
Chapter 4

Conditional Probability

Conditional probability provides a way to compute the likelihood of an event

based on partial information. This is a powerful concept that is used exten-

sively throughout engineering with applications to decision making, networks,

communications and many other fields.

4.1 Conditioning on Events

We begin our description of conditional probability with illustrative examples.

The intuition gained through this exercise is then generalized by introducing

a formal definition for this important concept.

Example 22. The rolling of a fair die is an experiment with six equally likely

outcomes. As such, the probability of obtaining any of the outcomes is 1/6.

However, if we are told that the upper face features an odd number, then only

three possibilities remain, namely {1, 3, 5}. These three outcomes had equal

probabilities before the additional information was revealed. It then seems nat-

ural to assume that they remain equally likely afterwards. In particular, it is

reasonable to assign a probability of 1/3 to each of the three outcomes that re-

main possible candidates after receiving the side information. We can express

the probability of getting a three given that the outcome is an odd number as

Pr(3 ∩ {1, 3, 5})
Pr({1, 3, 5}) =

Pr(3)

Pr({1, 3, 5}) =
1

3
.
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Figure 4.1: Partial information about the outcome of an experiment may

change the likelihood of events. The resulting values are known as conditional

probabilities.

Example 23. Let A and B be events associated with a random experiment,

and assume that Pr(B) > 0. To gain additional insight into conditional proba-

bility, we consider the scenario where this experiment is repeated N times. Let

NAB be the number of trials for which A ∩ B occurs, NAB be the number of

times where only A occurs, NAB be the number of times where only B occurs,

and NAB be the number of trials for which neither takes place. From these

definitions, we gather that A is observed exactly NA = NAB +NAB times, and

B is seen NB = NAB +NAB times.

The frequentist view of probability is based on the fact that, as N becomes

large, one can approximate the probability of an event by taking the ratio of the

number of times this event occurs over the total number of trials. For instance,

we can write

Pr(A ∩ B) ≈ NAB

N
Pr(B) ≈ NB

N
.

Likewise, the conditional probability of A given knowledge that the outcome

lies in B can be computed using

Pr(A|B) ≈ NAB

NB

=
NAB/N

NB/N
≈ Pr(A ∩B)

Pr(B)
. (4.1)

As N approaches infinity, these approximations become exact and (4.1) unveils

the formula for conditional probability.

Having considered intuitive arguments, we turn to the mathematical def-

inition of conditional probability. Let B be an event such that Pr(B) > 0.
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A conditional probability law assigns to every event A a number Pr(A|B),

termed the conditional probability of A given B, such that

Pr(A|B) =
Pr(A ∩ B)

Pr(B)
. (4.2)

We can show that the collection of conditional probabilities {Pr(A|B)} spec-

ifies a valid probability law, as defined in Section 3.2. For every event A, we

have

Pr(A|B) =
Pr(A ∩B)

Pr(B)
≥ 0

and, hence, Pr(A|B) is nonnegative. The probability of the entire sample

space Ω is equal to

Pr(Ω|B) =
Pr(Ω ∩ B)

Pr(B)
=

Pr(B)

Pr(B)
= 1.

If A1, A2, . . . is a sequence of disjoint events, then

A1 ∩ B,A2 ∩ B, . . .

is also a sequence of disjoint events and

Pr

( ∞
⋃

k=1

Ak

∣

∣

∣
B

)

=
Pr ((

⋃∞
k=1Ak) ∩B)

Pr(B)
=

Pr (
⋃∞

k=1(Ak ∩ B))

Pr(B)

=
∞
∑

k=1

Pr(Ak ∩ B)

Pr(B)
=

∞
∑

k=1

Pr(Ak|B),

where the third equality follows from the third axiom of probability applied to

the set
⋃∞

k=1(Ak ∩ B). Thus, the conditional probability law defined by (4.2)

satisfies the three axioms of probability.

Example 24. A fair coin is tossed repetitively until heads is observed. In

Example 20, we found that the probability of observing heads for the first time

on trial k is 2−k. We now wish to compute the probability that heads occurred

for the first time on the second trial given that it took an even number of tosses

to observe heads. In this example, A = {2} and B is the set of even numbers.

