
Chapter 12

Convergence, Sequences and

Limit Theorems

Some of the most astonishing results in probability are related to the properties

of sequences of random variables and the convergence of empirical distribu-

tions. From an engineering viewpoint, these results are important as they

enable the efficient design of complex systems with very small probabilities of

failure. Concentration behavior facilitates true economies of scale.

12.1 Types of Convergence

The premise on which most probabilistic convergence results lie is a sequence

of random variables X1, X2, . . . and a limiting random variable X , all of which

are defined on the same probability space. Recall that a random variable is a

function of the outcome of a random experiment. The above statement stip-

ulate that all the random variables listed above are functions of the outcome

of a same experiment.

Statements that can be made about a sequence of random variables range

from simple assertions to more intricate claims. For instance, the sequence

may appear to move toward a deterministic quantity or to behave increasingly

akin to a certain function. Alternatively, the CDFs of the random variables

in the sequence may appear to approach a precise function. Being able to

recognize specific patterns within the sequence is key in establishing converge
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results. The various statement one can make about the sequence X1, X2, . . .

lead to the different types of convergence encountered in probability. Below,

we discuss briefly three types of convergence.

Example 105. Suppose that X1, X2, . . . is a sequence of independent Gaussian

random variables, each with mean m and variance σ2. Define the partial sums

Sn =
n
∑

i=1

Xi, (12.1)

and consider the sequence

S1,
S2

2
,
S3

3
, . . . (12.2)

We know that affine transformations of Gaussian random variables remain

Gaussian. Furthermore, we know that sums of jointly Gaussian random vari-

ables are also Gaussian. Thus, Sn/n possesses a Gaussian distribution with

mean

E

[

Sn

n

]

=
E[Sn]

n
=

E[X1] + · · ·+ E[Xn]

n
= m

and variance

Var

[

Sn

n

]

=
Var[Sn]

n2
=

Var[X1] + · · ·+Var[Xn]

n2
=

σ2

n
.

It appears that the PDF of Sn/n concentrates around m as n approaches infin-

ity. That is, the sequence in (12.2) seems to become increasingly predictable.

Example 106. Again, let X1, X2, . . . be the sequence described above, and

let Sn be defined according to (12.1). This time, we wish to characterize the

properties of

S1 −m,
S2 − 2m√

2
,
S3 − 3m√

3
, . . .

From our current discussion, we know that (Sn − nm)/
√
n is a Gaussian ran-

dom variables. We can compute its mean and variance as follows

E

[

Sn − nm√
n

]

=
E[Sn − nm]√

n
= 0

Var

[

Sn −mn√
n

]

=
Var[Sn −mn]

n
=

Var[Sn]

n
= σ2.

No matter how large n is, the random variable (Sn −nm)/
√
n has a Gaussian

distribution with mean zero and variance σ2. Intriguingly, the distributions

remains invariant throughout the sequence.
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12.1.1 Convergence in Probability

The basic concept behind the definition of convergence in probability is that

the probability that a random variable deviates from its typical behavior be-

comes less likely as the sequence progresses. Formally, a sequence X1, X2, . . .

of random variables converges in probability to X if for every ǫ > 0,

lim
n→∞

Pr (|Xn −X| ≥ ǫ) = 0.

In Example 105, the sequence {Sn/n} converges in probability to m.

12.1.2 Mean Square Convergence

We say that a sequence X1, X2, . . . of random variables converges in mean

square to X if

lim
n→∞

E
[

|Xn −X|2
]

= 0.

That is, the second moment of the difference between Xn and X vanishes as

n goes to infinity. Convergence in the mean square sense implies convergence

in probability.

Proposition 9. Let X1, X2, . . . be a sequence of random variables that con-

verge in mean square to X. Then, the sequence X1, X2, . . . also converges to

X in probability.

Proof. Suppose that ǫ > 0 is fixed. The sequence X1, X2, . . . converges in mean

square to X . Thus, for δ > 0, there exists an N such that n ≥ N implies

E
[

|Xn −X|2
]

< δ.

