
Chapter 2

Combinatorics and Intuitive

Probability

The simplest probabilistic scenario is perhaps one where the set of possible

outcomes is finite and these outcomes are all equally likely. In such cases,

computing the probability of an event amounts to counting the number of

elements comprising this event and then dividing the sum by the total number

of admissible outcomes.

Example 3. The rolling of a fair die is an experiment with a finite number

of equally likely outcomes, namely the different faces labeled one through six.

The probability of observing a specific face is equal to

1

Number of faces
=

1

6
.

Similarly, the probability of an arbitrary event can be computed by counting the

number of distinct outcomes included in the event. For instance, the probability

of rolling a prime number is

Pr({2, 3, 5}) = Number of outcomes in event

Total number of outcomes
=

3

6
.

While counting outcomes may appear intuitively straightforward, it is in

many circumstances a daunting task. Calculating the number of ways that

certain patterns can be formed is part of the field of combinatorics. In this

chapter, we introduce useful counting techniques that can be applied to situ-

ations pertinent to probability.
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2.1 The Counting Principle

The counting principle is a guiding rule for computing the number of elements

in a cartesian product. Suppose that S and T are finite sets with m and n

elements, respectively. The cartesian product of S and T is given by

S × T = {(x, y)|x ∈ S and y ∈ T}.

The number of elements in the cartesian product S × T is equal to mn. This

is illustrated in Figure 2.1.
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Figure 2.1: This figure provides a graphical interpretation of the cartesian

product of S = {1, 2, 3} and T = {a, b}. In general, if S has m elements and T

contains n elements, then the cartesian product S×T consists of mn elements.

Example 4. Consider an experiment consisting of flipping a coin and rolling

a die. There are two possibilities for the coin, heads or tails, and the die has

six faces. The number of possible outcomes for this experiment is 2× 6 = 12.

That is, there are twelve different ways to flip a coin and roll a die.

The counting principle can be broadened to calculating the number of

elements in the cartesian product of multiple sets. Consider the finite sets

S1, S2, . . . , Sr and their cartesian product

S1 × S2 × · · · × Sr = {(s1, s2, . . . , sr)|si ∈ Si} .
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If we denote the cardinality of Si by ni = |Si|, then the number of distinct

ordered r-tuples of the form (s1, s2, . . . , sr) is n = n1n2 · · ·nr.

Example 5 (Sampling with Replacement and Ordering). An urn contains n

balls numbered one through n. A ball is drawn from the urn and its number is

recorded on an ordered list. The ball is then replaced in the urn. This procedure

is repeated k times. We wish to compute the number of possible sequences that

can result from this experiment. There are k drawings and n possibilities per

drawing. Using the counting principle, we gather that the number of distinct

sequences is nk.
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Figure 2.2: The cartesian product {1, 2}2 has four distinct ordered pairs.

Example 6. The power set of S, denoted by 2S, is the collection of all subsets

of S. In set theory, 2S represents the set of all functions from S to {0, 1}. By
identifying a function in 2S with the corresponding preimage of one, we obtain

a bijection between 2S and the subsets of S. In particular, each function in 2S

is the characteristic function of a subset of S.

Suppose that S is finite with n = |S| elements. For every element of S,

a characteristic function in 2S is either zero or one. There are therefore 2n

distinct characteristic functions from S to {0, 1}. Hence, the number of distinct

subsets of S is given by 2n.

2.2 Permutations

Again, consider the integer set S = {1, 2, . . . , n}. A permutation of S is

an ordered arrangement of its elements, i.e., a list without repetitions. The

number of permutations of S can be computed as follows. Clearly, there are n

distinct possibilities for the first item in the list. The number of possibilities

for the second item is n − 1, namely all the integers in S except the element
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Figure 2.3: The power set of {1, 2, 3} contains eight subsets. These elements

are displayed above.

we selected initially. Similarly, the number of distinct possibilities for the mth

item is n − m + 1. This pattern continues until all the elements in S are

recorded. Summarizing, we find that the total number of permutations of S

is n factorial, n! = n(n− 1) · · ·1.

Example 7. We wish to compute the number of permutations of S = {1, 2, 3}.
Since the set S possesses three elements, it has 3! = 6 different permutations.

They can be written as 123, 132, 213, 231, 312, 321.
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Figure 2.4: Ordering the numbers one, two and three leads to six possible

permutations.
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2.2.1 Stirling’s Formula*

The number n! grows very rapidly as a function of n. A good approximation

for n! when n is large is given by Stirling’s formula,

n! ∼ nne−n
√
2πn.

The notation an ∼ bn signifies that the ratio an/bn → 1 as n → ∞.

2.2.2 k-Permutations

Suppose that we rank only k elements out of the set S = {1, 2, . . . , n}, where
k ≤ n. We wish to count the number of distinct k-permutations of S. Fol-

lowing our previous argument, we can choose one of n elements to be the first

item listed, one of the remaining (n− 1) elements for the second item, and so

on. The procedure terminates when k items have been recorded. The number

of possible sequences is therefore given by

n!