The probability that the outcome is two, given that the number of tosses is

even, is equal to

Pr(2|B) =
Pr(2 ∩B)

Pr(B)
=

Pr(2)

Pr(B)
=

1/4

1/3
=

3

4
.
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In the above computation, we have used the fact that the probability of flipping

the coin an even number of times is equal to 1/3. This fact was established in

Example 20.

The definition of conditional probability can be employed to compute the

probability of several events occurring simultaneously. Let A1, A2, . . . , An be

a collection of events. The probability of events A1 through An taking place

at the same time is given by

Pr

(

n
⋂

k=1

Ak

)

= Pr(A1) Pr(A2|A1) Pr(A3|A1 ∩A2) · · ·Pr
(

An

∣

∣

∣

∣

n−1
⋂

k=1

Ak

)

. (4.3)

This formula is known as the chain rule of probability, and it can be verified

by expanding each of the conditional probabilities using (4.2),

Pr

(

n
⋂

k=1

Ak

)

= Pr(A1)
Pr(A1 ∩A2)

Pr(A1)

Pr(A1 ∩ A2 ∩A3)

Pr(A1 ∩ A2)
· · · Pr (

⋂n
k=1Ak)

Pr
(
⋂n−1

k=1 Ak

) .

This latter expression implicitly assumes that Pr
(
⋂n−1

k=1 Ak

)

6= 0.

Example 25. An urn contains eight blue balls and four green balls. Three

balls are drawn from this urn without replacement. We wish to compute the

probability that all three balls are blue. The probability of drawing a blue ball

the first time is equal to 8/12. The probability of drawing a blue ball the second

time given that the first ball is blue is 7/11. Finally, the probability of drawing

a blue ball the third time given that the first two balls are blue is 6/10. Using

(4.3), we can compute the probability of drawing three blue balls as

Pr(bbb) =
8

12

7

11

6

10
=

14

55
.

4.2 The Total Probability Theorem

The probability of events A andB occurring at the same time can be calculated

as a special case of (4.3). For two events, this computational formula simplifies

to

Pr(A ∩ B) = Pr(A|B) Pr(B). (4.4)
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Figure 4.2: Conditional probability can be employed to calculate the proba-

bility of multiple events occurring at the same time.

We can also obtain this equation directly from the definition of conditional

probability. This property is a key observation that plays a central role in

establishing two important results, the total probability theorem and Bayes’

rule. To formulate these two theorems, we need to revisit the notion of a

partition. A collection of events A1, A2, . . . , An is said to be a partition of the

sample space Ω if these events are disjoint and their union is the entire sample

space,
n
⋃

k=1

Ak = Ω.

Visually, a partition divides an entire set into disjoint subsets, as exemplified

in Figure 4.3.

Theorem 2 (Total Probability Theorem). Let A1, A2, . . . , An be a collection of

events that forms a partition of the sample space Ω. Suppose that Pr(Ak) > 0

for all k. Then, for any event B, we can write

Pr(B) = Pr(A1 ∩ B) + Pr(A2 ∩ B) + · · ·+ Pr(An ∩B)

= Pr(A1) Pr(B|A1) + Pr(A2) Pr(B|A2) + · · ·+ Pr(An) Pr(B|An).
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Figure 4.3: A partition of S can be formed by selecting a collection of subsets

that are disjoint and whose union is S.

Proof. The collection of events A1, A2, . . . , An forms a partition of the sample

space Ω. We can therefore write

B = B ∩ Ω = B ∩
(

n
⋃

k=1

Ak

)

.

Since A1, A2, . . . , An are disjoint sets, the events A1 ∩ B,A2 ∩ B, . . . , An ∩ B

are also disjoint. Combining these two facts, we get

Pr(B) = Pr

(

B ∩
(

n
⋃

k=1

Ak

))

= Pr

(

n
⋃

k=1

(B ∩Ak)

)

=

n
∑

k=1

Pr (B ∩ Ak) =

n
∑

k=1

Pr(Ak) Pr (B|Ak) ,

where the fourth equality follows from the third axiom of probability.