If we apply the Chebyshev inequality to Xn −X , we get

Pr (|Xn −X| ≥ ǫ) ≤ E
[

|Xn −X|2
]

ǫ2
<

δ

ǫ2

Since δ can be made arbitrarily small, we conclude that this sequence also

converges to X in probability.
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12.1.3 Convergence in Distribution

A sequence X1, X2, . . . of random variables is said to converge in distribution

to a random variable X if

lim
n→∞

FXn
(x) = FX(x)

at every point x ∈ R where FX(·) is continuous. This type of convergence is

also called weak convergence.

Example 107. Let Xn be a continuous random variable that is uniformly dis-

tributed over [0, 1/n]. Then, the sequence X1, X2, . . . converges in distribution

to 0.

In this example, X = 0 and

FX(x) =







1 x ≥ 0

0 x < 0.

Furthermore, for every x < 0, we have FXn
(x) = 0; and for every x > 0, we

have

lim
n→∞

FXn
(x) = 1.

Hence, the sequence X1, X2, . . . converges in distribution to a constant.

12.2 The Law of Large Numbers

The law of large numbers focuses on the convergence of empirical averages.

Although, there are many versions of this law, we only state its simplest form

below. Suppose that X1, X2, . . . is a sequence of independent and identically

distributed random variable, each with finite second moment. Furthermore,

for n ≥ 1, define the empirical sum

Sn =

n
∑

i=1

Xn.

The law of large number asserts that the sequence of empirical averages,

Sn

n
=

1

n

n
∑

i=1

Xn,

converges in probability to the mean E[X ].
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Theorem 4 (Law of Large Numbers). Let X1, X2, . . . be independent and

identically distributed random variables with mean E[X ] and finite variance.

For every ǫ > 0, we have

lim
n→∞

Pr

(
∣

∣

∣

∣

Sn

n
− E[X ]

∣

∣

∣

∣

≥ ǫ

)

= lim
n→∞

Pr

(
∣

∣

∣

∣

X1 + · · ·+Xn

n
− E[X ]

∣

∣

∣

∣

≥ ǫ

)

= 0.

Proof. Taking the expectation of the empirical average, we obtain

E

[

Sn

n

]

=
E [Sn]

n
=

E[X1] + · · ·+ E[Xn]

n
= E[X ].

Using independence, we also have

Var

[

Sn

n

]

=
Var[X1] + · · ·+Var[Xn]

n2
=

Var[X ]

n
.

As n goes to infinity, the variance of the empirical average Sn/n vanishes.

Thus, we showed that the sequence {Sn/n} of empirical averages converges in

mean square to E[X ] since

lim
n→∞

E

[

∣

∣

∣

∣

Sn

n
− E[X ]

∣

∣

∣

∣

2
]

= lim
n→∞

Var

[

Sn

n

]

= 0.

To get convergence in probability, we apply the Chebyshev inequality, as we

did in Proposition 9,

Pr

(
∣

∣

∣

∣

Sn

n
− E[X ]

∣

∣

∣

∣

≥ ǫ

)

≤ Var
[

Sn

n

]

ǫ2
=

Var[X ]

nǫ2
,

which clearly goes to zero as n approaches infinity.

Example 108. Suppose that a die is thrown repetitively. We are interested in

the average number of times a six shows up on the top face, as the number of

throws becomes very large.

Let Dn be a random variable that represent the number on the nth roll.

Also, define the random variable Xn = 1{Dn=6}. Then, Xn is a Bernoulli

random variable with parameter p = 1/6, and the empirical average Sn/n is

equal to the number of times a six is observed divided by the total number of

rolls. By the law of large numbers, we have

lim
n→∞

Pr

(
∣

∣

∣

∣

Sn

n
− 1

6

∣

∣

∣

∣

≥ ǫ

)

= 0.

