

Thus, if 0 ≤ u ≤ 1, we get

fU(u) =

∫ u

0

dξ = u;

while, if 1 < u ≤ 2, we obtain

fU(u) =

∫ 1

u−1

dξ = 2− u.
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If u < 0 or u > 2, the value of the PDF becomes zero. Collecting these results,

we can write the PDF of U as

fU(u) =



















u 0 ≤ u ≤ 1,

2− u 1 < u ≤ 2,

0 otherwise.

Example 102 (Sum of Exponential Random Variables). Two numbers are

selected independently from the positive real numbers, each according to an

exponential distribution with parameter λ. We wish to find the PDF of their

sum. Let X and Y represent these two numbers, and denote this sum by

U = X + Y . The random variables X and Y have PDFs

fX(ξ) = fY (ξ) =







λe−λξ ξ ≥ 0

0 otherwise.

When u ≥ 0, we can use the convolution formula and write

fU(u) =

∫ ∞

−∞
fX(u− ξ)fY (ξ)dξ

=

∫ u

0

λe−λ(u−ξ)λe−λξdξ

=

∫ u

0

λ2e−λudξ = λ2ue−λu.

On the other hand, if u < 0 then we get fU(u) = 0. The PDF of U is given by

fU(u) =







λ2ue−λu u ≥ 0

0 otherwise.

This is an Erlang distribution with parameter m = 2 and λ > 0.

Example 103 (Sum of Gaussian Random Variables). It is an interesting and

important fact that the sum of two independent Gaussian random variables is

itself a Gaussian random variable. Suppose X is Gaussian with mean m1 and

variance σ2
1, and similarly Y is Gaussian with mean m2 and variance σ2

2, then

U = X + Y has a Gaussian density with mean m1 +m2 and variance σ2
1 + σ2

2.

We will show this property in the special case where both random variables
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are standard normal random variable. The general case can be attained in a

similar manner, but the computations are somewhat tedious.

Suppose X and Y are two independent Gaussian random variables with

PDFs

fX(ξ) = fY (ξ) =
1√
2π

e−
ξ2

2 .

Then, the PDF of U = X + Y is given by

fU(u) = (fX ∗ fY )(u) =
1

2π

∫ ∞

−∞
e−

(u−ξ)2

2 e−
ξ2

2 dξ

=
1

2π
e−

u2

4

∫ ∞

−∞
e−(ξ−

u
2 )

2

dξ

=
1

2
√
π
e−

u2

4

(
∫ ∞

−∞

1√
π
e−(ξ−

u
2 )

2

dξ

)

.

The expression within the parentheses is equal to one since the integrant is a

Gaussian PDF with m = u/2 and σ2 = 1/2. Thus, we obtain

fU(u) =
1√
4π

e−
u2

4 ,

which verifies that U is indeed Gaussian.

Let X and Y be independent random variables. Consider the random

variable U = X + Y . The moment generating function of U is given by

MU(s) = E
[

esU
]

= E
[

es(X+Y )
]

= E
[

esXesY
]

= E
[

esX
]

E
[

esY
]

= MX(s)MY (s).

That is, the moment generating function of the sum of two independent ran-

dom variables is the product of the individual moment generating functions.

Example 104 (Sum of Gaussian Random Variables). In this example, we

revisit the problem of adding independent Gaussian variables using moment

generating functions. Again, let X and Y denote the two independent Gaussian

variables. We denote the mean and variance of X by m1 and σ2
1. Likewise,

we represent the mean and variance of Y by m2 and σ2
2. We wish to show that

the sum U = X + Y is Gaussian with parameters m1 +m2 and σ2
1 + σ2

2.



11.3. INDEPENDENCE 157

The moment generating functions of X and Y are

MX(s) = em1s+
σ2
1s

2

2

MY (s) = em2s+
σ2
2s

2

2

The moment generating function of U = X + Y is therefore equal to

MU(s) = MX(s)MY (s) = exp

(

(m1 +m2)s+
(σ2

1 + σ2
2)s

2

2

)

,

which demonstrates that U is a Gaussian random variable with mean m1+m2

and variance σ2
1 + σ2

2, as anticipated.
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