Figure 4.4: The total probability theorem states that the probability of event

B can be computed by summing Pr(Ai ∩B) over all members of the partition

A1, A2, . . . , An.

A graphical interpretation of Theorem 2 is illustrated in Figure 4.4. Event

B can be decomposed into the disjoint union of A1 ∩ B,A2 ∩ B, . . . , An ∩ B.
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The probability of event B can then be computed by adding the corresponding

summands

Pr(A1 ∩B),Pr(A2 ∩B), . . . ,Pr(An ∩B).

Example 26. An urn contains five green balls and three red balls. A second

urn contains three green balls and nine red balls. One of the two urns is picked

at random, with equal probabilities, and a ball is drawn from the selected urn.

We wish to compute the probability of obtaining a green ball.

In this problem, using a divide and conquer approach seems appropriate;

we therefore utilize the total probability theorem. If the first urn is chosen,

then the ensuing probability of getting a green ball is 5/8. One the other hand,

if a ball is drawn from the second urn, the probability that it is green reduces

to 3/12. Since the probability of selecting either urn is 1/2, we can write the

overall probability of getting a green ball as

Pr(g) = Pr(g ∩ U1) + Pr(g ∩ U2)

= Pr(g|U1) Pr(U1) + Pr(g|U2) Pr(U2)

=
5

8
· 1
2
+

3

12
· 1
2
=

7

16
.

4.3 Bayes’ Rule

The following result is also very useful. It relates the conditional probability

of A given B to the conditional probability of B given A.

Theorem 3 (Bayes’ Rule). Let A1, A2, . . . , An be a collection of events that

forms a partition of the sample space Ω. Suppose that Pr(Ak) > 0 for all k.

Then, for any event B such that Pr(B) > 0, we can write

Pr(Ai|B) =
Pr(Ai) Pr(B|Ai)

Pr(B)

=
Pr(Ai) Pr(B|Ai)

∑n
k=1 Pr(Ak) Pr(B|Ak)

.

(4.5)

Proof. Bayes’ rule is easily verified. We expand the probability of Ai∩B using

(4.4) twice, and we get

Pr(Ai ∩ B) = Pr(Ai|B) Pr(B) = Pr(B|Ai) Pr(Ai).



44 CHAPTER 4. CONDITIONAL PROBABILITY

Rearranging the terms yields the first equality. The second equality in (4.5)

is obtained by applying Theorem 2 to the denominator Pr(B).

Example 27. April, a biochemist, designs a test for a latent disease. If a

subject has the disease, the probability that the test results turn out positive is

0.95. Similarly, if a subject does not have the disease, the probability that the

test results come up negative is 0.95. Suppose that one percent of the population

is infected by the disease. We wish to find the probability that a person who

tested positive has the disease.

Let D denote the event that a person has the disease, and let P be the

event that the test results are positive. Using Bayes’ rule, we can compute the

probability that a person who tested positive has the disease,

Pr(D|P ) =
Pr(D) Pr(P |D)

Pr(D) Pr(P |D) + Pr(Dc) Pr(P |Dc)

=
0.01 · 0.95

0.01 · 0.95 + 0.99 · 0.05
≈ 0.1610.

Although the test may initially appear fairly accurate, the probability that a

person with a positive test carries the disease remains small.

4.4 Independence

Two events A and B are said to be independent if Pr(A ∩B) = Pr(A) Pr(B).

Interestingly, independence is closely linked to the concept of conditional prob-

ability. If Pr(B) > 0 and events A and B are independent, then

Pr(A|B) =
Pr(A ∩B)

Pr(B)
=

Pr(A) Pr(B)

Pr(B)
= Pr(A).

That is, the a priori probability of event A is identical to the a posteriori

probability of A given B. In other words, if A is independent of B, then

partial knowledge of B contains no information about the likely occurrence of

A. We note that independence is a symmetric relation; if A is independent of

B, then B is also independent of A. It is therefore unambiguous to say that

A and B are independent events.
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Example 28. Suppose that two dice are rolled at the same time, a red die and

a blue die. We observe the numbers that appear on the upper faces of the two

dice. The sample space for this experiment is composed of thirty-six equally

likely outcomes. Consider the probability of getting a four on the red die given

that the blue die shows a six,

Pr({r = 4}|{b = 6}) = Pr({r = 4} ∩ {b = 6})
Pr(b = 6)

=
1

6
= Pr(r = 4).