That is, as the number of rolls increases, the average number of times a six is

observe converges to the probability of getting a six.
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12.2.1 Heavy-Tailed Distributions*

There are situations where the law of large numbers does not apply. For

example, when dealing with heavy-tailed distributions, one needs to be very

careful. In this section, we study Cauchy random variables in greater details.

First, we show that the sum of two independent Cauchy random variables is

itself a Cauchy random variable.

Let X1 and X2 be two independent Cauchy random variables with param-

eter γ1 and γ2, respectively. We wish to compute the PDF of S = X1 + X2.

For continuous random variable, the PDF of S is given by the convolution of

fX1(·) and fX2(·). Thus, we can write

fS(x) =

∫ ∞

−∞
fX1(ξ)fX2(x− ξ)dξ

=

∫ ∞

−∞

γ1
π (γ2

1 + ξ2)

γ2
π (γ2

2 + (x− ξ)2)
dξ.

This integral is somewhat difficult to solve. We therefore resort to complex

analysis and contour integration to get a solution. Let C be a contour that goes

along the real line from −a to a, and then counterclockwise along a semicircle

centered at zero. For a large enough, Cauchy’s residue theorem requires that

∮

C

fX1(z)fX2(x− z)dz =

∮

C

γ1
π (γ2

1 + z2)

γ2
π (γ2

2 + (x− z)2)
dz

= 2πi (Res(g, iγ1) + Res(g, x+ iγ2))

(12.3)

where we have implicitly defined the function

g(z) =
γ1γ2

π2 (γ2
1 + z2) (γ2

2 + (z − x)2)

=
γ1γ2

π2(z − iγ1)(z + iγ1)(z − x+ iγ2)(z − x− iγ2)
.

Only two residues are contained within the enclosed region. Because they are

simple poles, their values are given by

Res(g, iγ1) = lim
z→iγ1

(z − iγ1)g(z) =
γ2

2iπ2 ((x− iγ1)2 + γ2
2)

Res(g, x+ iγ2) = lim
z→x+iγ2

(z − x− iγ2)g(z) =
γ1

2iπ2 ((x+ iγ2)2 + γ2
1)
.
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It follows that

2πi (Res(g, iγ1) + Res(g, x+ iγ2))

=
γ2

π ((x− iγ1)2 + γ2
2)

+
γ1

π ((x+ iγ2)2 + γ2
1)

=
(γ1 + γ2)

π ((γ1 + γ2)2 + x2)

The contribution of the arc in (12.3) vanishes as a → ∞. We then conclude

that the PDF of S is equal to

fS(x) =
(γ1 + γ2)

π ((γ1 + γ2)2 + x2)
.

The sum of two independent Cauchy random variables with parameters γ1 and

γ is itself a Cauchy random variable with parameter γ1 + γ2.

Let X1, X2, . . . form a sequence of independent Cauchy random variables,

each with parameter γ. Also, consider the empirical sum

Sn =
n
∑

i=1

Xn.

Using mathematical induction and the aforementioned fact, it is possible to

show that Sn is a Cauchy random variable with parameter nγ. Furthermore,

for x ∈ R, the PDF of the empirical average Sn/n is given by

fSn
(nx)
∣

∣

1
n

∣

∣

=
n2γ

π (n2γ2 + (nx)2)
=

γ

π (γ2 + x2)
,

where we have used the methodology developed in Chapter 9. Amazingly,

the empirical average of a sequence of independent Cauchy random variables,

each with parameter γ, remains a Cauchy random variable with the same

parameter. Clearly, the law of large numbers does not apply to this scenario.

Note that our version of the law of large numbers requires random variables

to have finite second moments, a condition that is clearly violated by the

Cauchy distribution. This explains why convergence does not take place in

this situation.

12.3 The Central Limit Theorem

The central limit theorem is a remarkable result in probability; it partly ex-

plains the prevalence of Gaussian random variables. In some sense, it captures
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the behavior of large sums of small, independent random components.