(n− k)!
= n(n− 1) · · · (n− k + 1).

Example 8. A recently formed music group can play four original songs. They

are asked to perform two songs at South by Southwest. We wish to compute

the number of song arrangements the group can offer in concert. Abstractly,

this is equivalent to computing the number of 2-permutations of four songs.

Thus, the number of distinct arrangements is 4!/2! = 12.
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Figure 2.5: There are twelve 2-permutations of the numbers one through four.
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Example 9 (Sampling without Replacement, with Ordering). An urn con-

tains n balls numbered one through n. A ball is picked from the urn, and its

number is recorded on an ordered list. The ball is not replaced in the urn.

This procedure is repeated until k balls are selected from the urn, where k ≤ n.

We wish to compute the number of possible sequences that can result from

this experiment. The number of possibilities is equivalent to the number of

k-permutations of n elements, which is given by n!/(n− k)!.

2.3 Combinations

Consider the integer set S = {1, 2, . . . , n}. A combination is a subset of S.

We emphasize that a combination differs from a permutation in that elements

in a combination have no specific ordering. The 2-element subsets of S =

{1, 2, 3, 4} are

{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4},
whereas the 2-permutations of S are more numerous with

(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4),

(3, 1), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3).

Consequently, there are fewer 2-element subsets of S than 2-permutations of

S.
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Figure 2.6: There exist six 2-element subsets of the numbers one through four.

We can compute the number of k-element combinations of S = {1, 2, . . . , n}
as follows. Note that a k-permutation can be formed by first selecting k objects
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from S and then ordering them. There are k! distinct ways of ordering k

components. The number of k-permutations must therefore be equal to the

number of k-element combinations multiplied by k!. Since the total number

of k-permutations of S is n!/(n− k)!, we gather that the number of k-element

combinations is
(

n

k

)

=
n!

k!(n− k)!
=

n(n− 1) · · · (n− k + 1)

k!
.

This expression is termed a binomial coefficient. Observe that selecting a k-

element subset of S is equivalent to choosing the n − k elements that belong

to its complement. Thus, we can write

(

n

k

)

=

(

n

n− k

)

.

Example 10 (Sampling without Replacement or Ordering). An urn contains

n balls numbered one through n. A ball is drawn from the urn and placed in

a separate jar. This process is repeated until the jar contains k balls, where

k ≤ n. We wish to compute the number of distinct combinations the jar can

hold after the completion of this experiment. Because there is no ordering in

the jar, this amounts to counting the number of k-element subsets of a given

n-element set, which is given by

(

n

k

)

=
n!

k!(n− k)!
.

Again, let S = {1, 2, . . . , n}. Since a combination is also a subset and

the number of k-element combinations of S is
(

n
k

)

, the sum of the binomial

coefficients
(

n
k

)

over all values of k must be equal to the number of elements

in the power set of S,
n
∑

k=0

(

n

k

)

= 2n.

2.4 Partitions

Abstractly, a combination is equivalent to partitioning a set into two disjoint

subsets, one containing k objects and the other containing the n−k remaining
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elements. In general, the set S = {1, 2, . . . , n} can be partitioned into r disjoint

subsets. Let n1, n2, . . . , nr be nonnegative integers such that

r
∑

i=1

ni = n.

Consider the following iterative algorithm that leads to a partition of S. First,

we choose a subset of n1 elements from S. Having selected the first subset,

we pick a second subset containing n2 elements from the remaining n − n1

elements. We continue this procedure by successively choosing subsets of ni

elements from the residual n − n1 − · · · − ni−1 elements, until no element

remains. This algorithm yields a partition of S into r subsets, with the ith

subset containing exactly ni elements.

We wish to count the number of such partitions. We know that there are
(

n
n1

)

ways to form the first subset. Examining our algorithm, we see that there

are exactly
(

n− n1 − · · · − ni−1

ni

)

ways to form the ith subset. Using the counting principle, the total number

of partitions is then given by

(

n

n1

)(

n− n1

n2

)

· · ·
(

n− n1 − · · · − nr−1

nr

)

,

which after simplification can be written as

(

n

n1, n2, . . . , nr

)

=
n!

n1!n2! · · ·nr!
.

This expression is called a multinomial coefficient.

Example 11. A die is rolled nine times. We wish to compute the number

of possible outcomes for which every odd number appears three times. The

number of distinct sequences in which one, three and five each appear three

times is equal to the number of partitions of {1, 2, . . . , 9} into three subsets of

size three, namely
9!

3!3!3!
= 1680.
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In the above analysis, we assume that the cardinality of each subset is

fixed. Suppose instead that we are interested in counting the number of ways

to pick the cardinality of the subsets that form the partition. Specifically, we

wish to compute the number of ways integers n1, n2, . . . , nr can be selected

such that every integer is nonnegative and

r
∑

i=1

ni = n.