From this equation, we gather that

Pr({r = 4} ∩ {b = 6}) = Pr(r = 4)Pr(b = 6).

As such, rolling a four on the red die and rolling a six on the blue die are

independent events.

Similarly, consider the probability of obtaining a four on the red die given

that the sum of the two dice is eleven,

Pr({r = 4}|{r + b = 11}) = Pr({r = 4} ∩ {r + b = 11})
Pr(r + b = 11)

= 0

6= 1

6
= Pr(r = 4).

In this case, we conclude that getting a four on the red die and a sum total of

eleven are not independent events.

The basic idea of independence seems intuitively clear: if knowledge about

the occurrence of event B has no impact on the probability of A, then these

two events must be independent. Yet, independent events are not necessarily

easy to visualize in terms of their sample space. A common mistake is to

assume that two events are independent if they are disjoint. Two mutually

exclusive events can hardly be independent: if Pr(A) > 0, Pr(B) > 0, and

Pr(A ∩B) = 0 then

Pr(A ∩ B) = 0 < Pr(A) Pr(B).

Hence, A and B cannot be independent if they are disjoint, non-trivial events.
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4.4.1 Independence of Multiple Events

The concept of independence can be extended to multiple events. The events

A1, A2, . . . , An are independent provided that

Pr

(

⋂

i∈I
Ai

)

=
∏

i∈I
Pr(Ai), (4.6)

for every subset I of {1, 2, . . . , n}.
For instance, consider a collection of three events, A, B and C. These

events are independent whenever

Pr(A ∩B) = Pr(A) Pr(B)

Pr(A ∩ C) = Pr(A) Pr(C)

Pr(B ∩ C) = Pr(B) Pr(C)

(4.7)

and, in addition,

Pr(A ∩ B ∩ C) = Pr(A) Pr(B) Pr(C).

The three equalities in (4.7) assert that A, B and C are pairwise independent.

Note that the fourth equation does not follow from the first three conditions,

nor does it imply any of them. Pairwise independence does not necessarily

imply independence. This is illustrated below.

Example 29. A fair coin is flipped twice. Let A denote the event that heads

is observed on the first toss. Let B be the event that heads is obtained on the

second toss. Finally, let C be the event that the two coins show distinct sides.

These three events each have a probability of 1/2. Furthermore, we have

Pr(A ∩B) = Pr(A ∩ C) = Pr(B ∩ C) =
1

4

and, therefore, these events are pairwise independent. However, we can verify

that

Pr(A ∩B ∩ C) = 0 6= 1

8
= Pr(A) Pr(B) Pr(C).

This shows that events A, B and C are not independent.
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Example 30. Two dice are rolled at the same time, a red die and a blue die.

Let A be the event that the number on the red die is odd. Let B be the event

that the number on the red die is either two, three or four. Also, let C be the

event that the product of the two dice is twelve. The individual probabilities of

these events are

Pr(A) = Pr(r ∈ {1, 3, 5}) = 1

2

Pr(B) = Pr(r ∈ {2, 3, 4}) = 1

2

Pr(C) = Pr(r × b = 12) =
4

36
.

We note that these events are not pairwise independent because

Pr(A ∩ B) =
1

6
6= 1

4
= Pr(A) Pr(B)

Pr(A ∩ C) =
1

36
6= 1

18
= Pr(A) Pr(C)

Pr(B ∩ C) =
1

12
6= 1

18
= Pr(B) Pr(C).

Consequently, the multiple events A, B and C are not independent. Still, the

probability of these three events occurring simultaneously is

Pr(A ∩ B ∩ C) =
1

36
=

1

2
· 1
2
· 4

36
= Pr(A) Pr(B) Pr(C).