Theorem 5 (Central Limit Theorem). Let X1, X2, . . . be independent and

identically distributed random variables, each with mean E[X ] and variance

σ2. The distribution of
Sn − nE[X ]

σ
√
n

converges in distribution to a standard normal random variable as n → ∞. In

particular, for any x ∈ R,

lim
n→∞

Pr

(

Sn − nE[X ]

σ
√
n

≤ x

)

=

∫ x

−∞

1√
2π

e−
ξ2

2 dξ.

Proof. Initially, we assume that E[X ] = 0 and σ2 = 1. Furthermore, we only

study the situation where the moment generating function of X exists and is

finite. Consider the log-moment generating function of X ,

ΛX(s) = logMX(s) = log E
[

esX
]

.

The first two derivatives of ΛX(s) are equal to

dΛX

ds
(s) =

1

MX(s)

dMX

ds
(s)

d2ΛX

ds2
(s) = −

(

1

MX(s)

)2(
dMX

ds
(s)

)2

+
1

MX(s)

d2MX

ds2
(s).

Collecting these results and evaluating the functions at zero, we get ΛX(0) =

0, dΛX

ds
(0) = E[X ] = 0, and d2ΛX

ds2
(0) = E [X2] = 1. Next, we study the

log-moment generating function of Sn/
√
n. Recall that the expectation of

a product of independent random variables is equal to the product of their

individual expectations. Using this property, we get

log E
[

esSn/
√
n
]

= log E
[

esX1/
√
n · · · esXn/

√
n
]

= log

(

MX

(

s√
n

)

· · ·MX

(

s√
n

))

= nΛX

(

sn−1/2
)

.

To explore the asymptotic behavior of the sequence {Sn/
√
n}, we take the limit

of nΛX

(

sn−1/2
)

as n → ∞. In doing so, notice the double use of L’Hôpital’s
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rule,

lim
n→∞

1

n−1
Λ
(

sn−1/2
)

= lim
n→∞

1

n−2

dΛ

ds

(

sn−1/2
) sn−3/2

2

= lim
n→∞

s

2n−1/2

dΛ

ds

(

sn−1/2
)

= lim
n→∞

s

n−3/2

d2Λ

ds2
(

sn−1/2
) sn−3/2

2

= lim
n→∞

s2

2

d2Λ

ds2
(

sn−1/2
)

=
s2

2
.

That is, the moment generating function of Sn/
√
n converges point-wise to

es
2/2 as n → ∞. In fact, this implies that

Pr

(

Sn√
n
≤ x

)

→
∫ x

−∞

1√
2π

e−
ξ2

2 dξ

as n → ∞. In words, Sn/
√
n converges in distribution to a standard normal

random variable. The more general case where E[X ] and Var[X ] are arbitrary

constants can be established in an analog manner by proper scaling of the

random variables X1, X2, . . .

In the last step of the proof, we stated that point-wise convergence of the

moment generating functions implies convergence in distribution. This is a

sophisticated result that we quote without proof.

12.3.1 Normal Approximation

The central limit theorem can be employed to approximate the CDF of large

sums. Again, let

Sn = X1 + · · ·+Xn

where X1, X2, . . . are independent and identically distributed random variables

with mean E[X ] and variance σ2. When n is large, the CDF of Sn can be

estimated by approximating

Sn − nE[X ]

σ
√
n

as a standard normal random variable. More specifically, we have

FSn
(x) = Pr(Sn ≤ x) = Pr

(

Sn − nE[X ]

σ
√
n

≤ x− nE[X ]

σ
√
n

)

≈ Φ

(

x− nE[X ]

σ
√
n

)

,
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where Φ(·) is the CDF of a standard normal random variable.

Further Reading

1. Ross, S., A First Course in Probability, 7th edition, Pearson Prentice Hall,

2006: Chapter 8.

2. Bertsekas, D. P., and Tsitsiklis, J. N., Introduction to Probability, Athena

Scientific, 2002: Sections 7.2–7.4.

3. Miller, S. L., and Childers, D. G., Probability and Random Processes with

Applications to Signal Processing and Communications, 2004: Chapter 7.