We can visualize the number of possible assignments as follows. Picture n

balls spaced out on a straight line and consider r− 1 vertical markers, each of

which can be put between two consecutive balls, before the first ball, or after

the last ball. For instance, if there are five balls and two markers then one

possible assignment is illustrated in Figure 2.7.

1 1

1 1 1

1 1 111

Figure 2.7: The number of possible cardinality assignments for the partition

of a set of n elements into r distinct subsets is equivalent to the number of

ways to select n positions out of n+ r − 1 candidates.

The number of objects in the first subset corresponds to the number of

balls appearing before the first marker. Similarly, the number of objects in

the ith subset is equal to the number of balls positioned between the ith

marker and the preceding one. Finally, the number of objects in the last

subset is simply the number of balls after the last marker. In this scheme,

two consecutive markers imply that the corresponding subset is empty. For
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example, the integer assignment associated with the Figure 2.7 is

(n1, n2, n3) = (0, 2, 3).

11 111

Figure 2.8: The assignment displayed in Figure 2.7 corresponds to having no

element in the first set, two elements in the second set and three elements in

the last one.

There is a natural relation between an integer assignment and the graph-

ical representation depicted above. To count the number of possible integer

assignments, it suffices to calculate the number of ways to place the markers

and the balls. In particular, there are n + r − 1 positions, n balls and r − 1

markers. The number of ways to assign the markers is equal to the number of

n-combinations of n+ r − 1 elements,
(

n+ r − 1

n

)

=

(

n + r − 1

r − 1

)

.

Example 12 (Sampling with Replacement, without Ordering). An urn con-

tains r balls numbered one through r. A ball is drawn from the urn and its

number is recorded. The ball is then returned to the urn. This procedure is

repeated a total of n times. The outcome of this experiment is a table that

contains the number of times each ball has come in sight. We are interested

in computing the number of possible outcomes. This is equivalent to counting

the ways a set with n elements can be partitioned into r subsets. The number

of possible outcomes is therefore given by
(

n+ r − 1

n

)

=

(

n + r − 1

r − 1

)

.

2.5 Combinatorial Examples

In this section, we present a few applications of combinatorics to computing

the probabilities of specific events.
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Example 13 (Pick 3 Texas Lottery). The Texas Lottery game “Pick 3” is

easy to play. A player must pick three numbers from zero to nine, and choose

how to play them: exact order or any order. The Pick 3 balls are drawn using

three air-driven machines. These machines employ compressed air to mix and

select each ball.

The probability of winning when playing the exact order is

1

10

1

10

1

10
=

1

1000
.

The probability of winning while playing any order depends on the numbers

selected. When three distinct numbers are selected, the probability of winning

is given by
3!

1000
=

3

500
.

If a number is repeated twice, the probability of winning becomes
(

3
2

)

1000
=

3

1000
.

Finally, if a same number is selected three times, the probability of winning

decreases to 1/1000.

Example 14 (Mega Millions Texas Lottery). To play the Mega Millions game,

a player must select five numbers from 1 to 56 in the upper white play area of

the play board, and one Mega Ball number from 1 to 46 in the lower yellow play

area of the play board. All drawing equipment is stored in a secured on-site

storage room. Only authorized drawings department personnel have keys to the

door. Upon entry of the secured room to begin the drawing process, a lottery

drawing specialist examines the security seal to determine if any unauthorized

access has occurred. For each drawing, the Lotto Texas balls are mixed by four

acrylic mixing paddles rotating clockwise. High speed is used for mixing and

low speed for ball selection. As each ball is selected, it rolls down a chute into

an official number display area. We wish to compute the probability of winning

the Mega Millions Grand Prize, which requires the correct selection of the five

white balls plus the gold Mega ball.

The probability of winning the Mega Millions Grand Prize is

1
(

56
5

)

1

46
=

51!5!

56!

1

46
=

1

175711536
.
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Example 15 (Sinking Boat). Six couples, twelve people total, are out at sea

on a sail boat. Unfortunately, the boat hits an iceberg and starts sinking slowly.

Two Coast Guard vessels, the Ibis and the Mako, come to the rescue. Each

boat can rescue six people. What is the probability that no two people from a

same couple end up on the Mako?

Suppose that rescued passengers are assigned to the Ibis and the Mako

at random. Then, the number of possible ways to partition these passengers

between the two vessels is
(

12

6

)

=
12!

6!6!
.

If no two people from a same couple end up on the Mako, then each couple is

split between the two vessels. In these circumstances, there are two possibilities

for every couple and, using the counting principle, we gather that there are 26

such assignments. Collecting these results, we conclude that the probability

that no two people from a same couple end up on the Mako is equal to

26
(

12
6

) =
266!6!

12!
.
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