4.4.2 Conditional Independence

We introduced earlier the meaning of conditional probability, and we showed

that the set of conditional probabilities {Pr(A|B)} specifies a valid probability

law. It is therefore possible to discuss independence with respect to conditional

probability. We say that events A1 and A2 are conditionally independent, given

event B, if

Pr(A1 ∩A2|B) = Pr(A1|B) Pr(A2|B).

Note that if A1 and A2 are conditionally independent, we can use equation

(4.2) to write

Pr(A1 ∩A2|B) =
Pr(A1 ∩A2 ∩B)

Pr(B)

=
Pr(B) Pr(A1|B) Pr(A2|A1 ∩B)

Pr(B)

= Pr(A1|B) Pr(A2|A1 ∩ B).
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Under the assumption that Pr(A1|B) > 0, we can combine the previous two

expressions and get

Pr(A2|A1 ∩B) = Pr(A2|B).

This latter result asserts that, given event B has taken place, the additional

information that A1 has also occurred does not affect the likelihood of A2. It is

simple to show that conditional independence is a symmetric relation as well.

Example 31. Suppose that a fair coin is tossed until heads is observed. The

number of trials is recorded as the outcome of this experiment. We denote by

B the event that the coin is tossed more than one time. Moreover, we let A1

be the event that the number of trials is an even number; and A2, the event

that the number of trials is less than six. The conditional probabilities of A1

and A2, given that the coin is tossed more than once, are

Pr(A1|B) =
Pr(A1 ∩B)

Pr(B)
=

1/3

1/2
=

2

3

Pr(A2|B) =
Pr(A2 ∩B)

Pr(B)
=

15/32

1/2
=

15

16
.

The joint probability of events A1 and A2 given B is equal to

Pr(A1 ∩A2|B) =
Pr(A1 ∩A2 ∩B)

Pr(B)

=
5/16

1/2
=

5

8
=

2

3
· 15
16

= Pr(A1|B) Pr(A2|B).

We conclude that A1 and A2 are conditionally independent given B. In par-

ticular, we have

Pr(A2|A1 ∩B) = Pr(A2|B)

Pr(A1|A2 ∩B) = Pr(A1|B).

We emphasize that events A1 and A2 are not independent with respect to the

unconditional probability law.

Two events that are independent with respect to an unconditional proba-

bility law may not be conditionally independent.
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Example 32. Two dice are rolled at the same time, a red die and a blue die.

We can easily compute the probability of simultaneously getting a two on the

red die and a six on the blue die,

Pr({r = 2} ∩ {b = 6}) = 1

36
= Pr(r = 2)Pr(b = 6).

Clearly, these two events are independent.

Consider the probability of rolling a two on the red die and a six on the

blue die given that the sum of the two dice is an odd number. The individual

conditional probabilities are given by

Pr({r = 2}|{r + b is odd}) = Pr({b = 6}|{r + b is odd}) = 1

6
,

whereas the joint conditional probability is

Pr({r = 2} ∩ {b = 6}|{r + b is odd}) = 0.

These two events are not conditionally independent.

It is possible to extend the notion of conditional independence to several

events. The events A1, A2, . . . , An are conditionally independent given B if

Pr

(

⋂

i∈I
Ai

∣

∣

∣
B

)

=
∏

i∈I
Pr(Ai|B)

for every subset I of {1, 2, . . . , n}. This definition is analogous to (4.6), albeit

using the appropriate conditional probability law.

4.5 Equivalent Notations

In the study of probability, we are frequently interested in the probability of

multiple events occurring simultaneously. So far, we have expressed the joint

probability of events A and B using the notation Pr(A∩B). For mathematical

convenience, we also represent the probability that two events occur at the

same time by

Pr(A,B) = Pr(A ∩ B).
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This alternate notation easily extends to the joint probability of several events.

We denote the joint probability of events A1, A2, . . . , An by

Pr(A1, A2, . . . , An) = Pr

(

n
⋂

k=1

Ak

)

.

Conditional probabilities can be written using a similar format. The proba-

bility of A given events B1, B2, . . . , Bn becomes

Pr(A|B1, B2, . . . , Bn) = Pr

(

A

∣

∣

∣

∣

n
⋂

k=1

Bk

)

.

From this point forward, we use these equivalent notations interchangeably.
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